This application is additionally related to U.S. patent application Ser. No. 10/455,941, filed Jun. 6, 2003; and U.S. patent application Ser. No. 10,455,895, filed Jun. 6, 2003, all of which are also incorporated herein by reference in their entireties.
1. Field of the Invention
Embodiments of the present invention generally relate to a method and apparatus for electrochemical mechanical processing.
2. Description of the Related Art
Electrochemical mechanical planarizing (ECMP) is a technique used to remove conductive materials from a substrate surface by electrochemical dissolution while concurrently polishing the substrate with reduced mechanical abrasion compared to conventional planarization processes. ECMP systems may generally be adapted for deposition of conductive material on the substrate by reversing the polarity of the bias. Electrochemical dissolution is performed by applying a bias between a cathode and a substrate surface to remove conductive materials from the substrate surface into a surrounding electrolyte. Typically, the bias is applied to the substrate surface by a conductive polishing material on which the substrate is processed. A mechanical component of the polishing process is performed by providing relative motion between the substrate and the conductive polishing material that enhances the removal of the conductive material from the substrate.
Copper is one material that may be polished using electrochemical mechanical planarizing. Typically, copper is polished utilizing a two-step process. In the first step, the bulk of the copper is removed, typically leaving some copper residue projecting above the substrate's surface. The copper residue is then removed in a second, or over-polishing, step.
However, the removal of copper residue may result in dishing of copper features below the plane of a surrounding material, typically an oxide Or a barrier layer of other materials, such as TaN, and the like. The amount of dishing typically is related to polishing chemistries and processing parameters utilized in the over-polish step, along with the width of the copper features subjected to polishing. As the copper layer does not have a uniform thickness across the substrate, it is difficult to remove all the copper residue without causing dishing over some features and not removing all of the copper residue over others. However, at the present time, it is difficult to perform both bulk and residual material removal at a single polishing station. Thus, it would be advantageous to perform bulk and residual material removal on polishing stations optimized for those processes to enhance substrate throughput while providing copper residue removal and minimized dishing.
Thus, there is a need for an improved method and apparatus electrochemical mechanical planarizing.
Embodiments of the invention generally provide a method and apparatus for processing a substrate in an electrochemical mechanical planarizing system. In one embodiment, a cell for processing a substrate includes a processing pad disposed on a top surface of a platen assembly. A plurality of conductive elements are arranged in a spaced-apart relation across the upper planarizing surface. An electrode is disposed between the pad and the platen assembly. A plurality of passages are formed through the platen assembly between the top surface and a plenum defined within the platen assembly.
In another embodiment, a system for processing a substrate includes a first electrochemical mechanical planarizing station and at least a second electrochemical mechanical planarizing station disposed in an enclosure. A transfer mechanism is adapted to transfer substrates between the planarizing stations. A first processing pad assembly is disposed in the first electrochemical mechanical planarizing station and has an upper dielectric planarizing surface that is substantially dielectric across a substrate processing area. A plurality of conductive elements are arranged in a spaced-apart relation across the upper planarizing surface of the first processing pad assembly. A second processing pad assembly is disposed in the second electrochemical mechanical planarizing station and has an upper conductive planarizing surface that is substantially conductive across a substrate processing area.
In another embodiment, a method for electrochemically processing a substrate is provided. In one embodiment, a method for electrochemically processing a substrate includes the steps of biasing a conductive element in contact with a substrate relative to an electrode electrically coupled to the substrate by a processing fluid, electrically separating the substrate from the conductive element, and applying a negative bias to the separated conductive element.
In another embodiment, a method for electrochemically processing a substrate includes the steps of applying a first electrical bias to discreet portions of a surface of the substrate through a plurality of conductive elements extending through a planarizing material, and applying a second electrical bias to the surface of the substrate through a uniformly biased conductive planarizing material.
So that the manner in which the above recited embodiments of the invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.
Embodiments for a system and method for the bulk and residual removal of conductive material from a substrate is provided. Although the system is illustratively described having at least two processing stations suitable for the removal of conductive material disposed around a central substrate transfer device, it is contemplated that the inventive processing stations may be arranged in other configurations, and/or be supplied substrates by other types or configurations of substrate transfer mechanisms. Furthermore, although the embodiments disclosed below focus primarily on removing material from, e.g., planarizing, a substrate, it is contemplated that the teachings disclosed herein may be used to electroplate a substrate by reversing the polarity of the bias.
A controller 108 is provided to facilitate control and integration of the modules of the system 100. The controller 108 comprises a central processing unit (CPU) 110, a memory 112, and support circuits 114. The controller 108 is coupled to the various components of the system 100 to facilitate control of, for example, the planarizing, cleaning, and transfer processes.
The factory interface 102 generally includes a cleaning module 116 and one or more wafer cassettes 118. An interface robot 120 is employed to transfer substrates 122 between the wafer cassettes 118, the cleaning module 116 and an input module 124. The input module 124 is positioned to facilitate transfer of substrates 122 between the planarizing module 106 and the factory interface 102 by grippers, for example vacuum grippers or mechanical clamps.
The planarizing module 106 includes at least one bulk electrochemical mechanical planarizing (ECMP) station 128, and optionally, at least one conventional chemical mechanical planarizing (CMP) stations 132 disposed in an environmentally controlled enclosure 188. Examples of planarizing modules 106 that can be adapted to benefit from the invention include MIRRA®, MIRRA MESA™, REFLEXION® , REFLEXION® LK, and REFLEXION LK Ecmp™ Chemical Mechanical Planarizing Systems, all available from Applied Materials, Inc. of Santa Clara, Calif. Other planarizing modules, including those that use processing pads, planarizing webs, or a combination thereof, and those that move a substrate relative to a planarizing surface in a rotational, linear or other planar motion may also be adapted to benefit from the invention.
In the embodiment depicted in
A conventional chemical mechanical planarizing process is performed at the planarizing station 132 after processing at the residual ECMP station 130. An example of a conventional CMP process for the removal of copper is described in U.S. Pat. No. 6,451,697, issued Sep. 17, 2002, which is incorporated by reference in its entirety. An example of a conventional CMP process for the barrier removal is described in U.S. patent application Ser. No. 10/187,857, filed Jun. 27, 2002, which is incorporated by reference in its entirety. It is contemplated that other CMP processes may be alternatively performed. As the CMP stations 132 are conventional in nature, further description thereof has been omitted for the sake of brevity.
The exemplary planarizing module 106 also includes a transfer station 136 and a carousel 134 that are disposed on an upper or first side 138 of a machine base 140. In one embodiment, the transfer station 136 includes an input buffer station 142, an output buffer station 144, a transfer robot 146, and a load cup assembly 148. The input buffer station 142 receives substrates from the factory interface 102 by the loading robot 104. The loading robot 104 is also utilized to return polished substrates from the output buffer station 144 to the factory interface 102. The transfer robot 146 is utilized to move substrates between the buffer stations 142,144 and the load cup assembly 148.
In one embodiment, the transfer robot 146 includes two gripper assemblies, each having pneumatic gripper fingers that hold the substrate by the substrate's edge. The transfer robot 146 may simultaneously transfer a substrate to be processed from the input buffer station 142 to the load cup assembly 148 while transferring a processed substrate from the load cup assembly 148 to the output buffer station 144. An example of a transfer station that may be used to advantage is described in U.S. Pat. No. 6,156,124, issued Dec. 5, 2000 to Tobin, which is herein incorporated by reference in its entirety.
