1. Field of the Invention
The disclosure relates to a method and apparatus for efficient deposition of a patterned film on a substrate. More specifically, the disclosure relates to a method and apparatus for supporting and transporting a substrate on gas bearing during thermal jet printing of material on a substrate.
2. Description of Related Art
The manufacture of organic light emitting devices (OLEDs) requires depositing one or more organic films on a substrate and coupling the top and bottom of the film stack to electrodes. The film thickness is a prime consideration. The total layer stack thickness is about 100 nm and each layer is optimally deposited uniformly with an accuracy of better than .+−.1 nm. Film purity is also important. Conventional apparatuses form the film stack using one of two methods: (1) thermal evaporation of organic material in a relative vacuum environment and subsequent condensation of the organic vapor on the substrate; or, (2) dissolution of organic material into a solvent, coating the substrate with the resulting solution, and subsequent removal of the solvent.
Another consideration in depositing the organic thin films of an OLED is placing the films precisely at the desired location on the substrate. There are two conventional technologies for performing this task, depending on the method of film deposition. For thermal evaporation, shadow masking is used to form OLED films of a desired configuration. Shadow masking techniques require placing a well-defined mask over a region of the substrate followed by depositing the film over the entire substrate area. Once deposition is complete, the shadow mask is removed. The regions exposed through the mask define the pattern of material deposited on the substrate. This process is inefficient as the entire substrate must be coated, even though only the regions exposed through the shadow mask require a film. Furthermore, the shadow mask becomes increasingly coated with each use, and must eventually be discarded or cleaned. Finally, the use of shadow masks over large areas is made difficult by the need to use very thin masks (to achieve small feature sizes) that make said masks structurally unstable. However, the vapor deposition technique yields OLED films with high uniformity and purity and excellent thickness control.
For solvent deposition, ink jet printing can be used to deposit patterns of OLED films. Ink jet printing requires dissolving organic material into a solvent that yields a printable ink. Furthermore, ink jet printing is conventionally limited to the use of single layer OLED film stacks, which typically have lower performance as compared to multilayer stacks. The single-layer limitation arises because printing typically causes destructive dissolution of any underlying organic layers. Finally, unless the substrate is first prepared to define the regions into which the ink is to be deposited, a step that increases the cost and complexity of the process, ink jet printing is limited to circular deposited areas with poor thickness uniformity as compared to vapor deposited films. The material quality is also lower due to structural changes in the material that occur during the drying process and due to material impurities present in the ink. However, the ink jet printing technique is capable of providing patterns of OLED films over very large areas with good material efficiency.
No conventional technique combines the large area patterning capabilities of ink jet printing with the high uniformity, purity, and thickness control achieved with vapor deposition for organic thin films. Because ink jet processed single layer OLED devices continue to have inadequate quality for widespread commercialization, and thermal evaporation remains impractical for scaling to large areas, it is a major technological challenge for the OLED industry to develop a technique that can offer both high film quality and cost-effective large area scalability.
Manufacturing OLED displays may also require the patterned deposition of thin films of metals, inorganic semiconductors, and/or inorganic insulators. Conventionally, vapor deposition and/or sputtering have been used to deposit these layers. Patterning is accomplished using prior substrate preparation (e.g., patterned coating with an insulator), shadow masking as described above, and when a fresh substrate or protective layers are employed, conventional photolithography. Each of these approaches is inefficient as compared to the direct deposition of the desired pattern, either because it wastes material or requires additional processing steps. Thus, for these materials as well there is a need for a method and apparatus for depositing high-quality, cost effective, large area scalable films.
Certain applications of thermal jet printing require non-oxidizing environment to prevent oxidation of the deposited materials or associated inks. In a conventional method, a sealed nitrogen tent is used to prevent oxidation. Conventional systems use a floating system to support and move the substrate. A floatation system can be defined as a bearing system of alternative gas bearings and vacuum ports. The gas bearings provide the lubricity and non-contacting support for the substrate, while the vacuum supports the counter-force necessary to strictly control the height at which the relatively light-weight substrate floats. Since high-purity nitrogen gas can be a costly component of the printing system, it is important to minimize nitrogen loss to the ambient.
Accordingly, there is a need for load-locked printing system which supports a substrate on gas bearings while minimizing system leakage and nitrogen loss.
