The present invention relates to methods and chemical compositions that can be used for electrochemical-mechanical polishing (e-CMP) of a silicon chip interconnect material, such as copper. Specifically, the present invention relates to e-CMP methods and compositions that can be used to achieve improved planarization of silicon chip interconnect materials.
The electrodeposition of copper for silicon chip interconnects is considered to be an important part of the modem microelectronics process. Such interconnects are often provided by depositing copper onto a seed layer, which covers a conductive liner, into lithographically generated lines and vias, and an excess of copper—often called “overburden”—is deposited on top of these features and across the field, usually to a thickness of about 0.5 microns to about 1.5 microns. Typically, this overburden layer is not very planar. It often contains mounds on top of high aspect ratio (more narrow than deep) features, while low aspect ratio features tend to fill up conformally and thus are recessed relative to the field. The height differences between mounds and recesses and the field copper are often substantial compared to the total overburden thickness: typically in the 0.1 to 0.5 micron range. The overburden and the liner must be removed in order to insulate the wires from each other. In preparation for the deposition of the next interconnect level, the removal process has to leave behind copper features whose tops are, in essence, level with each other; i.e. planarization has to occur. Such processing represents a significant technical challenge, in large part due to the small thickness of copper available for consumption during the planarization process.
One proposed method for removing the excess thickness of as-electrodeposited copper film involves reversing polarity, i.e. by making the plated wafer the anode, in a solution of chemistry different from the plating chemistry. However, routine electropolishing of a highly conductive surface such as copper does not typically lead to efficient planarization of sub-micron height differences; rather, the electrodissolution of metal tends to be conformal. In this regard, the potential differences and the differences in concentration gradients at different points along the surface are generally too small to enable an efficient planarization process. Chemical-Mechanical Polishing (CMP) is, therefore, usually employed for this purpose. However, the downward and shear force that CMP applies on the wafer surface can be damaging to the new generations of low-k dielectrics, which tend to be quite fragile. In order to compensate, CMP can be used with a much lower downward and shear force, but these forces generally result in a considerable reduction of the polishing rate. Given that CMP processes can be expected to be relatively costly in terms of factory floor space and consumables, lower polishing rates are generally considered undesirable.
In contrast to CMP, e-CMP can be used with very low downward and shear forces. In addition, the e-CMP process can be controlled more easily and accurately, through instantaneous adjustments in the external electrical parameters (current, potential).
The present invention provides compositions for electro-chemical-mechanical polishing (e-CMP) of chip interconnect materials. These compositions comprise a first component, heretofore “solvent”, either water or a mixture of water and one or more organic solvents such as propylene glycol, glycerol or ethanol; and a second component, heretofore “electrolyte”, selected from the group consisting of: mineral acids and organic acids comprising phosphonic, sulfonic and carboxylic acids, such as phosphoric acid, sulfuric acid, 1-hydroxyethane-1,1-diphosphonic acid (HEDP), phytic acid, 3-(4-morpholino)propanesulfonic acid (MOPS) and acetic acid, and mixtures of aforesaid acids and their salts, including acid salts, with sodium, potassium, ammonium, and protonated amine or azole ions such as ethanaminium, ethanolaminium and N-methylimidazolium These compositions further comprise at least one additional component, heretofore “inhibitor”, selected from the group consisting of: an anionic surfactant such as long chain alkylsulfonates having from 4 to 16 carbon atoms, a non-ionic surfactant such as poly(ethylene glycol), a cationic surfactant such as long chain alkyltrimethylammonium hydrogensulfate with 4 to 18 carbon atoms in the alkyl chain, and a surface active organic compound containing nitrogen or sulfur such as: an N-alkylimidazole with an alkyl group having from 1 to 8 carbon atoms, benzotriazole (BTA), derivatives of BTA, 3-mercaptopropanoic acid, 2-mercapto-1-methylimidazole. Optionally these compositions can also contain a soluble salt of the metal being removed, for example copper sulfate when the metal being removed is copper.
The present invention further provides methods for electrochemical-mechanical polishing (e-CMP) of chip interconnect materials using the above compositions. In addition, the present invention provides methods involving the use of a pad that that allows the passage of current between a cathode and the chip interconnect material being polished. Such a pad may, for example, be selected from the group consisting of: a porous pad, an electroactive pad, a perforated pad, a fixed abrasive pad, and at least one pad having a surface area that is smaller than the cathode.
These and other features of the present invention will become apparent upon consideration of the following detailed description of the invention when read in conjunction with the drawings, in which:
The present invention relates to methods and compositions for achieving planarization of silicon chip interconnects, such as copper interconnects. Specifically, the present invention relates to methods and compositions for electro-chemical-mechanical polishing (e-CMP) of such interconnects, in which a wafer serves as an anode in an electrical circuit and the effect of the current is coupled with the mechanical action of a pad. The action of the pad can involve actual contact and pressure, creation of viscous shear at close proximity to a substrate, or a combination of both.