The carousel 134 is centrally disposed on the base 140. The carousel 134 typically includes a plurality of arms 150, each supporting a planarizing head assembly 152. Two of the arms 150 depicted in
A conditioning device 182 is disposed on the base 140 adjacent each of the planarizing stations 128, 132. The conditioning device 182 periodically conditions the planarizing material disposed in the stations 128, 132 to maintain uniform planarizing results.
In one embodiment, the planarizing head may be a TITAN HEAD™ or TITAN PROFILER™ wafer carrier manufactured by Applied Materials, Inc. Generally, the planarizing head 204 comprises a housing 214 and retaining ring 224 that defines a center recess in which the substrate 122 is retained. The retaining ring 224 circumscribes the substrate 122 disposed within the planarizing head 204 to prevent the substrate from slipping out from under the planarizing head 204 while processing. The retaining ring 224 can be made of plastic materials such as PPS, PEEK, and the like, or conductive materials such as stainless steel, Cu, Au, Pd, and the like, or some combination thereof. It is further contemplated that a conductive retaining ring 224 may be electrically biased to control the electric field during ECMP. It is contemplated that other planarizing heads may be utilized.
The bulk ECMP station 128 generally includes a platen assembly 230 that is rotationally disposed on the base 140. The platen assembly 230 is supported above the base 140 by a bearing 238 so that the platen assembly 230 may be rotated relative to the base 140. An area of the base 140 circumscribed by the bearing 238 is open and provides a conduit for the electrical, mechanical, pneumatic, control signals and connections communicating with the platen assembly 230.
Conventional bearings, rotary unions and slip rings, collectively referred to as rotary coupler 276, are provided such that electrical, mechanical, fluid, pneumatic, control signals and connections may be coupled between the base 140 and the rotating platen assembly 230. The platen assembly 230 is typically coupled to a motor 232 that provides the rotational motion to the platen assembly 230. The motor 232 is coupled to the controller 108 that provides a signal for controlling for the rotational speed and direction of the platen assembly 230.
The platen assembly 230 has an upper plate 236 and a lower plate 234. The upper plate 236 may be fabricated from a rigid material, such as a metal or rigid plastic, and in one embodiment, is fabricated from or coated with a dielectric material, such as CPVC. The upper plate 236 may have a circular, rectangular or other plane form. A top surface 260 of the upper plate 236 supports a processing pad assembly 222 thereon.
The lower plate 234 is generally fabricated from a rigid material, such as aluminum. In the embodiment depicted in
Optionally, a magnetic element 240 may be disposed within the platen assembly 230 and is adapted to urge the processing pad assembly 222 toward the platen assembly 230. The magnetic element 240 is coupled to a power source 244 through the rotary coupler 276. It is contemplated that the magnetic element 240 may be coupled to the pad assembly 222 such that the pad assembly 222 is attracted to the platen assembly 230.
In the embodiment of
The magnet element 240 is generally disposed parallel to the top surface 260 of the platen assembly 230. This orientation generally enhances force uniformity of the processing pad assembly 222 against the top surface 260 of the platen assembly 230.
In one embodiment, the magnetic element 240 is an electromagnet disposed between the upper plate 236 and the lower plate 234 of the platen assembly 230. The magnetic element 240 may be selectively energized by the power source 244 to create a bias force attracting the processing pad assembly 222 to the platen assembly 230. As the magnetic force applied by the magnetic element 240 is easily regulated by the power source 244, the contact force between the processing pad assembly 222 and the platen assembly 230 may be optimally tailored for specific processing routines. Moreover, as the attraction force between the processing pad assembly 222 and the platen assembly 230 may be removed by interrupting power applied to the magnetic element 240, the processing pad assembly 222 may be easily separated from the platen assembly 230. Optionally, the polarity of the magnetic force generated by the magnetic element 240 may be reversed to assist removing the processing pad assembly 222 in instances where the processing pad assembly 222 has become magnetized and/or contains permanent magnetic material. Alternatively, the magnetic element 240 may be a permanent magnet.
It is contemplated that the magnetic element 240 may be disposed in other positions within or adjacent the platen assembly 230. It is also contemplated that planarizing material support surfaces of planarizing stations having alternative and diverse designs may be adapted to incorporate a magnetic element 240 to provide an attractive force for securing a processing pad assembly 222 to the surface supporting the processing pad assembly 222.
The platen assembly 230 may optionally include a vacuum port 280 disposed in the top surface 260 of the platen assembly 230 supporting the processing pad assembly 222. The vacuum port 280 is coupled to a vacuum source 246 configured to selectively apply a vacuum to retain the processing pad assembly 222 against the platen assembly 230.
A plenum 206 is defined in the platen assembly 230. The plenum 206 may be partially formed in at least one of the upper or lower plates 236, 234. In the embodiment depicted in
The cover 212 includes a first aperture 302, a second aperture 304 and a third aperture 306. The first and second apertures 302, 304 provide an inlet and outlet that couple the plenum 206 through the cover 212 to the electrolyte source 248. In one embodiment, the first and second apertures 302, 304 are threaded to accept male fittings 308 that mate with holes 340 formed in the lower plate 234. A radial seal 310, for example, an o-ring or lobed seal, is disposed between the fittings 308 and bore of the holes 340 to provide a fluid seal that prevents electrolyte from leaking out of the plenum 206 through the cover 212.
The third aperture 306 is circumscribed by a seal 316 that isolates the third aperture 306 from electrolyte disposed within the plenum 206. In one embodiment, the seal 316 is positioned outward of second plenum seal 344 to provide an additional barrier between the first bayonet fitting 318 and the electrolyte disposed in the plenum 206. The third aperture 306 is configured to permit a first bayonet fitting 318 to pass therethrough. The first bayonet fitting 318 couples a contact plate 320, disposed in the plenum 206 and coupled to the upper plate 236, to a socket 322 disposed in the lower plate 234. The socket 322 is coupled by a first power line 324 disposed in a passage 326 formed in the lower plate 326 to the power source 242 through the rotary coupler 276 (as shown in
A second line 328 is disposed through the lower plate 234 coupling a socket 334 disposed proximate the perimeter of the lower plate 234 to the power source 242. A second bayonet fitting 332 is coupled to a contact member 336 disposed in the upper plate 236. The contact member 336 includes a threaded hole 338 or other element exposed to the top surface 260 of the upper plate 236 that is suitable for electrically coupling the contact member 336 to the processing pad assembly 222. In the embodiment depicted in
The bayonet fittings 318, 332 and locating pins 220 facilitate alignment of the plates 234, 236 while fluid and electrical connection are made as the upper plate 236 is disposed on the lower plate 234. This advantageously provides both ease of assembly with robust electrical and fluid coupling between the plates 234, 236.
Referring additionally to
The electrode 292 is also coupled to the power source 242 so that an electrical potential may be established between the substrate and electrode 292. In one embodiment the electrode 292 is electrically coupled to the power source 242 by a fastener 380 disposed through the electrode 292 and engaging the threaded hole 338 of the contact member 336 (as shown in
The electrode 292 is typically comprised of a conductive material, such as stainless steel, copper, aluminum, gold, silver and tungsten, among others. The electrode 292 may be solid, impermeable to electrolyte, permeable to electrolyte or perforated. In the embodiment depicted in
Embodiments of the processing pad assembly 222 suitable for bulk removal of material from the substrate 122 may generally include a planarizing surface that is substantially dielectric. As the conductive material to be removed from the substrate 122 substantially covers the substrate 122, fewer contacts for biasing the substrate 122 are required. Embodiments of the processing pad assembly 222 suitable for residual removal of material from the substrate 122 may generally include a planarizing surface that is substantially conductive. As the conductive material to be removed from the substrate 122 comprises isolated islands of material disposed on the substrate 122, more contacts for biasing the substrate 122 are required.
