1. Field of the Invention
The present invention relates to plasma process tools, more particularly, the present invention relates to sensing equipment for non-invasive measurement and analysis of parameters of plasma process tools.
2. Description of Background Information
Plasma processing systems are of considerable use in material processing, and in the manufacture and processing of semiconductors, integrated circuits, displays, and other electronic devices, both for etching and layer deposition on substrates, such as, for example, semiconductor wafers. Generally, the basic components of the plasma processing system include a chamber in which a plasma is formed, a pumping region which is connected to a vacuum port for injecting and removing process gases, and a power source to form the plasma within the chamber. Additional components can include, a chuck for supporting a wafer, and a power source to accelerate the plasma ions so the ions will strike the wafer surface with a desired energy to etch or form a deposit on the wafer. The power source used to create the plasma may also be used to accelerate the ions or different power sources can be used for each task.
To insure an accurate wafer is produced, typically, the plasma processing system is monitored using a sensor to determine the condition of the plasma processing system. Generally, in such a system, the sensor is placed within the plasma to monitor certain parameters or in the transmission line coupled to an electrode within the processing chamber.
The present invention provides a novel method and apparatus for measurement and analysis of plasma process parameters.
A RF sensor for sensing parameters of plasma processing is provided with a plasma processing tool and an antenna for receiving RF energy radiated from the plasma processing tool. The antenna is located proximate to the plasma processing tool so as to be non-invasive. The antenna may be a broadband mono-pole antenna.
In an aspect of the invention, a RF sensor may be coupled to a processor that comprises a high pass filter, an amplifier and a data processing device. Further, the data processing device may be coupled to a user interface for interaction by a user and may also be coupled to a network to allow remote access to the data processing device.
The present invention will be described in more detail below with reference to the illustrative embodiments disclosed.
An antenna 140 is provided outside of the plasma chamber 110 to receive the RF energy that is radiated from the plasma 130 and converts the RF energy to an RF signal. In
The processor 230 may be configured to support multiple inputs as shown in
Coupled to the processor 230 are a user interface 240, an external computer 250, and a network 260. The user interface 240 can comprise a variety of known components with the purpose of allowing a user to interact with the processor 230. For example, if the processor, after sampling, were to perform a FFT (Fast Fourier Transform) of the sampled data, the results could be displayed on a touch screen that would allow the user to interface with the system. The external computer 250 can serve a variety of purposes including real time control of the processing parameters and the chamber 110. The network 260 serves to allow remote access to and from the processor by a user. For example, the FFT information can be made available to the external computer 250 or to the network 260.
In an example of such an antenna and processor, the chamber parameters can be characterized during a calibration state and the data collected by the antenna 140 can be applied to a model that relates various parameters of the chamber and plasma. For example, some of the parameters may include, electron density, assembly cleanliness, electron temperature, and endpoint detection. The use of such a model may permit the use of an antenna without regard to the absolute calibration of the antenna that may simplify sensor design parameters.
Although shown on the back of the enclosure 340, the absorbers 320 and 330 may be placed around the enclosure 340 on five of the sides (if the enclosure is considered to be a rectangular box). This arrangement for the absorbers allows the RF energy to radiate from the plasma 130 through the connecting wall 310 and in the enclosure while the absorbers are on the other five sides of the box.
In embodiments, the absorbers 320 and 330 may be chosen such that absorber 320 is selected to absorb the fundamental frequency and absorber 330 is selected to absorb the first harmonic. A quarter wave arrangement can provide the maximum attenuation of the selected frequencies. Additionally, additional absorbing layers can be utilized as desired. Although specific arrangements of absorbers have been described above, any configuration of absorbers that reduce unwanted interference may be utilized.
