The invention relates generally to solid state imaging devices and more particularly to a method and apparatus which optically isolates pixel regions to reduce optical crosstalk in a solid state image sensor.
There are a number of different types of semiconductor-based imagers, including charge coupled devices (CCD's), photodiode arrays, charge injection devices (CID's), hybrid focal plane arrays, and complementary metal oxide semiconductor (CMOS) imagers. Current applications of solid-state imagers include cameras, scanners, machine vision systems, vehicle navigation systems, video telephones, computer input devices, surveillance systems, auto focus systems, star trackers, motion detector systems, image stabilization systems, and other image acquisition and processing systems.
CMOS imagers are well known. CMOS images are discussed, for example, in Nixon et al., “256×256 CMOS Active Pixel Sensor Camera-on-a-Chip,” IEEE Journal of Solid-State Circuits, Vol. 31(12), pp. 2046-2050 (1996); Mendis et al., “CMOS Active Pixel Image Sensors,” IEEE Transactions on Electron Devices, Vol. 41(3), pp. 452-453 (1994); and are also disclosed in U.S. Pat. Nos. 6,140,630, 6,204,524, 6,310,366, 6,326,652, 6,333,205, and 6,326,868; assigned to Micron Technology, Inc., the entire disclosures of which are incorporated herein by reference.
Semiconductor imaging devices include an array of pixel cells, which converts light energy received, through an optical lens, into electrical signals. Each pixel cell contains a photosensor for converting a respective portion of a received image into an electrical signal. The electrical signals produced by the array of photosensors are processed to render a digital image.
The amount of charge generated by the photosensor corresponds to the intensity of light impinging on the photosensor. Accordingly, it is important that all of the light directed to the photosensor impinges on the photosensor rather than being reflected or refracted toward another photosensor as optical crosstalk.
For example, optical crosstalk may exist between neighboring photosensors in a pixel array. In an ideal imager, ideally, all the incident photons on top of a microlens are directed towards the photosensing element underneath that microlens. In reality, some of the photons get refracted and reach adjacent photosensors. This leads to undesirable optical crosstalk between neighboring pixels. This problem gets worse with scaled pixels and as the distance between the photosensor and the microlens increases. Increasing the number of interconnect metal layers typically increases this distance.
Optical crosstalk can bring about undesirable results in the images produced by the imaging device. The undesirable results can become more pronounced as the density of a pixel cell in imager arrays increases, and as pixel cell size correspondingly decreases. The shrinking pixel cell sizes make it increasingly difficult to properly focus incoming light on the photosensor of each pixel cell without accompanying optical crosstalk.
Optical crosstalk can cause a blurring or reduction in contrast in images produced by the imaging device. Optical crosstalk also degrades the spatial resolution, reduces overall sensitivity, causes color mixing, and leads to image noise after color correction. As noted above, image degradation can become more pronounced as pixel cell and device sizes are reduced. Furthermore, degradation caused by optical crosstalk is more conspicuous at longer wavelengths of light. Light having longer wavelengths penetrates more deeply into the silicon structure of a pixel cell, providing more opportunities for the light to be reflected or refracted away from its intended photosensor target.
One proposal to reduce optical crosstalk provides a continuous air-gap around the optical path to a photosensor. See Dun-Nian Yaung et al., Air-Gap Guard Ring for Pixel Sensitivity and Crosstalk Improvement in Deep Sub-micron CMOS Image Sensor, P
Alternatively as also shown in
Another method of reducing optical crosstalk uses optical waveguides. Optical waveguides are structures used for spatially confining and directing light onto the intended target. For instance, optical waveguides can be used to reduce the detrimental affects associated with light shields such as light piping and light shadowing. Optical waveguides, however, are not widely used to focus light directly onto the photosensor in imaging devices. Moreover, currently employed optical waveguide structures, require additional processing steps, adding to the complexity and costs of imager fabrication.
Accordingly, there is a need and desire for an improved apparatus and method for reducing optical crosstalk in imaging devices. There is also a need to more effectively and accurately increase overall pixel sensitivity and provide improved optical crosstalk immunity without adding complexity to the manufacturing process and/or increasing fabrication costs.