The disclosure relates to a method and apparatus for preventing oxidation or contamination during a thermal jet printing operation. The thermal jet printing operation may include OLED printing and the printing material may include suitable ink composition. In an exemplary embodiment, the printing process is conducted at a load-locked printer housing having one or more chambers. Each chamber is partitioned from the other chambers by physical gates or fluidic curtains. A controller coordinates transportation of a substrate through the system and purges the system by timely opening appropriate gates. The substrate may be transported using gas bearings which are formed using a plurality of vacuum and gas input portals. The controller may also provide a non-oxidizing environment within the chamber using a gas similar to, or different from, the gas used for the gas bearings. The controller may also control the printing operation by energizing the print-head at a time when the substrate is positioned substantially thereunder.
In one embodiment, the disclosure relates to a method for printing a film of OLED material on a substrate by (i) receiving the substrate at an inlet chamber; (ii) flooding the inlet load-locked chamber with a noble gas and sealing the inlet chamber; (iii) directing at least a portion of the substrate to a print-head chamber and discharging a quantity of OLED material from a thermal jet discharge nozzle onto the portion of the substrate; (iv) directing the substrate to an outlet chamber; (v) partitioning the print-head chamber from the outlet chamber; and (vi) unloading the print-head from the outlet chamber. In one embodiment of the invention, the print-head chamber pulsatingly delivers a quantity of material from a thermal jet discharge nozzle to the substrate.
In another embodiment, the disclosure relates to a method for depositing a material on a substrate. The method includes the steps of: (i) receiving the substrate at an inlet chamber; (ii) flooding the inlet chamber with a chamber gas and sealing the inlet chamber; (iii) directing at least a portion of the substrate to a print-head chamber and discharging a quantity of material from a thermal jet discharge nozzle onto the portion of the substrate; (iv) directing the substrate to an outlet chamber; (v) partitioning the print-head chamber from the outlet chamber; and (vi) unloading the print-head from the outlet chamber. The print-head chamber pulsatingly delivers a quantity of material from a thermal jet discharge nozzle to the substrate.
In another embodiment, the disclosure relates to a load-locked printing apparatus, comprising an inlet chamber for receiving a substrate, the inlet chamber having a first partition and a second partition; a print-head chamber in communication with the inlet chamber, the print-head chamber having a discharge nozzle for pulsatingly metering a quantity of ink onto a substrate, the second partition separating the print-head chamber from the inlet chamber; an outlet chamber in communication with the print-head chamber through a third partition, the outlet chamber receiving the substrate from print head chamber and exiting the substrate from a fourth chamber. In a preferred embodiment, the inlet chamber, the print-head chamber and the outlet chamber provide an inert gas environment while the discharge nozzle pulsatingly meters the quantity of ink onto the substrate. Although the implementation of the invention are not limited thereto, the inert gas environment can be a noble gas (e.g. argon, helium, nitrogen or hydrogen).
In still another embodiment, the disclosure relates to a load-locked thermal jet printing system. The system includes a housing with an inlet partition and an outlet partition. The housing defines a print-head chamber for depositing a quantity of ink onto a substrate. The housing also includes an inlet partition and an outlet partition for receiving and dispatching the substrate. A gas input provides a first gas to the housing. A controller communicates with the print-head chamber, the gas input and the inlet and outlet partitions. The controller comprises a processor circuit in communication with a memory circuit, the memory circuit instructing the processor circuit to (i) receive the substrate at the inlet partition; (ii) purge the housing with the first gas; (iii) direct the substrate to a discharge nozzle at the print-head chamber; (iv) energize the thermal jet discharge nozzle to pulsatingly deliver a quantity of film material from the discharge nozzle onto the substrate; and (v) dispatch the substrate from the housing through the outlet partition.
These and other embodiments of the disclosure will be discussed with reference to the following exemplary and non-limiting illustrations, in which like elements are numbered similarly, and where:
The floatation gas is an expensive component of the substrate floatation system. The cost is compounded when the printing system calls for substantially pure gas. Thus, it is desirable to minimize any gas loss to the environment.
Once the printing process is complete, the substrate is transported to the outlet chamber as shown in
The print-head chamber houses the print-head. In a preferred embodiment, the print-head comprises an ink chamber in fluid communication with nozzle. The ink chamber receives ink, comprising particles of the material to be deposited on the substrate dissolved or suspended in a carrier liquid, in substantially liquid form from a reservoir. The ink head chamber then meters a specified quantity of ink onto an upper face of a thermal jet discharge nozzle having a plurality of conduits such that upon delivery to the upper face, the ink flows into the conduits. The thermal jet discharge nozzle is activated such that the carrier liquid is removed leaving behind in the conduits the particles in substantially solid form. The thermal jet discharge nozzle is then further pulsatingly activated to deliver the quantity of material in substantially vapor form onto the substrate, where it condenses into substantially solid form.