In one embodiment, the planarizing layer 290 of the processing pad assembly 222 may include a planarizing surface 364 that is dielectric, such as a polyurethane pad. Examples of processing pad assemblies that may be adapted to benefit from the invention are described in U.S. patent application Ser. No. 10/455,941, filed Jun. 6, 2003 by Y. Hu et al. (entitled “CONDUCTIVE PLANARIZING ARTICLE FOR ELECTROCHEMICAL MECHANICAL PLANARIZING”) and U.S. patent application Ser. No. 10/455,895, filed Jun. 6, 2003 by Y. Hu et al. (entitled “CONDUCTIVE PLANARIZING ARTICLE FOR ELECTROCHEMICAL MECHANICAL PLANARIZING”), both of with are hereby incorporated by reference in their entireties.
The contact assemblies 250 are generally electrically coupled to the contact plate 320 through the upper plate 236 and extend at least partially through respective apertures 468 formed in the processing pad assembly 222. The position of the contact assemblies 250 may be chosen to have a predetermined configuration across the platen assembly 230. For predefined processes, individual contact assemblies 250 may be repositioned in different apertures 468, while apertures not containing contact assemblies may be plugged with a stopper 492 or filled with a nozzle 494 that allows flow of electrolyte from the plenum 206 to the substrate. One contact assembly that may be adapted to benefit from the invention is described in U.S. patent application Ser. No. 10/445,239, filed May 23, 2003, by Butterfield, et al., and is hereby incorporated by reference in its entirety.
Although the embodiments of the contact assembly 250 described below with respect to
In one embodiment, each of the contact assemblies 250 includes a hollow housing 402, an adapter 404, a ball 406, a contact element 414 and a clamp bushing 416. The ball 406 has a conductive outer surface and is movably disposed in the housing 402. The ball 406 may be disposed in a first position having at least a portion of the ball 406 extending above the planarizing surface 364 and at least a second position where the ball 406 is flush with the planarizing surface 364. The ball 406 is generally suitable for electrically coupling the substrate 122 to the power source 242 through the contact plate 320.
The power source 242 generally provides a positive electrical bias to the ball 406 during processing. Between planarizing substrates, the power source negatively biases the ball 406 to minimize attack on the ball 406 by process chemistries.
The housing 402 is fabricated from a dielectric material compatible with process chemistries. In one embodiment, the housing 402 is made of PEEK. The housing 402 has a first end 408 and a second end 410. A drive feature 412 is formed in and/or on the first end 408 to facilitate installation of the contact assembly 250 to the contact plate 320. The drive feature 412 may be holes for a spanner wrench, a slot or slots, a recessed drive feature (such as for a TORX® or hex drive, and the like) or a projecting drive feature (such as wrench flats or a hex head, and the like), among others. The first end 408 additionally includes a seat 426 that prevents the ball 406 from passing out of the first end 408 of the housing 402. The seat 426 optionally may include one or more grooves 448 formed therein that allow fluid flow to exit the housing 402 between the ball 406 and seat 412. Maintaining fluid past the ball 406 may minimize the propensity of process chemistries to attack the ball 406.
The contact element 414 is coupled between the clamp bushing 416 and adapter 404. The contact element 414 is generally configured to electrically connect the adapter 404 and ball 406 substantially or completely through the range of ball positions within the housing 402. In one embodiment, the contact element 414 may be configured as a spring form.
In the embodiment depicted in FIGS. 4 and 5A-B and detailed in
Returning to FIGS. 4 and 5A-B, the clamp bushing 416 includes a flared head 524 having a threaded post 522 extending therefrom. The clamp bushing may be fabricated from either a dielectric or conductive material, or a combination thereof, and in one embodiment, is fabricated from the same material as the housing 402. The flared head 524 maintains the flexures 444 at an acute angle relative to the centerline of the contact assembly 250 so that the contact pads 606 of the contact elements 414 are positioned to spread around the surface of the ball 406 to prevent bending, binding and/or damage to the flexures 444 during assembly of the contact assembly 250 and through the range of motion of the ball 406.
The post 522 of the clamp bushing 416 is disposed through a hole 546 in the base 442 and threads into a threaded portion 440 of a passage 436 formed through the adapter 404. A passage 418 formed through the clamp bushing 416 includes a drive feature 420 at an end disposed in the flared head 524. Similarly, the passage 436 includes a drive feature 438 in an end opposite the threaded portion 440. The drive features 420, 438 may be similar to those described above, and in one embodiment, are hexagonal holes suitable for use with a hex driver. The clamp bushing 424 is tightened to a level that ensures good electrical contact between the contact element 414 and the adapter 404 without damaging the contact element 414 or other component.
The adapter 404 is generally fabricated from an electrically conductive material compatible with process chemistries, and in one embodiment, is fabricated from stainless steel. The adapter 404 includes an annular flange 432 having a threaded post 430 extending from one side and a boss 434 extending from the opposite side. The threaded post 430 is adapted to mate with the contact plate 320 disposed in recess 208 of the upper plate 236 which couples the respective balls 406 in the contact assemblies 250 to the power source 242.
The boss 434 is received in the second end 410 of the housing 402 and provides a surface for clamping the contact element 414 thereto. The boss 434 additionally includes at least one threaded hole 506 disposed on the side of the boss 434 that engages a fastener 502 disposed through a hole 504 formed in the housing 402, thereby securing the housing 402 to the adapter 404 and capturing the ball 406 therein. In the embodiment depicted in
The ball 406 may be solid or hollow and is typically fabricated from a conductive material. For example, the ball 406 may be fabricated from a metal, conductive polymer or a polymeric material filled with conductive material, such as metals, conductive carbon or graphite, among other conductive materials. Alternatively, the ball 406 may be formed from a solid or hollow core that is coated with a conductive material. The core may be non-conductive and at least partially coated with a conductive covering. Examples of suitable core materials include acrylonitrile butadiene styrene (ABS), polypropylene (PP), polyethylene (PE), polystyrene (PS), or polyamide-imide (PAI) (such as TORLON®), and the like.
In one embodiment, the core may be selected from an elastic or a resilient polymer such as polyurethane that deforms when the ball 406 is in contact with the substrate 122 during planarizing. Some examples of materials that may be utilized for the core include elastic organic polymers, ethylene-propylene-diene (EDPM), poly-alkenes, polyalkynes, polyesters, poly-aromatic alkenes/alkynes, polyimide, polycarbonate, polyurethane, and there combinations. Other examples of core materials include inorganic polymers, such as siloxane, or organic and inorganic combined materials, such as polysilicon and polysilane. As the ball 406 deforms, the contact area between the ball 406 and the substrate increases, thus improving the current flow between the ball 406 and the conductive layer disposed on the substrate 122, thereby improving planarizing results.
In one embodiment, the ball 406 has a copper (including copper alloy) outer surface, and may be solid, hollow, or have a different core material. In another embodiment, the ball 406 may include a noble metal outer surface. In another embodiment, the ball 406 may include a TORLON® polymer core coated with conductive gold layer using copper as seeding layer between TORLON® and gold layer. Another example is TORLON® or other polymer core coated with a layer of copper or other conductive material. Other suitable soft conductive materials include, but are not limited to, silver, copper, tin, and the like.