The processor 150 receives the RF energy and converts the analog signal to a digital signal via an analog to digital (A/D) converter. Typically, the sampling rate of the analog signal depends on the bandwidth of interest (i.e., the bandwidth is a function of the fundamental frequency and the harmonics of interest). For example, a 500 MHz bandwidth may typically be sampled at a rate of 1 billion samples per second. Of course, the sampling rate can be determined as desired and should not be limited to the example above. The magnitude and the phase of the RF energy, including the harmonics, may provide information about the state of the plasma 130 and accordingly on the state of the chamber 110. The data may then be processed by the processor 150 and operations such as a Fast Fourier Transform (FFT) and a Principle Component Analysis (PCA) can typically be used to gather information from the RF signal. The information that is acquired by the processor 150 can provide insight into parameters such as assembly cleanliness, plasma density, electron temperature, and endpoint detection.
In one embodiment of the processor, trace data of the received RF energy can be converted into a frequency domain output signal by using conventional techniques including the FFT. The information at the harmonic frequencies can then be extracted and multiplied by coefficients which are obtained during a calibration of the plasma processing system and determined by PCA. PCA may be useful for determining the coefficients because it allows a large set of correlated values to be converted to a smaller set of principal values. The reduction in the size of the set can be achieved be converting the original set of values into a new set of uncorrelated linear combinations of the original (larger) set.
Using the magnitude of the fundamental frequency and the harmonic frequencies of the received RF energy, it is possible to perform several different analyses including, power analysis, flow analysis, and pressure analysis. By processing the information obtained from the magnitude values, it is further possible to determine between which of the harmonics, the largest correlation exists and as a result, determine acceptable coefficients for each frequency component. Dependence analysis is also possible to determine if changes in one parameter effect other parameters in the system, however, initial results indicate that the parameters may be adjusted independently.
Further, endpoint detection may be possible from an analysis of the trace data. Once plotted, it becomes apparent that there is a significant shift in a harmonic of the received RF energy. More particularly, it is possible that the major harmonic contribution may change at the time of process completion.
For example, as shown in
The processed data is then sent to a tool control 430. The tool control 430 may be configured to perform several tasks. Some of the tasks that the tool control 430 can perform include end point determination, power control, and gas control (flow, pressure, etc.). As shown in
As described above, PCA is a multivariate statistical procedure that permits a large set of correlated variables to be reduced to a smaller set of principal components. Therefore, during a calibration phase, PCA can be utilized to first generate a covariance matrix from a data set comprising the data of various harmonics. Next, an eigensolution can be obtained from the covariance matrix and accordingly a set of eigenvectors can be calculated. From the eigensolution, the percentage contribution of each principal component can be calculated. Using the percentages, coefficients can be selected accordingly by a weighted sum of the eigenvector with the percentages obtained. This calculation can be performed for various parameters including, power, gas flow, and chamber pressure. Once the calibration is complete and the various coefficients are determined, the tool control can utilize the information in control loops as would be apparent to an individual skilled in the art. In this type of a feed back loop a reproducible process may be maintained.
The processor 150 may be coupled to several devices as shown in
Lastly, as can be appreciated by an individual skilled in the art, the amount of data that is processed by the processor 150 may be significantly large. To this regard, it may be required that an external storage device (not shown) be utilized. One possible configuration for connecting the storage device may be directly to the processor 150. Alternatively, it may be beneficial to use the remote storage via the network 260 (shown in
The foregoing presentation of the described embodiments is provided to enable any person skilled in the art to utilize the present invention. Various modifications to these embodiments are possible and the generic principle of a RF sensor for measurement of semiconductor process parameters presented herein may be applied to other embodiments as well. Thus, the present invention is not intended to be limited to the embodiments shown above, but rather to be accorded the widest scope consistent with the principles and novelty of the features disclosed in any fashion herein.
This is a Continuation of International Patent Application No. PCT/US03/19040, filed Jun. 18, 2003, which relies for priority on and claims the benefit of U.S. Provisional Application No. 60/393,103, filed Jul. 3, 2002, the contents of both of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
60393103 | Jul 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US03/19040 | Jun 2003 | US |
Child | 11020127 | Dec 2004 | US |