Bottom structure 630 supports nozzle 640 through brackets 660. Brackets 660 can include and integrated heating element. The heating element is capable of instantaneously heating thermal jet discharge nozzle 640 such that the ink carrier liquid evaporates from the conduits 650. The heating element is further capable of instantaneously heating the thermal jet discharge nozzle 650 such that substantially solid particles in the discharge nozzle are delivered from the conduits in substantially vapor form onto the substrate, where they condense into substantially solid form.
Print-head 600 operates entirely within the print-head chamber 220 and housing 200 of
Vacuum and pressure can be used to transport substrate 750 through the load-locked system of
In an exemplary operation, a memory circuit (not shown) of controller 770 provides instructions to a processor circuit (not shown) to: (i) receive the substrate at the inlet partition; (ii) purge the housing with the first gas; (iii) direct the substrate to a discharge nozzle at the print-head chamber; (iv) energize the discharge nozzle to pulsatingly deliver a quantity of material from the thermal jet discharge nozzle onto the substrate; and (v) dispatch the substrate from the housing through the outlet partition. The first gas and the second gas can be different or identical gases. The first and/or the second gas can be selected from the group comprising nitrogen, argon, and helium.
Controller 770 may also identify the location of the substrate through the load-locked print system and dispense ink from the print-head only when the substrate is at a precise location relative to the print-head.
Another aspect of the invention relates to registering the substrate relative to the print-head. Printing registration is defined as the alignment and the size of one printing process with respect to the previous printing processes performed on the same substrate. In order to achieve appropriate registration, the print-head and the substrate need to be aligned substantially identically in each printing step. In one implementation of the invention, the substrate is provided with horizontal motion (i.e., motion in the x direction) and the print-head is provided with another horizontal motion (i.e., motion in the y direction). The x and y directions may be orthogonal to each other. With this arrangement, the movement of the print-head with respect to the substrate can be defined with a combination of these two horizontal directions.
When the substrate is loaded onto a load-locked system, the areas to be printed are usually not perfectly aligned in the x and y directions of the system. Thus, there is a need for detecting the misalignment, determining the required corrections to the motion of the print-head relative to the substrate and applying the corrections.
According to one embodiment of the invention, the pattern or the previous printing is detected using a pattern recognition system. This pattern can be inherent in the previous printing or may have been added deliberately (i.e., fiducials) for the pattern recognition step. By means of its recognition of the pattern, the misalignment of the substrate to the printing system's motion, direction or axis can be determined. This manifests itself as a magnification misalignment, a translational misalignment and an angular misalignment.
Alternatively, an initial scan of the entire substrate can be performed by the pattern recognition system utilizing the x and y motions available in the printing system.
For either alignment technique, the printing control system will then cause the print-head to fire appropriately at the desired print axis as it scans the substrate. In the case of the embodiment described above, the print system will periodically use the pattern recognition system to update and adjust for any misalignment, causing the print-head to fire after alignment has been achieved. Depending on the degree of misalignment, the required update and adjustment steps may have to be repeated more often during the printing operations. Alternatively, the pattern recognition system must scan the substrate initially to assess the amount and direction of misalignment, then printing control system will utilize the misalignment information to adjust the print-head firing accordingly.
While the principles of the disclosure have been illustrated in relation to the exemplary embodiments shown herein, the principles of the disclosure are not limited thereto and include any modification, variation or permutation thereof. For example, while the exemplary embodiments are discussed in relation to a thermal jet discharge nozzle, the disclosed principles can be implemented with different type of nozzles. Moreover, the same or different gases can be used for floating the substrate and for providing a non-oxidizing environment within the chamber. These gases need not be noble gases. Finally, the substrate may enter the system from any direction and the schematic of a tri-chamber system is entirely exemplary.