Exemplary embodiments of the invention provide an optical guide structure for a pixel which guides incoming light onto the photosensor of the pixel. The optical guide structure has an optically reflecting barrier that mitigates against optical crosstalk. The optical guide structure is made of low dielectric constant material with an index of refraction that is less than the index of refraction of the material of surrounding layers. This difference in refractive index causes an internal reflection into an optical path existing between a lens and pixel.
In other exemplary embodiments, materials with high reflectivity such as metals can be used to implement the optical guide structure. In yet another embodiment, to improve the difference in the index of refraction between the fill material and the surrounding material, the surrounding layers may be formed with materials having a relatively high index of refraction
The foregoing and other features of the invention will become more apparent from the detailed description of exemplary embodiments provided below with reference to the accompanying drawings in which:
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments by which the invention may be practiced. It should be understood that like reference numerals represent like elements throughout the drawings. These exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It is to be understood that other embodiments may be utilized, and that structural, logical and electrical changes may be made without departing from the spirit and scope of the present invention.
The terms “wafer” and “substrate” are to be understood as including all forms of semiconductor wafers and substrates including silicon, silicon-on-insulator (SOI), silicon-on-sapphire (SOS), doped and undoped semiconductors, epitaxial layers of silicon supported by a base semiconductor foundation, and other semiconductor structures. Furthermore, when reference is made to a “wafer” or “substrate” in the following description, previous process steps may have been utilized to form regions or junctions in the base semiconductor structure or foundation. In addition, the semiconductor need not be silicon-based, but could be based on other semiconductors, for example, silicon-germanium, germanium, or gallium arsenide.
The term “pixel” refers to a picture element unit cell containing circuitry including a photosensor and semiconductors for converting electromagnetic radiation to an electrical signal. For purposes of illustration, fabrication of one or more representative pixels is shown and described. Typically, fabrication of all pixels in an imager will proceed simultaneously in a similar fashion.
Although the invention is described herein with reference to the architecture and fabrication of one or a limited number of pixels, it should be understood that this is representative of a plurality of pixel cells as typically would be arranged in an imager array having pixel cells arranged, for example, in rows and columns.
In addition, although the invention is described below with reference to a pixel for a CMOS imager, the invention has applicability to other solid-state imaging devices using pixels (e.g., a CCD or other solid state imager).
The invention may also be employed in display devices where a pixel has a light emitter for emitting light. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
Referring to the
In a first embodiment of the invention, the trench 350 is filled with a low-dielectric constant material 351 (low-k material), having a dielectric constant below 1.45. The low dielectric constant material 351 within trench 350 has an index of refraction that is less than the index of refraction of the material used for the surrounding imager layers shown as the BPSG layer 230, ILD layers with associated metallization 210, passivation TEOS layer 260, and CFA layer 250.
For example, the dielectric of the ILD layer 210 is typically implemented by depositing amorphous silicon dioxide, whose index of refraction is approximately between 1.45 and 1.54. Thus, in this example, a material with a lower index of refraction than 1.45 will fill the trench 350. Additionally, there are numerous other low-k polymers (discussed below) that can be used for the fill material 351, as long as their respective reflective index is below that of the surrounding layers.
It should be appreciated that in the exemplary embodiment discussed above the trench 350 has been described as extending to and through the ILD layer 210, passivation layer 260, and CFA layer 250, however it may be extended from or continue into additional layers. For example referring back to
In all of the described embodiments, there is a difference in refractive index between the surrounding film material (refractive index=n1) and the material 351 (
In general, low dielectric constant materials will provide low refractive indexes. The various exemplary embodiments may use various materials alone (
Additionally, the typical materials used for the various layers 210, 260, 250, 270 may have a relatively low index of refraction. To improve the difference in the index of refraction between the fill material 351, 351′, 351″ and the surrounding material, the surrounding layers, e.g., 210, 260, 250, 270 may be formed with materials having a relatively high index of refraction, thus expanding the number of possible materials having a lower index of refraction, which can be used for the trench 350 fill material.