The ball 404 is generally actuated toward the planarizing surface 364 by at least one of spring, buoyant or flow forces. In the embodiment depicted in
So that the force upon the ball 406 is consistent across the different elevations of the ball 406 within the housing 402, a relief or groove 428 is formed in the interior wall of the housing 402 to accept the distal ends (608 in
In one embodiment, electrochemical attack on the contact assembly 250 and/or balls 406 by processing chemistries may be minimized by maintaining the contact assembly 250 and/or balls 406 below the substrate during planarizing. This may be accomplished by positioning the contact assemblies 250 in a predefined location, or programming the relative motion between the substrate and platen assembly 230 to maintain the substrate over the balls 406. As the balls 406 are depressed, the planarizing material 222 may be configured to provide a fluid seal around each ball 406, thereby preventing a direct electrical path through the electrolyte between the electrode 292 and the balls 406, thus making the chemical reaction preferential to the conductive material on the substrate relative to the balls 406.
Alternatively, or additionally, as depicted in
A gap 1306 separates the conductive material 1304 from the electrode 292. Alternatively, the gap 1306 may be filled with a dielectric compatible with process chemistries, such as PEEK. During processing, the aperture 468 is filled with an electrolyte from the electrolyte source 248. Due to the electrolyte being in contact with both the conductive material 1304 and the electrode 292, the local electrical potential difference between the electrolyte and the ball 406 is minimized, thereby reducing the electrolytic corrosion of the ball 406.
Although the corrosion shield 1302 is depicted with respect to the embodiment of the contact assembly 250 shown in
In another embodiment, a rinsing fluid source 450 may be coupled through a selector valve 452 between the electrolyte source 248 and the contact assembly 250. The selector valve 452 allows a rinsing fluid, such as de-ionized water, to be flowed past the ball 406 during idle periods (when no substrates are being polished on the platen assembly 230) to prevent the ball 406 from being attacked by processing chemistries. It is contemplated that other configurations may be utilized to selectively couple the electrolyte source 248 and the rinsing fluid source 450 to the plenum 206, or that the electrolyte source 248 and the rinsing fluid source 450 may comprise a single fluid delivery system. It is also contemplated that, in a simple configuration, keeping a bleeding flow of processing chemistry around the balls all the time substantially prevents self catalytic reaction of the balls in the process chemistry (by removing the catalyst byproduct away from the ball), thus minimizing chemical attack on the balls due by eliminating the presence of static process chemistry.
Returning to
Optionally, the platen assembly 230 may include a sacrificial metal 258 disposed therein. The sacrificial metal 258 may be exposed through an aperture, depression or slot 256 form in the top surface 260 of the platen assembly 230. The sacrificial metal 258 may be positioned near or remote from the contact assemblies 250, as long as process chemistries disposed on the top surface 260 of the planarizing material 222 may contiguously wet the sacrificial metal 258 and the ball 406. The sacrificial metal 258 is additionally electrically coupled to the ball 406 (seen in
The processing pad assembly 760 may be any pad assembly suitable for processing the substrate, including any of the embodiments described above. The processing pad assembly 760 may include an electrode 962 and a planarizing layer 966. In one embodiment, the planarizing layer 966 of the processing pad assembly 760 may include a planarizing surface 964 that is dielectric, such as a polyurethane pad. In another embodiment, the planarizing layer 966 of the processing pad assembly 760 may include a planarizing surface 964 that is conductive or made from a conductive composite (i.e., the conduct elements are dispersed integrally with or comprise the material comprising the planarizing surface), such as a polymer matrix having conductive particles dispersed therein or a conductive coated fabric, among others. In the embodiment wherein the planarizing surface 964 is conductive, the planarizing surface 964 and electrode 962 may be coupled to the power source 242 (shown by the dashed lines) via a switch 996 that allows power to be selectively switched between the contact assembly 700 and the conductive planarizing surface 964 to respectively facilitate bulk metal removal and residual metal removal from the substrate 122 without lifting the substrate 122 from the processing pad assembly 760. It is contemplated that the bulk ECMP station 128 may also be similarly configured with a conductive processing pad assembly.
The contact assembly 700 is generally coupled to a conductive contact terminal 910 disposed in the platen assembly 750 and extends at least partially through an aperture 968 formed in the processing pad assembly 760. The contact assembly 700 includes a housing 802 that retains a plurality of balls 406. The balls 406 are movably disposed in the housing 802, and may be disposed in a first position having at least a portion of the balls 406 extending above the planarizing surface 964 and at least a second position where the balls 406 are flush with the planarizing surface 964. The balls 406 are generally suitable for electrically biasing the substrate 122.
The housing 802 is removably coupled to the platen assembly 750 to facilitate replacement of the contact assembly 700 after a number of planarizing cycles. In one embodiment, the housing 802 is coupled to the platen assembly 750 by a plurality of screws 808. The housing 802 includes an upper housing 804 coupled to a lower housing 806 that retains the balls 406 therebetween. The upper housing 804 is fabricated from a dielectric material compatible with process chemistries. In one embodiment, the upper housing 804 is made of PEEK. The lower housing 806 is fabricated from a conductive material compatible with process chemistries. In one embodiment, the lower housing 806 is made of stainless steel or other electrically conductive material. The lower housing 806 is coupled to by a bayonet fitting 912 to the contact terminal 910 which is in turn coupled to the power source 242. The housings 804, 806 may be coupled in any number of methods, including but not limited to, screwing, bolting, riveting, bonding, staking and clamping, among others. In the embodiment depicted in
The balls 406 are disposed in a plurality of apertures 902 formed through the housings 804, 806. An upper portion of each of the apertures 902 includes a seat 904 that extends into the aperture 902 from the upper housing 804. The seat 904 is configured to prevent the ball 406 from exiting the top end of the aperture 902.
A contact element 414 is disposed in each aperture 902 to electrically couple the ball 406 to the lower plate 806. Each of the contact elements 414 is coupled to the lower plate 806 by a respective clamp bushing 416. In one embodiment, a post 522 of the clamp bushing 416 is threaded into a threaded portion 914 of the aperture 902 formed through the housing 802.
During processing, the balls 406 disposed within the housing 802 are actuated toward the planarizing surface 760 by at least one of spring, buoyant or flow forces. The balls 406 electrically couple the substrate 122 to the power source 242 and contact terminal 910 through the contact elements 414 and lower plate 806. Electrolyte, flowing through the housing 802 provides a conductive path between the electrode 962 and biased substrate 122, thereby driving an electrochemical mechanical planarizing process.
In the embodiment depicted in
The pad assembly 1004 depicted in
The conductive pad 1012 includes a pad body 1018 and one or more conductive elements 1020. The conductive elements 1020 are coupled to the power source 242 and are adapted to extend from, be coplanar or be exposed on an upper surface 1008 of the pad body 1018 that faces toward the planarizing head 204 to contact the surface of the substrate 122 (as seen in
The pad body 1018 may be fabricated from polymeric materials compatible with process chemistry, examples of which include polyurethane, polycarbonate, fluoropolymers, PTFE, PTFA, polyphenylene sulfide (PPS), or combinations thereof, and other planarizing materials used in planarizing substrate surfaces. The pad material may be coated with one or more layers of conductive material(s). The pad body 1018 may be a polymer binder having the conductive elements 1020 suspended and dispersed therein. Exemplary material includes those made from polyurethane and/or polyurethane mixed with fillers, which are commercially available from Rodel, Inc., located in Newark, Del. Other conventional planarizing materials, such as a layer of compressible material, may also be utilized for the pad body 1018. Compressible materials include, but are not limited to, soft materials such as compressed felt fibers leached with urethane or foam. The pad body 1018 is generally between about 10 to about 100 mils thick.