The application claims the filing-date priority of Provisional Application No. 61/142,575, filed Jan. 5, 2009, the disclosure of which is incorporated herein in its entirety; the application also claims priority to U.S. patent application Ser. No. 12/139,391, now abandoned, filed Jun. 13, 2008, the disclosure of which is incorporated herein in its entirety; this application also claims priority to U.S. patent application Ser. No. 12/652,040, filed Jan. 5, 2010, now U.S. Pat. No. 8,383,202, the disclosure of which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3216858 | Bogdanowski | Nov 1965 | A |
3498343 | Sperberg | Mar 1970 | A |
3670466 | Lynch | Jun 1972 | A |
3885362 | Pollock | May 1975 | A |
4226897 | Coleman | Oct 1980 | A |
4238807 | Bovio et al. | Dec 1980 | A |
4581478 | Pugh et al. | Apr 1986 | A |
4751531 | Saito et al. | Jun 1988 | A |
5029518 | Austin | Jul 1991 | A |
5041161 | Cooke et al. | Aug 1991 | A |
5065169 | Vincent et al. | Nov 1991 | A |
5116148 | Ohara et al. | May 1992 | A |
5155502 | Kimura et al. | Oct 1992 | A |
5172139 | Sekiya et al. | Dec 1992 | A |
5202659 | DeBonte et al. | Apr 1993 | A |
5247190 | Friend et al. | Sep 1993 | A |
5314377 | Pelosi, III | May 1994 | A |
5344365 | Scott et al. | Sep 1994 | A |
5405710 | Dodobalapur et al. | Apr 1995 | A |
5574485 | Anderson et al. | Nov 1996 | A |
5623292 | Shrivasta | Apr 1997 | A |
5703436 | Forrest et al. | Dec 1997 | A |
5707745 | Forrest et al. | Jan 1998 | A |
5731828 | Ishinaga et al. | Mar 1998 | A |
5781210 | Hirano et al. | Jul 1998 | A |
5801721 | Gandy et al. | Sep 1998 | A |
5834893 | Bulovic et al. | Nov 1998 | A |
5844363 | Gu et al. | Dec 1998 | A |
5865860 | Delnick | Feb 1999 | A |
5896154 | Mitani et al. | Apr 1999 | A |
5947022 | Freeman et al. | Sep 1999 | A |
5956051 | Davies et al. | Sep 1999 | A |
6013982 | Thompson et al. | Jan 2000 | A |
6023899 | Mecozzi | Feb 2000 | A |
6049167 | Onitsuka et al. | Apr 2000 | A |
6065825 | Anagnostopoulos et al. | May 2000 | A |
6086195 | Bohorquez et al. | Jul 2000 | A |
6086196 | Ando et al. | Jul 2000 | A |
6086679 | Lee et al. | Jul 2000 | A |
6087196 | Sturm et al. | Jul 2000 | A |
6089282 | Spiegelman et al. | Jul 2000 | A |
6091195 | Forrest et al. | Jul 2000 | A |
6095630 | Horii et al. | Aug 2000 | A |
6097147 | Baldo et al. | Aug 2000 | A |
6189989 | Hirabayashi et al. | Feb 2001 | B1 |
6250747 | Hauck | Jun 2001 | B1 |
6257706 | Ahn | Jul 2001 | B1 |
6294398 | Kim et al. | Sep 2001 | B1 |
6303238 | Thompson et al. | Oct 2001 | B1 |
6312083 | Moore | Nov 2001 | B1 |
6326224 | Xu et al. | Dec 2001 | B1 |
6337102 | Forrest et al. | Jan 2002 | B1 |
6375304 | Aldrich et al. | Apr 2002 | B1 |
6431702 | Ruhe | Aug 2002 | B2 |
6437351 | Smick et al. | Aug 2002 | B1 |
6444400 | Cloots et al. | Sep 2002 | B1 |
6453810 | Rossmeisl et al. | Sep 2002 | B1 |
6460972 | Trauernicht et al. | Oct 2002 | B1 |
6468819 | Kim et al. | Oct 2002 | B1 |
6472962 | Guo et al. | Oct 2002 | B1 |
6498802 | Chu et al. | Dec 2002 | B1 |
6513903 | Sharma et al. | Feb 2003 | B2 |
6548956 | Forrest et al. | Apr 2003 | B2 |
6562405 | Eser et al. | May 2003 | B2 |
6576134 | Agner | Jun 2003 | B1 |
6586763 | Wang et al. | Jul 2003 | B2 |
6601936 | McDonald | Aug 2003 | B2 |
6666548 | Sadasivan et al. | Dec 2003 | B1 |
6811896 | Aziz et al. | Nov 2004 | B2 |
6824262 | Kubota et al. | Nov 2004 | B2 |
6861800 | Tyan et al. | Mar 2005 | B2 |
6896346 | Trauernicht et al. | May 2005 | B2 |
6911671 | Marcus et al. | Jun 2005 | B2 |
6917159 | Tyan et al. | Jul 2005 | B2 |