Electro-chemical-mechanical polishing allows for more prominent points on a surface (“mounds”) to be affected more than lower spots. This effect is achieved via the formation of an inhibiting layer or film on a surface, in which the film is disturbed in greater proportion over the mounds, which, as a result, are polished away faster than the rest of the surface. Conversely, recessed areas are polished away at a slower rate than the rest of the surface due to the fact that the inhibiting layer in recessed areas is disturbed less than elsewhere. Significantly, the inhibiting layer can be much less mechanically robust than that which would occur in typical CMP processes, thus allowing work with a lower downward force. Alternatively, the inhibiting layer may resemble that which would occur in CMP processes, but its stability can be controlled by varying the wafer potential.
An embodiment falling within the scope of the present invention is shown schematically in
The present invention can be better understood in the context of a brief discussion regarding some principles of electropolishing. Electropolishing is generally understood as being best performed under mass transfer control, i.e. at or above the limiting current density, where the limiting factor of the electropolishing rate is the diffusion rate of dissolved ions away from the substrate, or the diffusion rate of a solvating species (needed for the removal of dissolved ions) toward the substrate. In contrast, at lower current densities, a metal surface is often roughened due to uneven etching rates of different crystallographic faces. Therefore, to achieve planarization while avoiding roughening, it is generally desirable to operate e-CMP processes under mass transfer control, while using a chemical composition from which an easily removable inhibiting layer can be formed. Notably, both mass transfer conditions (through solution viscosity and convection conditions) and inhibiting layer behavior are largely a function of not only the chemical composition but also the nature of the pad used. Accordingly, the present invention relates to pad types and configurations, as well as chemical compositions that can be used to achieve efficient planarization.
Pad Types and Configurations
Pads suitable for e-CMP must be configured so as to allow passage of current between a cathode and a sample being polished. In this regard, several options exist to allow current to pass through a pad that overlaps an entire sample area.
In one option, a porous, optionally spongy pad having interconnected porosity is filled with an e-CMP electrolyte. The pad can be much smaller than the substrate being polished (e.g., for a circular pad, about 10% to about 30% of the substrate diameter), in which case only a small portion of the substrate is electropolished at any given time and that portion changes as a function of the mutual motion of the cathode and the substrate. The pad (and the cathode) can also be larger than the substrate, in which case different sections of the cathode are activated as a function of the relative position of cathode and substrate. Typical thickness of the pads can range from about 1.5 mm to about 4 mm.
The pad may comprise a single layer but there can be some advantage to having the pad be made of two layers of different stiffness: the top layer, which contacts the wafer, being a thin, stiff surface layer, the stiffness of which prevents the pad surface from closely conforming with the wafer surface at the planarized feature scale (sub-micron to tens of microns), and the bottom layer being a thicker, more compliant layer, which allows the pad to conform to wafer-scale (centimeters and up) non-uniformities (wafer curvature etc.).
When the pad comprises two layers, the layers may be made of different materials, or optionally of the same material where the top surface has undergone a stiffening treatment such as radiation-driven cross-linking. For example, derivatized polyurethanes lend themselves well both to spongy structure formation and to radiation-induced cross-linking. Optionally the surface layer may contain an abrasive in the form of a fine (sub-micron) powder incorporated in the polymer matrix. The choice of abrasive depends on the hardness of the reacted layer produced on the surface of the metal, and thus is a function of both the metal being polished and the chemistry of the medium. Typical examples include alumina and silica for hard oxide layers, and calcium phosphates (pyrophosphate, hydrogen phosphate) for softer layers.
In another option, an electroactive pad can be electrically connected to a cathode, topped by a non-conductive thin stiff material, such as mesh, which acts to prevent direct contact between cathode and anode. The electroactive pad can, for example, be made of a conductive polymer, optionally having a spongy consistency. This approach has at least two advantages: it improves the uniformity of current distribution, and it minimizes the distance between anode and cathode surfaces, which can improve planarization efficiency.
In yet another option, a pad can be used that contains a large number of small perforations (“perforated pad”), optionally positioned over electrode/nozzle holes coincident with the pad holes. The size of such holes can be expected to depend on the hydrodynamics of the particular system, but typical diameters can, for example, range from about 0.5 mm to about 2 mm.
In one embodiment, a pressure equalizing layer, comprising a porous distribution plate in contact with the pad and filled with an electrolyte solution, is interposed between the cathode body and the perforated pad, to ensure uniform flow through all holes and thereby uniform etching rate. This design is suitable for typical rotation modes encountered in rotary planarization tools. An example of such a pad is the perforated version of the IC-1000 CMP pad by Rohm & Haas (formerly Rodel).