In another embodiment of the invention, fill materials with high light reflectivity such as metals may also be used to fill the trench 350. Some metals have a very high light reflectivity such as aluminum, copper, silver and gold and can effectively serve as an optical barrier material. It should be appreciated that the metals mentioned are in no way an exhaustive list of possible metals which can be used, and metal alloys may also be used. The metal fill material may be used alone as fill material 351 (
A sample and hold circuit 1161 associated with the column driver 1160 reads a pixel reset signal Vrst and a pixel image signal Vsig for selected pixels. A differential signal (Vrst−Vsig) is amplified by differential amplifier 1162 for each pixel and is digitized by analog-to-digital converter 1175 (ADC). The analog-to-digital converter 1175 supplies the digitized pixel signals to an image processor 1180 which forms a digital image.
System 1200, for example a camera system, generally comprises a central processing unit (CPU) 1220, such as a microprocessor, that communicates with an input/output (I/O) device 1270 over a bus 1280. Imaging device 1210 also communicates with the CPU 1220 over the bus 1280. The processor-based system 1200 also includes random access memory (RAM) 1290, and can include removable memory 1230, such as flash memory, which also communicate with the CPU 1220 over the bus 1280. The imaging device 1210 may be combined with a processor, such as a CPU, digital signal processor, or microprocessor, with or without memory storage on a single integrated circuit or on a different chip than the processor.
It should be appreciated that there are likely many alternatives for materials that may be suitably employed to provide the optical guide for integrated image sensors including metals, polymers, semiconductors, and dielectric. This is especially true if a material other than amorphous silicon dioxide is used in the ILD layers.
The processes and devices described above illustrate preferred methods and typical devices of many that could be used and produced. The above description and drawings illustrate embodiments, which achieve the objects, features, and advantages of the present invention. However, it is not intended that the present invention be strictly limited to the above-described and illustrated embodiments. Any modification, though presently unforeseeable, of the present invention that comes within the spirit and scope of the following claims should be considered part of the present invention.
The present application is a continuation of U.S. application Ser. No. 11/209,777, filed on Aug. 24, 2005, now U.S. Pat. No. 7,511,257 the disclosure of which is incorporated by reference in its entirety herewith.
Number | Name | Date | Kind |
---|---|---|---|
5239172 | Yokota et al. | Aug 1993 | A |
6075237 | Ciccarelli | Jun 2000 | A |
6140630 | Rhodes | Oct 2000 | A |
6177333 | Rhodes | Jan 2001 | B1 |
6204524 | Rhodes | Mar 2001 | B1 |
6239421 | Nagata et al. | May 2001 | B1 |
6310366 | Rhodes et al. | Oct 2001 | B1 |
6326652 | Rhodes | Dec 2001 | B1 |
6333205 | Rhodes | Dec 2001 | B1 |
6766082 | Hirabayashi et al. | Jul 2004 | B2 |
7078779 | Wang et al. | Jul 2006 | B2 |
20020110948 | Huang et al. | Aug 2002 | A1 |
20030122209 | Uya | Jul 2003 | A1 |
20030210342 | Parks | Nov 2003 | A1 |
20040080007 | Yamamoto | Apr 2004 | A1 |
20040140564 | Lee et al. | Jul 2004 | A1 |
20040180461 | Yaung et al. | Sep 2004 | A1 |
20040183436 | Ito et al. | Sep 2004 | A1 |
20050045928 | Kuriyama | Mar 2005 | A1 |
20050051817 | Morita et al. | Mar 2005 | A1 |
20050056901 | Kuriyama | Mar 2005 | A1 |
20050072906 | Dobashi | Apr 2005 | A1 |
20050236553 | Noto et al. | Oct 2005 | A1 |
20050263676 | Jeon | Dec 2005 | A1 |
20090127442 | Lee | May 2009 | A1 |
Number | Date | Country |
---|---|---|
1 396 888 | Mar 2004 | EP |
06163863 | Jun 1994 | JP |
2000-124438 | Apr 2000 | JP |
2001-044401 | Feb 2001 | JP |
2005-0032448 | Apr 2005 | KR |
Number | Date | Country | |
---|---|---|---|
20090169153 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11209777 | Aug 2005 | US |
Child | 12393812 | US |