The pad body 1018 has a first side 1022 and a second side 1024. The first side 1022 is adapted to contact the substrate 122 during processing and may include grooves, embossing or other texturing to promote planarizing performance. The pad body 1018 may be solid, impermeable to electrolyte, permeable to electrolyte or perforated. The first side 1022 may optionally include one or more slots 1026 or other feature that retains the conductive elements 1020. In the embodiment depicted in
The conductive elements 1020 may include conductive polymers, polymer composites with conductive materials, conductive metals or polymers, conductive fillers, graphitic materials, or conductive doping materials, or combinations thereof. The conductive elements 1020 generally have a bulk resistivity or a bulk surface resistivity of about 10 Ω-cm or less. The conductive elements 1020 may be a plurality of electrically conductive fibers, stands and/or flexible fingers, such as carbon fibers or other conductive, compliant (i.e., flexible) material that contact the substrate while processing. Alternatively, the conductive elements 1020 may be rollers, balls, rods, bars, mesh or other shape that facilitates conductive contact between the substrate disposed on the conductive pad 1012 and the power source 242.
In embodiments where the conductive elements 1020 are conductive fillers, particles or other materials disposed in a polymer binder 1030, or where the conductive elements 1020 are a fabric 1032 having conductive coating (optionally having a conductive foil 1034 disposed thereon), the pad body 1018 may have a conductive backing 1036 to ensure uniform distribution of the voltage applied by the source 242 across the width of the processing pad assembly 1004. Optionally, such embodiments may also include an interposed layer 1038 disposed between the conductive backing 1036 and the subpad 1014. The interposed layer 1038 is generally harder than the subpad 1014 and provides mechanical support to the pad body 1018. Examples of conductive pads that may be adapted to benefit from the invention are described in U.S. patent application Ser. No. 10/140,010, filed May 7, 2002, and U.S. patent application Ser. No. 10/211,262, filed Aug. 2, 2002, both of which are incorporated herein by reference in their entireties.
The subpad 1014 is coupled to the second side 1022 of the pad body 1018. The subpad 1014 is typically fabricated from a material softer, or more compliant, than the material of the pad body 1018. The difference in hardness or durometer between the pad body 1018 and the subpad 1014 may be chosen to produce a desired planarizing/plating performance. The subpad 1014 may also be compressive. Examples of suitable backing materials include, but are not limited to, foamed polymer, elastomers, felt, impregnated felt and plastics compatible with the planarizing chemistries.
The subpad 1014 may be solid, impermeable to electrolyte, permeable to electrolyte or perforated. In one embodiment depicted in
The electrode 1016 is typically comprised of a corrosion resistant conductive material, such as metals, conductive alloys, metal coated fabrics, conductive polymers, conductive pads, and the like. Conductive metals include Sn, Ni, Cu, Au, and the like. Conductive metals also include a corrosion resistant metal such as Sn, Ni, or Au coated over an active metal such as Cu, Zn, Al, and the like. Conductive alloys include inorganic alloys and metal alloys such as bronze, brass, stainless steel, or palladium-tin alloys, among others. Metal coated fabric may be woven or non-woven with any corrosion resistant metal coating. Conductive pads consist of conductive fillers disposed in a polymer matrix. The electrode 1016 should also be fabricated of a material compatible with electrolyte chemistries to minimize cross-talk between zones when multi-zoned electrodes are utilized. For example, metals stable in the electrolyte chemistries are able to minimize zone cross-talk.
When metal is used as material for the electrode 1016, it may be a solid sheet. Alternatively, the electrode 1016 may be formed of a metal screen or may be perforated in order to increase the adhesion to adjoining layers. The electrode 1016 may also be primed with an adhesion promoter to increase the adhesion to the adjoining layers. An electrode 1016 which is perforated or formed of a metal screen also has a greater surface area, which further increases the substrate removal rate during processing.
When the electrode 1016 is fabricated from metal screen, a perforated metal sheet, or conductive fabric, one side of the electrode 1016 may be laminated, coated, or molded with a polymer layer which penetrates the openings in the electrode 1016 to further increase adhesion to the adjoining layers. When the electrode 1016 is formed from a conductive pad, the polymer matrix of the conductive pad may have a high affinity or interaction to an adhesive applied to the adjoining layers.
In one embodiment, the electrode 1016 is coupled to the side of the subpad 1014 opposite the pad body 1018. The electrode 1016 may be solid, impermeable to electrolyte, permeable to electrolyte or perforated. In the embodiment depicted in
A portion of an exemplary mode of operation of the processing system 100 is described primarily with reference to
A bias voltage is applied from the power source 242 between the conductive elements 362 of the conductive pad 1012 and the electrode 1016 of the pad assembly 222. The conductive elements 362 are in contact with the substrate and apply a bias thereto. The electrolyte filling the apertures 304, 306 between the electrode 1016 and the substrate 122 provides a conductive path between the power source 242 and substrate 122 to drive an electrochemical mechanical planarizing process that results in the removal of conductive material, such as copper, disposed on the surface of the substrate 122, by an anodic dissolution method.
Once the substrate 122 has been adequately planarized by removal of conductive material at the bulk ECMP station 128, the planarizing head 204 is raised to remove the substrate 122 from contact with the platen assembly 230 and the processing pad assembly 222. The substrate 122 may be transferred to one of another bulk ECMP station, the residual ECMP station 130 or the CMP station 132 for further processing before removal from the planarizing module 106.
The ball conditioning device 1102 includes a pad 1104 having an orientation generally parallel to the top surface 260 of the platen assembly 230. The pad 1104 is adapted to contact one or more balls 406 extending above the top surface 260 during process idle time between substrate planarizing while maintaining a spaced-apart relation relative to the processing pad assembly 222 disposed on the platen assembly 230. Relative motion between the ball conditioning device 1102 and the one or more balls 406 in contact therewith, causes the balls 406 to rotate, thereby reducing the attack on the ball 406 by process chemistries. Relative motion between the ball conditioning device 1102 and the one or more balls 406 may be provided by sweeping the conditioning device 1102, rotating the platen assembly 230, rotating the pad 1104, combinations thereof, or other motion suitable to induce rotation of the ball 406.
In one embodiment, the pad 1104 may be fabricated from a polymeric material. Alternatively, the pad 1104 may be fabricated from a conductive material, such as a metal, conductive polymer or polymer having conductive material disposed therein. In the embodiment wherein the pad 1104 is conductive, the pad 1104 may be negatively biased to further protect the ball 406 from process chemistries. It is contemplated that the other methodologies described above for protecting the balls 406 from process chemistries may be utilized in conjunction with the conditioning device 1102, or in any other combination thereof.
In one embodiment, the processing pad assembly 1204 includes interposed pad 1212 sandwiched between a conductive pad 1210 and an electrode 1214. The conductive pad 1210 is substantially conductive across its top processing surface and is generally made from a conductive material or a conductive composite (i.e., the conductive elements are dispersed integrally with or comprise the material comprising the planarizing surface), such as a polymer matrix having conductive particles dispersed therein or a conductive coated fabric, among others. The conductive pad 1210, the interposed pad 1212, and the electrode 1214 may be fabricated like the conductive pads 966, 1012, the backing 1014, and the electrode 1016 described above. The processing pad assembly 1204 is generally permeable or perforated to allow electrolyte to pass between the electrode 1214 and top surface 1220 of the conductive pad 1210. In the embodiment depicted in
A conductive foil 1216 may additionally be disposed between the conductive pad 1210 and the subpad 1212. The foil 1216 is coupled to a power source 242 and provides uniform distribution of voltage applied by the source 242 across the conductive pad 1210. Additionally, the pad assembly 1204 may include an interposed pad 1218, which, along with the foil 1216, provides mechanical strength to the overlying conductive pad 1210. The foil 1216 and interposed pad 1218 may be configured similar to the interposed layer 1038 and conductive backing 1036 described above.