An example of such a pad is illustrated schematically in
In addition to the above, another option involves using a pad that is smaller than the cathode, so that part of the cathode area is always exposed. Such a pad may, but does not necessarily need to be porous or perforated. Notably, when such a pad is used in a system having a rotating cathode and/or sample, attention has to be given to ensure that all areas of the sample get equal exposure to the pad and the cathode.
For a circular cathode, this means that the pad-covered length fraction in any concentric circle is constant. This requirement may be achieved by shaping the pad in the form of circle sectors (“pizza slices”) as shown in
Notably, each of
Chemical Compositions for e-CMP Solutions
The effectiveness of any e-CMP process, including performance with minimum pad pressure, is a function of not only the pad configuration but of the chemical composition employed. Such compositions should contain a polishing medium, for example, a moderately viscous aqueous solution, in which a high polishing rate is possible under a mass transport control regime, and one or more inhibitors, i.e. compounds or materials capable of adsorbing to a metal surface and generating an inhibiting layer by interaction with the metal surface or with the ions released from the metal surface by the electropolishing process. Ideally, such inhibiting layer should be weakly adherent so that it can be removed easily. One method of screening promising inhibitors involves running potentiodynamic (current vs. changing potential) experiments. Compounds or materials for which the ratio of uninhibited current to inhibited current is high over a wide range of potentials are the most likely to work well.
A number of electropolishing compositions have been investigated electrochemically by performing potentiodynamic and potentiostatic runs. These experiments were conducted using a Pine Instruments analytical rotator and a Potentiostat/Galvanostat (EG & G Princeton Applied Research, Model 273). In these experiments, the anode (working electrode) was copper, mechanically polished to a less than about 1 micron level before each experiment, in the form of disks (about 11.2, 7.61, or 5 mm diameter). The cathode was a platinum mesh, separated from the main cell component by a glass frit. The rotation rate was mostly 400 rpm (100-2000 rpm rates were also tested). The experiments were performed at room temperature (about 21° C.±about 1° C.), on about 100 ml of test solution having potential usefulness for e-CMP.
After performing the above experimental procedure with numerous different chemical compositions and mixtures, several showed strong inhibition over a substantial potential range. Compositions that may have usefulness in this regard are described below. Notably, in mixing procedures described below involving the mixing of an acid (such as HEDP) with a base (such as concentrated ammonium hydroxide), similar results may be obtained by mixing acid and optionally neutral salts of the acid in question at the appropriate stoichiometry, as can be readily determined by persons having ordinary skill in the art. In this regard, a mixing procedure starting from acid salts may be preferred as it generally generates much less heat.
Compositions Based on Aqueous Phosphoric Acid (67-95 wt % HPO4)
Phosphoric acid has been shown to be useful in the electropolishing of copper. Our experiments showed that an inhibiting layer seems to be formed even in the absence of additives, but it tends to allow relatively high current density—about 25 mA/cm2 when rotating the sample at about 400 rpm—in the limiting current density region. In this regard, see
1.) Combinations of phosphoric acid and anionic surfactants such as long-chain alkylsulfonates and alkylsulfates. Examples of anionic surfactants that can be used include those with alkyl chains having 4-16 carbon atoms, such as, for example, sodium nonanesulfonate (C9S), which was mentioned above. For example, typical useful concentrations for alkylsulfonates are about 0.5 g/l to about 5 g/l for sodium nonanesulfonate, about 1 g/l to about 10 g/l for sodium butanesulfonate, and about 0.2 g/l to about 2 g/l of sodium dodecylsulfate. In this regard, see
1a.) Combinations of phosphoric acid and cationic surfactants such as cetyltrimethyl hydrogen sulfate (CTHS). A solution of about 0.2 g/l of CTHS in 85% H3PO4 shows a narrow range inhibition and postponement of oxygen evolution similar to that of the alkylsulfonate solutions mentioned above.
2.) Combinations of phosphoric acid and an N-alkylimidazole with an alkyl group having from 1 to 8 carbon atoms, such as N-methylimidazole (NMI). Volumetric ratios of 85% H3PO4 to NMI can, for example, range from about 20:1 to about 5:4, where NMI is slowly added to H3PO4 with cooling and vigorous stirring. In this regard, substantial inhibition may be seen only with NMI to H3PO4 ratios of about 1:5 or greater, which, in part, may be due to the increased viscosity of the medium.
3.) Combinations of phosphoric acid, an N-alkylimidazole with an alkyl group having from 1 to 8 carbon atoms, such as NMI, and a non-ionic surfactant such as poly(ethylene glycol) (PEG). PEG with an average molecular weight of about 8000 can, for example, be used. Useful concentrations of 85% H3PO4 relative to NMI can, for example, range from about 5:1 to about 5:4 (v/v). PEG can be present, for example, from about 1 g/l to about 10 g/l.