6939212 | Pham | Sep 2005 | B1 |
6982005 | Eser et al. | Jan 2006 | B2 |
7023013 | Ricks et al. | Apr 2006 | B2 |
7077513 | Kimura et al. | Jul 2006 | B2 |
7247394 | Hatwar et al. | Jul 2007 | B2 |
7258768 | Yamazaki | Aug 2007 | B2 |
7326300 | Sun et al. | Feb 2008 | B2 |
7374984 | Hoffman | May 2008 | B2 |
7377616 | Sakurai | May 2008 | B2 |
7404862 | Shtein et al. | Jul 2008 | B2 |
7406761 | Jafri et al. | Aug 2008 | B2 |
7410240 | Kadomatsu et al. | Aug 2008 | B2 |
7431435 | Lopez et al. | Oct 2008 | B2 |
7431968 | Shtein et al. | Oct 2008 | B1 |
7530778 | Yassour et al. | May 2009 | B2 |
7603028 | Yassour et al. | Oct 2009 | B2 |
7604439 | Yassour et al. | Oct 2009 | B2 |
7648230 | Kachi | Jan 2010 | B2 |
7677690 | Takatsuka | Mar 2010 | B2 |
7703911 | Chung et al. | Apr 2010 | B2 |
7802537 | Kang et al. | Sep 2010 | B2 |
7857121 | Yassour | Dec 2010 | B2 |
7883832 | Colburn et al. | Feb 2011 | B2 |
7908885 | Devitt | Mar 2011 | B2 |
8128753 | Bulovic et al. | Mar 2012 | B2 |
8383202 | Somekh et al. | Feb 2013 | B2 |
8414688 | Delgado et al. | Apr 2013 | B1 |
8720366 | Somekh et al. | May 2014 | B2 |
8802186 | Somekh et al. | Aug 2014 | B2 |
8802195 | Somekh et al. | Aug 2014 | B2 |
20010045973 | Sharma et al. | Nov 2001 | A1 |
20020008732 | Moon et al. | Jan 2002 | A1 |
20020033860 | Kubota et al. | Mar 2002 | A1 |
20020053589 | Owen et al. | May 2002 | A1 |
20020079057 | Yoshioka et al. | Jun 2002 | A1 |
20020084464 | Yamazaki et al. | Jul 2002 | A1 |
20020124906 | Suzuki et al. | Sep 2002 | A1 |
20020191063 | Gelbart et al. | Dec 2002 | A1 |
20030000476 | Matsunaga et al. | Jan 2003 | A1 |
20030097929 | Watanabe et al. | May 2003 | A1 |
20030175414 | Hayashi | Sep 2003 | A1 |
20030230980 | Forrest et al. | Dec 2003 | A1 |
20040009304 | Pichler | Jan 2004 | A1 |
20040021762 | Seki et al. | Feb 2004 | A1 |
20040048000 | Shtein et al. | Mar 2004 | A1 |
20040048183 | Teshima | Mar 2004 | A1 |
20040050325 | Samoilov et al. | Mar 2004 | A1 |
20040056244 | Marcus et al. | Mar 2004 | A1 |
20040075112 | Yamazaki et al. | Apr 2004 | A1 |
20040086631 | Han | May 2004 | A1 |
20040115339 | Ito | Jun 2004 | A1 |
20040123804 | Yamazaki et al. | Jul 2004 | A1 |
20040202794 | Yoshida | Oct 2004 | A1 |
20050005850 | Yamazaki et al. | Jan 2005 | A1 |
20050062773 | Fouet | Mar 2005 | A1 |
20050140764 | Chang et al. | Jun 2005 | A1 |
20050190220 | Lim et al. | Sep 2005 | A1 |
20050223994 | Blomlelly et al. | Oct 2005 | A1 |
20050255249 | Schlatterbeck | Nov 2005 | A1 |
20060008591 | Sun et al. | Jan 2006 | A1 |
20060012290 | Kang | Jan 2006 | A1 |
20060054774 | Yassour | Mar 2006 | A1 |
20060099328 | Waite et al. | May 2006 | A1 |
20060100776 | Weiss et al. | May 2006 | A1 |
20060115585 | Bulovic et al. | Jun 2006 | A1 |
20060219605 | Devitt | Oct 2006 | A1 |
20060236938 | Powell et al. | Oct 2006 | A1 |
20070040877 | Kachi | Feb 2007 | A1 |
20070044713 | Yasui et al. | Mar 2007 | A1 |
20070058010 | Nagashima | Mar 2007 | A1 |
20070098891 | Tyan et al. | May 2007 | A1 |
20070134512 | Klubek et al. | Jun 2007 | A1 |
20070195653 | Yassour et al. | Aug 2007 | A1 |
20070234952 | Kojima | Oct 2007 | A1 |
20070257033 | Yamada | Nov 2007 | A1 |
20070286944 | Yokoyama et al. | Dec 2007 | A1 |
20080174235 | Kim et al. | Jul 2008 | A1 |
20080238310 | Forrest et al. | Oct 2008 | A1 |
20080241587 | Ohmi et al. | Oct 2008 | A1 |
20080299311 | Shtein et al. | Dec 2008 | A1 |
20080308037 | Bulovic et al. | Dec 2008 | A1 |
20080311289 | Bulovic et al. | Dec 2008 | A1 |
20080311296 | Shtein et al. | Dec 2008 | A1 |
20080311307 | Bulovic et al. | Dec 2008 | A1 |