Another portion of an exemplary mode of operation of the processing system 100 is described primarily with reference to
A bias voltage is applied from the power source 242 between the top surface 1220 of the conductive pad 1210 and the electrode 1214 of the pad assembly 1204. The top surface 1220 of the conductive pad 1210 is in contact with the substrate and applies an electrical bias thereto. The electrolyte filling the apertures 1222 between the electrode 1214 and the substrate 122 provides a conductive path between the power source 242 and substrate 122 to drive an electrochemical mechanical planarizing process that results in the removal of conductive material, such as copper, disposed on the surface of the substrate 122, by an anodic dissolution method. As the top surface 1220 of the conductive pad 1210 is fully conductive, residual material, such as discrete islands of copper not completely removed through processing at the bulk ECMP station 128, may be efficiently removed.
Once the substrate 122 has been adequately planarized by removal of residual conductive material at the residual ECMP station 130, the planarizing head 204 is raised to remove the substrate 122 from contact with the platen assembly 1202 and the processing pad assembly 1204. The substrate 122 may be transferred to another residual ECMP station or one of the CMP station 132 for further processing before removal from the planarizing module 106.
Thus, the present invention provides an improved apparatus and method for electrochemically planarizing a substrate. The apparatus advantageously facilitates efficient bulk and residual material removal from a substrate while protecting process components from damage during idle periods between processing. It is also contemplated that an apparatus arranged as described by the teachings herein, may be configured with solely the bulk ECMP stations 128, with solely the residual ECMP stations 130, with one or more bulk and/or residual ECMP stations 130 arranged in cooperation with a conventional CMP station 132, or in any combination thereof. It is also contemplated that a method and apparatus as described by the teachings herein, may be utilized to deposit materials onto a substrate by reversing the polarity of the bias applied to the electrode and the substrate.
While the foregoing is directed to embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. Provisional Patent Application Ser. No. 60/484,189, filed Jul. 1, 2003, and U.S. Provisional Patent Application Ser. No. 60/516,680, filed Nov. 3, 2003, both of which are herein incorporated by reference. This application is additionally a continuation-in-part of U.S. patent application Ser. No. 10/608,513, filed Jun. 26, 2003 now U.S. Pat. No. 7,374,644 (hereinafter referred to as the “'513 application”), which is a continuation-in-part of U.S. patent application Ser. No. 10/140,010, filed May 7, 2002 now U.S. Pat. No. 6,979,248. The '513 application is also a continuation-in-part of U.S. patent application Ser. No. 10/211,626, filed Aug. 2, 2002 now U.S. Pat. No. 7,125,477, which is a continuation-in-part of U.S. patent application Ser. No. 10/033,732, filed Dec. 27, 2001 now U.S. Pat. No. 7,055,800, which is a continuation-in-part of U.S. patent application Ser. No. 09/505,899, filed Feb. 17, 2000 now U.S. Pat. No. 6,537,144. The '513 application is additionally a continuation-in-part of U.S. patent application Ser. No. 10/210,972, filed Aug. 2, 2002 now U.S. Pat. No. 7,303,662, which is also a continuation-in-part of U.S. patent application Ser. No. 09/505,899, filed Feb. 17, 2000 now U.S. Pat. No. 6,537,144. The '513 application is further continuation-in-part of U.S. patent application Ser. No. 10/151,538, filed May 16, 2002 now abandoned. This application is also a continuation-in-part of U.S. patent application Ser. No. 10/244,697, filed Sep. 16, 2002 now U.S. Pat. No. 6,991,526, which is a continuation-in-part of U.S. application Ser. No. 10/244,688, filed Sep. 16, 2002 now U.S. Pat. No. 6,848,970, and of co-pending U.S. patent application Ser. No. 10/391,324, filed Mar. 18, 2003. All of the above referenced applications are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1601642 | Parker | Sep 1926 | A |
1927162 | Fiedler et al. | Sep 1933 | A |
2112691 | Crowder | Mar 1938 | A |
2240265 | Nachtman | Apr 1941 | A |
2392687 | Nachtman | Jan 1946 | A |
2431065 | Miller | Nov 1947 | A |
2451341 | Jernstedt | Oct 1948 | A |
2453481 | Wilson | Nov 1948 | A |
2454935 | Miller | Nov 1948 | A |
2456185 | Grube | Dec 1948 | A |
2457510 | van Omum | Dec 1948 | A |
2458676 | Brenner et al. | Jan 1949 | A |
2461556 | Lorig | Feb 1949 | A |
2473290 | Millard | Jun 1949 | A |
2477808 | Jones | Aug 1949 | A |
2479323 | Davis | Aug 1949 | A |
2480022 | Hogaboom | Aug 1949 | A |
2490055 | Hoff | Dec 1949 | A |
2495695 | Camin et al. | Jan 1950 | A |
2500205 | Schaefer | Mar 1950 | A |
2500206 | Schaefer et al. | Mar 1950 | A |
2503863 | Bart | Apr 1950 | A |
2506794 | Kennedy et al. | May 1950 | A |
2509304 | Klein | May 1950 | A |
2512328 | Hays | Jun 1950 | A |
2517907 | Mikulas | Aug 1950 | A |
2519945 | Twele et al. | Aug 1950 | A |
2530677 | Berkenkotter et al. | Nov 1950 | A |
2535966 | Teplitz | Dec 1950 | A |
2536912 | Cobertt | Jan 1951 | A |
2539898 | Davis | Jan 1951 | A |
2540175 | Rosenqvist | Feb 1951 | A |
2544510 | Prahl | Mar 1951 | A |
2549678 | Fiandt | Apr 1951 | A |
2544943 | Farmer | May 1951 | A |
2556017 | Vonada | Jun 1951 | A |
2560534 | Adler | Jul 1951 | A |
2560966 | Lee | Jul 1951 | A |
2569577 | Reading | Oct 1951 | A |
2569578 | Rieger | Oct 1951 | A |
