The present invention relates to intensifying of ore prospecting. More precisely, the invention relates to a method and an apparatus to be used for ore prospecting and analyzing of the ore content, in order to intensify these procedures.
Ore prospecting in this connection refers to analyzing of elements, minerals, rock types etc. in the bedrock.
Ore prospecting is usually implemented nowadays by locating first the position of the potential ore deposit with different methods, and after that by starting a more accurate analysis of the bedrock in order to determine the ore grade and the more accurate location of the ore deposit. This more accurate analysis of the bedrock utilizes core samples drilled from the rock, or alternatively samples taken from the powder generated by drilling, in other words the so called drill cuttings.
Sampling boreholes to be drilled into the bedrock are drilled as a square grid with predetermined distances from each other, and the drilled samples, either cores or drill cuttings samples, are delivered to be further processed and analyzed.
When drilling a core sample, the core is first cut to lengths of about 1 meter, and the core lengths are stored in core boxes. The cores are delivered in the core boxes to further processing in a laboratory, where the core is first halved, and one half of the core sample is archived. The other half of the cut lengths of the core are first crushed as lengths of 1-5 m to a powder, the crushed powder being after that dried and homogenized. A required quantity of this homogenized powder is then taken in order to form a sample briquette, based on which the ore content of the sample will be analyzed.
The duration of the traditional analysis from drilling the core to receiving the results of the analysis is usually from about 1 to 6 months.
A drill cuttings sample is prepared so that when boring a hole into the rock, the drill cuttings are flushed either with air or water out from the drill hole, and a part of this drill cuttings flushed out is taken into a sample bag. Usually drill cuttings per each 1 meter advance of the borehole are collected in one sample bag, and the sample bag is changed every one meter advance into new, whereby samples can be collected from each meter of the borehole.
Drill cuttings sample bags are delivered to a laboratory to be analyzed, where the drill cuttings of the bag are first dried and homogenized, and then a sample briquette is formed thereof for the analysis,
Analyzing of the drill cuttings sample takes usually as long as that of a core sample, but the percussion drilling of the drill cuttings sample is much quicker than the drilling of the core. A drill cuttings sample, however, does not give the corresponding information on the structure of the drilled bedrock that can be gained by investigating a core.
By means of the present invention, the analyzing of a core and drill cuttings can be substantially accelerated, whereby the analysis results of the sample will be available in about 1-3 days. This provides a lot of advantages compared to the methods known in the art, especially due to the significant savings in time. One of the advantages is controlling of the sample drilling based on the analysis results of the samples.
In the solution in accordance with the invention, the sample is also examined non-destructively or without homogenizing it, whereby the sample is also available for other analyses in its original condition and the results of the analyses are much more useful. The solution in accordance with the invention provides specifically more accurate location information on the analysis than what is possible from a sample analyzed with a traditional destructive sample analysis. Thereby useful additional information for example on the micro structure of the rock can be gained.
In the solution according to the invention, the drilled core or drill cuttings sample is analyzed at the sampling site or in the vicinity thereof, like in the core storage, substantially immediately after the sampling action by using a movable analyzing apparatus that analyzes the sample with one or more non-destructive methods. After analyzing, the results of the analysis are transmitted to the ore prospecting organization that based on the collected results of sample analyses is able to make the decisions required either to continue the process or to interrupt it on the examined area.
More precisely, the method in accordance with the present invention is characterized by what is stated in the characterizing part of Claim 1, and the apparatus in accordance with the invention is characterized by what is stated in the characterizing part of Claim 8.
The solution according to the invention will be described in more detail in the following by way of example, with reference to the enclosed drawings, wherein
In the solution illustrated in
Location position data of the drilled core 1 is determined in a way known in the art, whereby the location of the borehole is determined by means of GPS or other corresponding location positioning system, and the depth data of the sample is determined based on the distance of the drill bit in the drilling equipment 2. This location positioning data can be forwarded to the analyzing apparatus 3 electrically or in a traditional way, whereby the location positioning data first is recorded in the core boxes and then manually entered into the analyzing apparatus when analyzing the samples.
The core 1 is analyzed by feeding the core through the analyzing apparatus 3. There the analyzing apparatus 3 analyzes the core I with a non-destructive analyzing method like X-ray, laser, hyperspectral and/or digital imaging.
The results of analyses collected by the analysing apparatus 3 are preferably in an electronic form, whereby the information can be transmitted electrically with a data communication means like 3G, GSM or other corresponding network to the ore prospecting organization that based on the results is able to determine for example the next core drilling hole location to be placed. Said data communication means are preferably included in the analyzing apparatus 3 or the van 4 transporting the same.
In addition to cores, also drill cuttings samples can be analyzed by means of the apparatus according to
In the solution according to the example of
The solution shown in
The analysis information collected with the solution according to the invention can be advantageously used for working out an ore map or block model of the orebody, based on which a mine eventually to be built in the ore prospecting area can be planned and implemented.
The solution according to the invention does not have to be implemented as a separate analyzing unit, as described in the examples of
Among others, the following advantages are provided by the solution in accordance with the invention:
Number | Date | Country | Kind |
---|---|---|---|
20080119 | Feb 2008 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2009/050122 | 2/16/2009 | WO | 00 | 10/29/2010 |