20090031579 | Piatt et al. | Feb 2009 | A1 |
20090045739 | Kho et al. | Feb 2009 | A1 |
20090078204 | Kerr et al. | Mar 2009 | A1 |
20090081885 | Levy et al. | Mar 2009 | A1 |
20090115706 | Hwang et al. | May 2009 | A1 |
20090167162 | Lin et al. | Jul 2009 | A1 |
20090220680 | Winters | Sep 2009 | A1 |
20090244510 | Domanowski | Oct 2009 | A1 |
20100055810 | Sung et al. | Mar 2010 | A1 |
20100079513 | Taira et al. | Apr 2010 | A1 |
20100171780 | Madigan et al. | Jul 2010 | A1 |
20100182359 | Kim et al. | Jul 2010 | A1 |
20100188457 | Madigan et al. | Jul 2010 | A1 |
20100201749 | Somekh et al. | Aug 2010 | A1 |
20100282271 | Devitt | Nov 2010 | A1 |
20100310424 | Rose et al. | Dec 2010 | A1 |
20110008541 | Madigan et al. | Jan 2011 | A1 |
20110043554 | Silverbrook et al. | Feb 2011 | A1 |
20110057171 | Adamovich et al. | Mar 2011 | A1 |
20110096124 | North et al. | Apr 2011 | A1 |
20110181644 | Bulovic et al. | Jul 2011 | A1 |
20110267390 | Bulovic et al. | Nov 2011 | A1 |
20110293818 | Madigan et al. | Dec 2011 | A1 |
20110318503 | Adams et al. | Dec 2011 | A1 |
20120056923 | Vronsky et al. | Mar 2012 | A1 |
20120089180 | Fathi et al. | Apr 2012 | A1 |
20120128890 | Mirchev | May 2012 | A1 |
20120306951 | Somekh et al. | Dec 2012 | A1 |
20130004656 | Chen et al. | Jan 2013 | A1 |
20130038649 | Lowrance et al. | Feb 2013 | A1 |
20130040061 | Lowrance et al. | Feb 2013 | A1 |
20130164438 | Somekh et al. | Jun 2013 | A1 |
20130164439 | Somekh et al. | Jun 2013 | A1 |
20130206058 | Mauck et al. | Aug 2013 | A1 |
20130206671 | Somekh et al. | Aug 2013 | A1 |
20130209669 | Somekh et al. | Aug 2013 | A1 |
20130209670 | Somekh et al. | Aug 2013 | A1 |
20130209671 | Somekh et al. | Aug 2013 | A1 |
20130252533 | Mauck et al. | Sep 2013 | A1 |
20130258709 | Thompson et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
1445089 | Oct 2003 | CN |
1 626 103 | Feb 2006 | EP |
06-122201 | May 1994 | JP |
08-216401 | Aug 1996 | JP |
09-248918 | Sep 1997 | JP |
2002-069650 | Mar 2002 | JP |
2005-286069 | Oct 2005 | JP |
2006-123551 | May 2006 | JP |
2006-150900 | Jun 2006 | JP |
2007-076168 | Mar 2007 | JP |
2007-095343 | Apr 2007 | JP |
2007-299616 | Nov 2007 | JP |
05-255630 | Oct 2009 | JP |
100232852 | Dec 1999 | KR |
10-2008-0060111 | Jul 2007 | KR |
WO 2005090085 | Sep 2005 | WO |
WO 2006021568 | Mar 2006 | WO |
Entry |
---|
Non-Final Office Action issued on Jul. 1, 2014, to U.S. Appl. No. 13/773,654. |
Street et al., “Jet Printing of Active-Matrix TFT Backplanes for Displays and Sensors”, IS&T Archiving, Dec. 2005, vol. 20, No. 5, 16 pages. |
Chin, Byung Doo, “Effective Hole Transport Layer Structure for Top Emitting Devices Based on Laser Transfer Patterning,” Journal of Physics D: Applied Physics, 2007, vol. 40, pp. 5541-5546. |
Elwenspoek et al., “Silicon Micromachining,” Aug. 2004, Cambridge University, Cambridge, U.K. ISBN 0521607671. [Abstract]. |
Forrest, Stephen R., “The Path to Ubiquitous and Low-cost Organic Electronic Appliances on Plastic,” Nature, Apr. 29, 2004, vol. 428, 8 pages. |
C. Ducso, et al. “Porous Silicon Bulk Micromachining for Thermally Isolated Membrane Formation,” Sensors and Actuators A, 1997, vol. 60, pp. 235-239. |
C. Tsamis, et al. “Thermal Properties of Suspended Porous Micro-hotplates for Sensor Applications,” Sensor and Actuators B, 2003, vol. 95, pp. 78-82. |
J. Lee, et al. “Differential Scanning Calorimeter Based on Suspended Membrane Single Crystal Silicon Microhotplate,” Journal of Microelectromechanical Systems, Dec. 2008, vol. 17, No. 6, pp. 1513-1525. |