2571709 | Gray | Oct 1951 | A |
2576074 | Nachtman | Nov 1951 | A |
2587630 | Konrad et al. | Mar 1952 | A |
2619454 | Zapponi | Nov 1952 | A |
2633452 | Hogaboom, Jr. et al. | Mar 1953 | A |
2646398 | Henderson | Jul 1953 | A |
2656283 | Fink et al. | Oct 1953 | A |
2656284 | Toulmin | Oct 1953 | A |
2657177 | Rendel | Oct 1953 | A |
2657457 | Toulmin | Nov 1953 | A |
2673836 | Vonada | Mar 1954 | A |
2674550 | Dunlevy et al. | Apr 1954 | A |
2675348 | Greenspan | Apr 1954 | A |
2680710 | Kenmore et al. | Jun 1954 | A |
2684939 | Geese | Jul 1954 | A |
2696859 | Gray et al. | Aug 1954 | A |
2689215 | Bart | Sep 1954 | A |
2695269 | de Witz et al. | Nov 1954 | A |
2698832 | Swanson | Jan 1955 | A |
2706173 | Wells et al. | Apr 1955 | A |
2706175 | Licharz | Apr 1955 | A |
2708445 | Manson et al. | May 1955 | A |
2710834 | Vrilakas | Jun 1955 | A |
2711993 | Lyon | Jun 1955 | A |
3162588 | Bell | Dec 1964 | A |
3334041 | Dyer et al. | Aug 1967 | A |
3433730 | Kennedy et al. | Mar 1969 | A |
3448023 | Bell | Jun 1969 | A |
3476677 | Corley et al. | Nov 1969 | A |
3607707 | Chenevier | Sep 1971 | A |
3873512 | Latanision | Mar 1975 | A |
3942959 | Markoo et al. | Mar 1976 | A |
3992178 | Markoo et al. | Nov 1976 | A |
4047902 | Wiand | Sep 1977 | A |
4082638 | Jumer | Apr 1978 | A |
4119515 | Costakis | Oct 1978 | A |
4125444 | Inoue | Nov 1978 | A |
4312716 | Maschler et al. | Jan 1982 | A |
4523411 | Freerks | Jun 1985 | A |
4704511 | Miyano | Nov 1987 | A |
4713149 | Hoshino | Dec 1987 | A |
4752371 | Kreisel et al. | Jun 1988 | A |
4772361 | Dorsett et al. | Sep 1988 | A |
4793895 | Kaanta et al. | Dec 1988 | A |
4839993 | Masuko et al. | Jun 1989 | A |
4934102 | Leach et al. | Jun 1990 | A |
4954141 | Takiyama et al. | Sep 1990 | A |
4956056 | Zubatova et al. | Sep 1990 | A |
5011510 | Hayakawa et al. | Apr 1991 | A |
5061294 | Harmer et al. | Oct 1991 | A |
5066370 | Andreshak et al. | Nov 1991 | A |
5096550 | Mayer et al. | Mar 1992 | A |
5108463 | Buchanan | Apr 1992 | A |
5136817 | Tabata et al. | Aug 1992 | A |
5137542 | Buchanan et al. | Aug 1992 | A |
5203884 | Buchanan et al. | Apr 1993 | A |
5217586 | Datta et al. | Jun 1993 | A |
5225034 | Yu et al. | Jul 1993 | A |
5257478 | Hyde et al. | Nov 1993 | A |
5328716 | Buchanan | Jul 1994 | A |
5478435 | Murphy et al. | Dec 1995 | A |
5534106 | Cote et al. | Jul 1996 | A |
5543032 | Datta et al. | Aug 1996 | A |
5560753 | Schnabel et al. | Oct 1996 | A |
5562529 | Kishii et al. | Oct 1996 | A |
5567300 | Datta et al. | Oct 1996 | A |
5575706 | Tsai et al. | Nov 1996 | A |
5578362 | Reinhardt et al. | Nov 1996 | A |
5624300 | Kishii et al. | Apr 1997 | A |
5633068 | Ryoke et al. | May 1997 | A |
5654078 | Ferronato | Aug 1997 | A |
5702811 | Ho et al. | Dec 1997 | A |
5738574 | Tolles et al. | Apr 1998 | A |
5804507 | Perlov et al. | Sep 1998 | A |
5807165 | Uzoh et al. | Sep 1998 | A |
5823854 | Chen | Oct 1998 | A |
5840190 | Scholander et al. | Nov 1998 | A |
5840629 | Carpio | Nov 1998 | A |
5846882 | Birang | Dec 1998 | A |
5871392 | Meikle et al. | Feb 1999 | A |
5882491 | Wardle | Mar 1999 | A |
5893796 | Birang et al. | Apr 1999 | A |
5911619 | Uzoh et al. | Jun 1999 | A |
5938801 | Robinson | Aug 1999 | A |
5948697 | Hata | Sep 1999 | A |
5985093 | Chen | Nov 1999 | A |
6001008 | Fujimori et al. | Dec 1999 | A |
6004880 | Liu et al. | Dec 1999 | A |
6017265 | Cook et al. | Jan 2000 | A |
6020264 | Lustig et al. | Feb 2000 | A |
6024630 | Shendon et al. | Feb 2000 | A |
6033293 | Crevasse et al. | Mar 2000 | A |
6056851 | Hsieh et al. | May 2000 | A |
6066030 | Uzoh | May 2000 | A |
6074284 | Tani et al. | Jun 2000 | A |
6077337 | Lee | Jun 2000 | A |
6090239 | Liu et al. | Jul 2000 | A |
6103096 | Datta et al. | Aug 2000 | A |
6116998 | Damgaard et al. | Sep 2000 | A |
6132292 | Kubo | Oct 2000 | A |
6135865 | Beardsley et al. | Oct 2000 | A |
6153043 | Edelstein et al. | Nov 2000 | A |
6156124 | Tobin | Dec 2000 | A |
6159079 | Zuniga et al. | Dec 2000 | A |
6171467 | Weihs et al. | Jan 2001 | B1 |
6176992 | Talieh | Jan 2001 | B1 |
6176998 | Wardle et al. | Jan 2001 | B1 |
6183354 | Zuniga et al. | Feb 2001 | B1 |
6190494 | Dow | Feb 2001 | B1 |
6210257 | Carlson | Apr 2001 | B1 |
6234870 | Uzoh et al. | May 2001 | B1 |
6238271 | Cesna | May 2001 | B1 |
6238592 | Hardy et al. | May 2001 | B1 |
6244935 | Birang et al. | Jun 2001 | B1 |
6248222 | Wang | Jun 2001 | B1 |
6251235 | Talieh et al. | Jun 2001 | B1 |
6257953 | Gitis et al. | Jul 2001 | B1 |
6258223 | Cheung et al. | Jul 2001 | B1 |
6261157 | Bajaj et al. | Jul 2001 | B1 |
6261158 | Holland et al. | Jul 2001 | B1 |
6261168 | Jensen et al. | Jul 2001 | B1 |
6261958 | Crevasse et al. | Jul 2001 | B1 |
6261959 | Travis et al. | Jul 2001 | B1 |
6273798 | Berman | Aug 2001 | B1 |
6296557 | Walker | Oct 2001 | B1 |
6297159 | Paton | Oct 2001 | B1 |
6319108 | Adefris et al. | Nov 2001 | B1 |
6319420 | Dow | Nov 2001 | B1 |
6322422 | Satou | Nov 2001 | B1 |
6328642 | Pant et al. | Dec 2001 | B1 |
6328872 | Talieh et al. | Dec 2001 | B1 |
6331135 | Sabde et al. | Dec 2001 | B1 |
6368184 | Beckage | Apr 2002 | B1 |
6368190 | Easter et al. | Apr 2002 | B1 |
6372001 | Omar et al. | Apr 2002 | B1 |
6381169 | Bocian et al. | Apr 2002 | B1 |
6383066 | Chen et al. | May 2002 | B1 |
6386956 | Sato et al. | May 2002 | B1 |
6391166 | Wang | May 2002 | B1 |
6395152 | Wang | May 2002 | B1 |
6402591 | Thornton | Jun 2002 | B1 |
6402925 | Talieh | Jun 2002 | B2 |
6406363 | Xu et al. | Jun 2002 | B1 |
6409904 | Uzoh et al. | Jun 2002 | B1 |
6413153 | Molar | Jul 2002 | B1 |
6428394 | Mooring et al. | Aug 2002 | B1 |
