Not Applicable.
A method of obtaining improved thickness measurements and/or of the identification of the presence and location of surface coatings of transparent materials that may be moving during the measurement process.
In the coating and glass industry, for example, there are applications where properties of a transparent medium must be measures. For example, it may be necessary to inspect glass during the manufacturing of windows to confirm the glass or air space thickness, or to identify coated surfaces such as LOW-E energy efficient coatings that have been applied to the glass. The window industry has used hand held laser devices that measure the glass thickness by being directly placed on the glass itself. These devices use a standard laser with a round dot image reflected from surfaces of the glass under test which is stationary. Prior art devices, as shown for example in U.S. Pat. No. 6,683,695, use a laser to measure the location of the coating. These devices do not allow for the medium under test to change its relative location from the laser or sensor while conducting measurements. Movement of the material can cause the reflected laser sensing beam to move during the testing process. This movement can produce a poor quality signal which can lead to inaccurate measurements or to the total failure to obtain a measurement.
The invention related to a method for improving the signal quality of the reflected laser beam, especially from a moving transparent material. The sensor is mounted, for example, between the rollers of a glass movement system for washing, etc. The sensor uses a line beam generated by the optics of a laser. Preferably, the beam is a non-Gaussian type laser beam. Generally as a piece of glass or other transparent material is loaded onto a roller system, the glass does not initially lay totally parallel to the surface of the sensor that senses surface reflections of the laser beam. This unparallel situation can be caused by a variety of conditions, including: 1) as operator places the glass onto the conveyor at a point where the glass is positioned over the sensor, the sensor begins conducting a measurement before the glass has been released by the operator onto the conveyor, or 2) the conveyor rollers may be uneven and the glass rocks as it passes from conveyor roller to roller. The reflected image created by a dot type laser will often miss a CCD array line sensor until the glass is close to the laser or mounted at a known angle to guarantee that the laser beam will be reflected back to the sensor. If a round dot-generating laser is used with a shutter at the aperture to physically block a portion of the lasers energy, (effectively creating a line image from the laser), significant amounts of laser energy is unused. Further, the energy level can vary significantly along the length of the beam. The shutter opening may often be extremely small, since the sensing elements of a CCD array can often have 1000 or more sensing elements in 1 inch (2.54 cm) length.
The laser beams usefulness improves from being a non-Gaussian type of laser beam. Typical manufactured lasers follow a Gaussian pattern of laser beam power wherein the center of the laser beam has the greatest intensity of power and the laser beam intensity then falls off at increasing distance away from the center of the laser beam. A non-Gaussian laser beam generally keeps substantially the same relative amount of laser energy level over the majority of the length of an optically generated laser line image. The intensity level will drop off only at the ends of the line beam. When the laser beam is reflected from the moving subject under test, the amount of reflected energy striking a line sensor is about the same, regardless of the slight variation in angle of the material being tested relative to the sensor.
The thickness of the laser beam needs to be as small as possible. A 50 um thickness beam, for example, on a line based CCD array with 1000 or more elements per inch allows measurements of reflections from multiple surfaces of a transparent medium with highly reflective qualities to occur without saturating each individual CCD pixel element, which could result in a cascaded sharing or bleed over effect of energy with successive elements. This is critical in thickness measurements where individual successive peaks from each surface could bleed together into a single peak.
The invention also is applicable when the glass or other transparent medium under test is moving in a direction other than horizontal, such as vertical.
Various objects and advantages of the invention will become apparent from the following detailed description of the invention and the accompanying drawings.
Referring to
For insulated windows, the single sheet of glass 11 shown in
In
A 50 um thickness beam impinging on a line based CCD array with as many as 1000 or more elements per inch allows measurements of reflections from multiple surfaces of a transparent medium to occur without saturating each individual CCD array element, which could result in a cascaded sharing of energy with successive elements. This is critical in thickness measurements where individual successive peaks from each surface could bleed together into a single peak, especially when measuring the thickness of a thin sheet of transparent material.
As shown in
As the glass 11 under test is released by the operator onto the roller system and travels along the conveyor 12, the reflected amount of laser power that impinges upon a small point of the sensor 18 will be approximately the same, despite small variations in the angle of the glass to the sensor 18. The use of a line-generating laser 17 allows for limited angular movement of the glass 11 relative to the sensor 18, since a line at angles other than parallel to the CCD array sensor effectively touches only a small amount of the sensing elements. The glass may be moved during the measurement because the length of the (non-Gaussian) laser-line image that is reflected onto the CCD array line sensor 18 will guarantee that the signal hits the sensor 18. The spacing between the reflections 19 and 20 is dependent on the spacing between the glass surfaces 15 and 16. This spacing will remain substantially constant even when the glass is at a slight angle out of parallel with the sensor 18. The amount of laser power received by the sensor 18 also will be substantially unchanged since it does not matter if the received energy is from the center or off center towards an end of the reflected line beam. Measurements that are based upon an absolute value of energy being measured will now be accurate, while a point-generating, Gaussian laser would lead to possible incorrect measurements.
A thin laser beam allows greater resolution of thinner materials under test and allows surfaces to be coated with more reflective substances before the surface reflections bleed together on the CCD array.
The apparatus 10 processes information from the CCD array sensor 18 in a known manner to determine physical attributes of the material under test, such as the thickness of sheets of glass and/or the surface location of a transparent surface coating. Apparatus 10 according to the invention improves the signal quality of reflected laser beams from surfaces of transparent material to provide more accurate information. A non-Gaussian laser allows uniform reflected power readings to occur from various positions on the laser beam.
In addition to the physical attributes of the non-Gaussian laser and the thickness of the laser beam, software can also be used to protect from the conditions described above. As the glass is being placed onto the line or is rocking irregularly, the location of the reflected laser image onto the CCD array sensor can be monitored to know when the glass being tested has been released onto the line and when it is laying in its “resting” position on the conveyor. The electronics can be programmed so that the first-surface laser reflection should fall into a narrow specified location on the CCD array sensing elements. This narrow location can indicate when the glass surfaces are parallel to the CCD array sensor. Software also can monitor this situation and provide a safety buffer to prevent the sensor from taking measurements prior to the glass being released onto the conveyor.
It will be appreciated that various modifications and changes may be made to the above described preferred embodiment of without departing from the scope of the following claims.
Applicants claim priority to U.S. Provisional Patent Application Ser. No. 60/609,382 filed Sep. 13, 2004.
Number | Date | Country | |
---|---|---|---|
60609382 | Sep 2004 | US |