J. C. Belmonte, et al. “High-temperature Low-power Performing Micromachined Suspended Micro-hotplate for Gas Sensing Applications<” Sensors and Actuators B, 2006, vol. 114, pp. 826-835. |
G.S. Chung, “Fabrication and Characterization of Micro-heaters with Low-power Consumption using SOI membrane and Trench Structures,” Sensors and Actuators A, 2004, vol. 112, pp. 55-60. |
Geffroy et al., “Organic Light-emitting Diode (OLED) Technology: Material Devices and Display Technologies,” Polymer International, Jun. 2006, vol. 55, pp. 572-582 (Abstract only). |
Huang et al., “Reducing Blueshift of Viewing Angle for Top-Emitting Organic Light-Emitting Devices,” Dec. 6, 2008, 3 pages. |
J. Lee, et al. “Cavity Effects on Light Extraction in Organic Light emitting Devices,” Applied Physics Letters, Jan. 24, 2008, vol. 92, No. 3, 5 pages. |
Leblanc et al., “Micromachined Printheads for the Evaporative Patterning of Organic Materials and Metals,” Journal of Microelectromechanical Systems, Apr. 2007, vol. 16, No. 2, 7 pp. 1-139. |
Lindermann et al., “Thermal Bubble Jet Printhead with Integrated Nozzle Plate,” NIP20: International Conference on Digital Printing Technologies, Oct. 2004, pp. 834-839. |
S.H. Kim et al. “Fabrication and Characterization of co-planar type MEMS Structures on SiO2/sl3n4 Membrane for Gas Sensrors with Dispensing Method Guided by Micromachined Wells,” Journal of Electroceramicx, 2006, vol. 17, No. 2-4, pp. 995-998. |
Chen, Jianglong, “Novel Patterning Techniques for Manufacturing Organic and Nanostructured Electronics,” M.S. Materials Science and Engineering, Massachusetts Institute of Technology, 2003, pp. 1-206. |
Chen, Jingkuang et al., “A High-Resolution Silicon Monolithic Nozzle Array for Inkjet Printing,” IEEE Transactions on Electron Devices, vol. 44, No. 9, Sep. 1997, pp. 1401-1409. |
Chen et al., “Evaporative Deposition of Molecular Organics in Ambient with a Molecular Jet Printer,” Digital Fabrication, Sep. 2006, pp. 63-65. |
Chen et al., “Ambient Environment Patterning of Organic Thin Films by a Second Generation Molecular Jet (MoJet) Printer,” Progress Report 2006-2007, Oct. 2007, pp. 26-6; 26-7. |
International Search Report issued on Dec. 15, 2010 for PCT Application No. PCT/US10/020144. |
International Search Report issued on Sep. 2, 2010 for PCT Application No. PCT/US10/033315. |
International Search Report and Written Opinion issued on Mar. 24, 2011 for PCT Application No. PCT/US10/058145. |
International Preliminary Report on Patentability issued on Dec. 17, 2009 for PCT Application No. PCT/US08/66975. |
International Preliminary Report on Patentability issued on Dec. 7, 2009 for PCT Application No. PCT/US08/066991. |
International Preliminary Report on Patentability issued on Dec. 17, 2009 for PCT Application No. PCT/US08/67002. |
EP Examination Report dated Jul. 30, 2010 issued for EP Patent Application 08771068.7. |
CN Office Action dated Oct. 12, 2010 issued for CN Patent Application 200880020197.8. |
CN Second Office Action dated Jun. 22, 2011 issued for CN Patent Application 200880020197.8. |
EP Examination Report dated Jul. 13, 2010 issued for EP Patent Application 08771094.3. |
CN Office Action dated Dec. 17, 2010 issued for CN Patent Application 200880020151.6. |
CN Office Action dated Jan. 12, 2011 issued for CN Patent Application 200880019990.6. |
EP Examination Report dated Jul. 13, 2010 issued for EP Patent Application 08771084.4. |
Non-Final Office Action issued on Jun. 14, 2012, to U.S. Appl. No. 12/652,040. |