6431968 | Chen et al. | Aug 2002 | B1 |
6440295 | Wang | Aug 2002 | B1 |
6447668 | Wang | Sep 2002 | B1 |
6471847 | Talieh et al. | Oct 2002 | B2 |
6475332 | Boyd et al. | Nov 2002 | B1 |
6479962 | Ziemkowski et al. | Nov 2002 | B2 |
6482307 | Ashjaee et al. | Nov 2002 | B2 |
6497800 | Talieh et al. | Dec 2002 | B1 |
6517426 | Lee | Feb 2003 | B2 |
6520843 | Halley | Feb 2003 | B1 |
6537140 | Miller et al. | Mar 2003 | B1 |
6537144 | Tsai et al. | Mar 2003 | B1 |
6551179 | Halley | Apr 2003 | B1 |
6561873 | Tsai et al. | May 2003 | B2 |
6561889 | Xu et al. | May 2003 | B1 |
6569004 | Pham | May 2003 | B1 |
6572463 | Xu et al. | Jun 2003 | B1 |
6585579 | Jensen et al. | Jul 2003 | B2 |
6630059 | Uzoh et al. | Oct 2003 | B1 |
6641471 | Pinheiro et al. | Nov 2003 | B1 |
6656019 | Chen et al. | Dec 2003 | B1 |
6666959 | Uzoh et al. | Dec 2003 | B2 |
6685548 | Chen et al. | Feb 2004 | B2 |
6692338 | Kirchner | Feb 2004 | B1 |
6739951 | Sun et al. | May 2004 | B2 |
6752700 | Duescher | Jun 2004 | B2 |
6769969 | Duescher | Aug 2004 | B1 |
6773560 | Pedersen et al. | Aug 2004 | B2 |
6776693 | Duboust et al. | Aug 2004 | B2 |
6802955 | Emesh et al. | Oct 2004 | B2 |
6848977 | Cook et al. | Feb 2005 | B1 |
6856761 | Doran | Feb 2005 | B2 |
6875091 | Radman et al. | Apr 2005 | B2 |
6962524 | Butterfield et al. | Nov 2005 | B2 |
20010005667 | Tolles et al. | Jun 2001 | A1 |
20010024878 | Nakamura | Sep 2001 | A1 |
20010027018 | Molnar | Oct 2001 | A1 |
20010035354 | Ashjaee et al. | Nov 2001 | A1 |
20010036746 | Sato et al. | Nov 2001 | A1 |
20010040100 | Wang | Nov 2001 | A1 |
20010042690 | Talieh | Nov 2001 | A1 |
20020008036 | Wang | Jan 2002 | A1 |
20020011417 | Talieh et al. | Jan 2002 | A1 |
20020020621 | Uzoh et al. | Feb 2002 | A1 |
20020025760 | Lee et al. | Feb 2002 | A1 |
20020025763 | Lee et al. | Feb 2002 | A1 |
20020070126 | Sato et al. | Jun 2002 | A1 |
20020077037 | Tietz | Jun 2002 | A1 |
20020088715 | Talieh et al. | Jul 2002 | A1 |
20020102853 | Li et al. | Aug 2002 | A1 |
20020108861 | Emesh et al. | Aug 2002 | A1 |
20020119286 | Chen et al. | Aug 2002 | A1 |
20020123300 | Jones et al. | Sep 2002 | A1 |
20020127951 | Ishikawa et al. | Sep 2002 | A1 |
20020130049 | Chen et al. | Sep 2002 | A1 |
20020130634 | Ziemkowski et al. | Sep 2002 | A1 |
20020146963 | Teetzel | Oct 2002 | A1 |
20020148732 | Emesh et al. | Oct 2002 | A1 |
20030034131 | Park et al. | Feb 2003 | A1 |
20030040188 | Hsu et al. | Feb 2003 | A1 |
20030114087 | Duboust et al. | Jun 2003 | A1 |
20030116445 | Sun et al. | Jun 2003 | A1 |
20030116446 | Duboust et al. | Jun 2003 | A1 |
20030209448 | Hu et al. | Nov 2003 | A1 |
20030213703 | Wang et al. | Nov 2003 | A1 |
20030220053 | Manens et al. | Nov 2003 | A1 |
20040020788 | Mavliev et al. | Feb 2004 | A1 |
20040020789 | Hu et al. | Feb 2004 | A1 |
20040023495 | Butterfield et al. | Feb 2004 | A1 |
20040082288 | Tietz et al. | Apr 2004 | A1 |
20040121708 | Hu et al. | Jun 2004 | A1 |
20040134792 | Butterfield et al. | Jul 2004 | A1 |
20040163946 | Chang et al. | Aug 2004 | A1 |
20040266327 | Chen et al. | Dec 2004 | A1 |
20050092621 | Hu et al. | May 2005 | A1 |
20050133363 | Hu et al. | Jun 2005 | A1 |
20050161341 | Duboust et al. | Jul 2005 | A1 |
20050178666 | Tsai et al. | Aug 2005 | A1 |
20050194681 | Hu et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
0 325 753 | Aug 1989 | EP |
0 455 455 | Nov 1991 | EP |
1361023 | Nov 2003 | EP |
58-171264 | Oct 1983 | JP |
61-079666 | Apr 1986 | JP |
6-1265279 | Nov 1986 | JP |
63-028512 | Feb 1988 | JP |
05277957 | Oct 1993 | JP |
06-047678 | Feb 1994 | JP |
10-006213 | Jan 1998 | JP |
10-270412 | Oct 1998 | JP |
11-042554 | Feb 1999 | JP |
2870537 | Mar 1999 | JP |
11-285962 | Oct 1999 | JP |
2000-218513 | Aug 2000 | JP |
11-216663 | Dec 2000 | JP |
2001-77117 | Mar 2001 | JP |
2001-179611 | Jul 2001 | JP |
2001-244223 | Sep 2001 | JP |
2001-284300 | Oct 2001 | JP |
2002-093758 | Mar 2002 | JP |
3453352 | Oct 2003 | JP |
2003-037158 | May 2003 | KR |
1618538 | Jan 1991 | SU |
434110 | May 2001 | TW |
446601 | Jul 2001 | TW |
578641 | Mar 2004 | TW |
592164 | Jun 2004 | TW |
WO 9315879 | Aug 1993 | WO |
WO 9849723 | Nov 1998 | WO |
WO 9941434 | Aug 1999 | WO |
WO 9953119 | Oct 1999 | WO |
WO 9965072 | Dec 1999 | WO |
WO 0003426 | Jan 2000 | WO |
WO 0026443 | May 2000 | WO |
WO 0033356 | Jun 2000 | WO |
WO 0059682 | Oct 2000 | WO |
WO 0071297 | Nov 2000 | WO |
WO 0113416 | Feb 2001 | WO |
WO 0149452 | Jul 2001 | WO |
WO 0152307 | Jul 2001 | WO |
WO 0163018 | Aug 2001 | WO |
WO 0171066 | Sep 2001 | WO |
WO 0188229 | Nov 2001 | WO |
WO 0188954 | Nov 2001 | WO |
WO 0223616 | Mar 2002 | WO |
WO 02064314 | Aug 2002 | WO |
WO 02075804 | Sep 2002 | WO |
WO 03001581 | Jan 2003 | WO |
WO 03099519 | Dec 2003 | WO |
WO 2004073926 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050000801 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
60484189 | Jul 2003 | US | |
60516680 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10608513 | Jun 2003 | US |
Child | 10880752 | US | |
Parent | 10140010 | May 2002 | US |
Child | 10608513 | US | |
Parent | 10211626 | Aug 2002 | US |
Child | 10140010 | US | |
Parent | 10033732 | Dec 2001 | US |
Child | 10211626 | US | |
Parent | 09505899 | Feb 2000 | US |
Child | 10033732 | US | |
Parent | 10210972 | Aug 2002 | US |
Child | 10608513 | US | |
Parent | 09505899 | US | |
Child | 10210972 | US | |
Parent | 10151538 | May 2002 | US |
Child | 10608513 | US | |
Parent | 10880752 | US | |
Child | 10608513 | US | |
Parent | 10244697 | Sep 2002 | US |
Child | 10880752 | US | |
Parent | 10244688 | Sep 2002 | US |
Child | 10244697 | US |