Applicant-Initiated Interview Summary dated Oct. 19, 2012 for U.S. Appl. No. 12/652,040. |
Notice of Allowance issued on Dec. 7, 2012 to U.S. Appl. No. 12/652,040. |
Non-Final Office Action issued on Jun. 20, 2013, to U.S. Appl. No. 13/551,209. |
Applicant-Initiated Interview Summary dated Aug. 15, 2013 for U.S. Appl. No. 13/551,209. |
Notice of Allowance issued on Feb. 2, 2014, to U.S. Appl. No. 13/551,209. |
Non-Final Office Action issued on Feb. 28, 2014, to U.S. Appl. No. 13/773,649. |
Non-Final Office Action issued to U.S. Appl. No. 13/773,643, on Jan. 7, 2014. |
Notice of Allowance issued on Jun. 30, 2014, to U.S. Appl. No. 13/773,643. |
Final Office Action issued on Jun. 10, 2014, to U.S. Appl. No. 13/773,649. |
Notice of Allowance issued on Jul. 1, 2014, to U.S. Appl. No. 13/773,649. |
Notice of Allowance mailed on Sep. 29, 2014, to U.S. Appl. No. 13/773,654. |
Final Office Action issued on Jun. 18, 2014, to U.S. Appl. No. 13/774,577. |
Notice of Allowance issued on Jul. 2, 2014, to U.S. Appl. No. 13/774,577. |
Non-Final Office Action issued on Apr. 28, 2014, to U.S. Appl. No. 13/720,830. |
Applicant-Initiated Interview Summary dated Jun. 30, 2014 for U.S. Appl. No. 13/720,830. |
Notice of Allowance issued on Oct. 6, 2014 for U.S. Appl. No. 13/720,830. |
Non-Final Office Action issued on May 16, 2014, to U.S. Appl. No. 13/802,304. |
Applicant-Initiated Interview Summary dated Aug. 20, 2014 for U.S. Appl. No. 13/802,304. |
Notice of Allowance issued on Dec. 9, 2014, to U.S. Appl. No. 13/802,304. |
Non-Final Office Action issued to U.S. Appl. No. 13/571,166 on Oct. 8, 2014. |
International Search Report and Written Opinion issued on Feb. 26, 2013 for PCT Application No. PCT/US12/70717. |
International Search Report and Written Opinion issued on Jun. 18, 2013 for PCT Application No. PCT/US13/031083. |
International Search Report and Written Opinion issued on Dec. 22, 2014, to PCT Application PCT/US14/023820. |
International Search Report and Written Opinion issued on Oct. 8, 2015 to PCT Application PCT/US14/037722. |
International Search Report and Written Opinion issued on Jan. 17, 2013 to PCT Application PCT/US12/050207. |
International Search Report and Written Opinion issued on Mar. 14, 2014, to PCT Application PCT/US13/063128. |
Non-Final Office Action issued to U.S. Appl. No. 13/551,209, on Apr. 24, 2013. |
Final Office Action issued to U.S. Appl. No. 13/551,209, on Nov. 8, 2013. |
Non-Final Office Action issued to U.S. Appl. No. 13/774,577, on Dec. 31, 2013. |
Non-Final Office Action issued on Feb. 7, 2014, to U.S. Appl. No. 13/773,643. |
Final Office Action issued on Jun. 12, 2014, to U.S. Appl. No. 13/773,643. |
Non-Final Office Action issued on Apr. 15, 2015, to U.S. Appl. No. 13/776,602. |
Notice of Allowance issued on Mar. 2, 2015, to U.S. Appl. No. 13/571,166. |
Office Action issued to CN Patent Application 201210596572 on Mar. 23, 2015. |
International Search Report and Written Opinion issued on Apr. 17, 2015, to PCT Application PCT/US15/11854. |
International Search Report and Written Opinion for PCT Application No. PCT/US15/27835, issued on Aug. 4, 2015. |
Notice of Allowance issued to U.S. Appl. No. 13/570,154 on Jul. 17, 2015. |
Non-Final Office Action issue on Aug. 3, 2015 to U.S. Appl. No. 14/727,602. |
Number | Date | Country | |
---|---|---|---|
20130307898 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61142575 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12652020 | Jan 2010 | US |
Child | 13774683 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12139391 | Jun 2008 | US |
Child | 12652020 | US |