4.) Combinations of phosphoric acid, an N-alkylimidazole with an alkyl group having from 1 to 8 carbon atoms, such as NMI, and benzotriazole (BTA). Concentrations of BTA in the about 0.5 g/l to about 5 g/l range can be used. While the effect of BTA can be expected to be small in pure H3PO4 (85%), addition of NMI (at least up to about 5:4 v/v), should increase its effectiveness, presumably due to the increase in pH.
In addition, near-neutral or slightly basic combinations of phosphoric acid with potassium, sodium and/or ammonium hydroxide and BTA or a BTA derivative can be used and show substantial inhibition. For example, compositions based on phosphoric acid and potassium hydroxide can be generated out of KH2PO4 and KOH or KH2PO4 and K2HPO4 (e.g. about 350 g of KH2PO4, about 118 g of KOH, and about 525 ml of water) to give a pH of about 7.8. BTA can be added to give concentrations of about 0.1-0.5 g/l. The optional use of mixed potassium, sodium and/or ammonium acid phosphates can generate higher concentrations of solids and higher viscosities, but limits BTA solubility to the lower end of the range. However, the addition of inhibitors such as BTA and derivatives of BTA in the form of relatively concentrated solutions in a polar organic solvent miscible with water, such as glycerol or propylene glycol, generally makes it easier to form homogeneous solutions of high solid concentrations and viscosities combined with a useful inhibitor concentration. High viscosity increases the solution resistivity, which in turn is helpful in minimizing the so-called “terminal effect”, whereby the current density is substantially higher near the contact than elsewhere.
For example, a nearly saturated pH 9.05 phosphate solution, 5M in K2HPO4, 0.73M in Na2HPO4, and 0.6M in KH2PO4 did not dissolve an appreciable amount of BTA or 5-amino-BTA because of salting out. However, after mixing it in a ratio of 4:1 (w/w) with a 0.12% solution of 5-amino-BTA in glycerol, a homogeneous solution of about 0.3 g/l 5-amino-BTA, which is a useful inhibiting concentration, and increased viscosity was obtained. The sodium salt can be omitted and replaced in part by the similar potassium or ammonium salt with similar results.
Compositions Based on 1-hydroxyethane-1,1-diphosphonic Acid (HEDP) (as 60 wt % Aqueous Solution)
Recent studies have suggested that HEDP (also known as etidronic acid) may to be more effective in the planarization of copper than phosphoric acid. In this regard, see, for example, J. Huo, et al., J. Appl. Electrochem., 43, 305 (2004), the entire disclosure of which is incorporated herein by reference. In this regard, potentiodynamic curves of copper in HEDP tend to be quite similar to those in phosphoric acid and our experiments have indicated that additives that inhibited copper dissolution in phosphoric acid were found to work similarly, or better, in HEDP. High concentrations of HEDP (50-70%) are generally preferable as they tend to yield a smoother electropolished surface (the commercial 60% solution was used in our experiments). Combinations comprising these additives include:
1.) Combinations of HEDP and anionic surfactants, such as sodium nonanesulfonate (C9S). The concentrations of alkylsulfonates are the same as for phosphoric acid solution above. In this regard, see
2.) Combinations of HEDP (about 50% to about 68%) and benzotriazole (BTA) (1-10 g/l). In this regard, see
3.) Combinations of HEDP and an N-alkylimidazole with an alkyl group having from 1 to 8 carbon atoms, such as NMI, having a pH in the range of about 2 to about 6. Such combinations may be made by slowly titrating the concentrated HEDP (60%) with pure or 80-90% (aqueous) NMI, with cooling and stirring, to the desired pH, adding a minimal amount of water to dissolve any precipitate. Typical 60% HEDP/NMI ratios are about 3:2 or about 5:4 (v/v). In this regard, see
In addition, several HEDP-based mixtures with neutral or slightly basic pH were prepared. These include:
1.) Combinations of 60% HEDP and concentrated (26-30% NH3) ammonium hydroxide, having a pH in the range of about 7.3 to about 7.8. In making such combinations, ammonium hydroxide was added slowly with cooling and stirring until the desired pH was reached. If a precipitate was formed, only a small amount of water (<10% of the total volume) was needed to dissolve it.
2.) Combinations of 60% HEDP, concentrated ammonium hydroxide, and about 1-2 g/l of BTA. In this regard, see
3.) Combinations of 60% HEDP and concentrated potassium hydroxide, having a pH in the range of about 6 to about 6.3 or in the range of about 7.3 to about 7.8. These solutions were obtained by slowly adding a ˜40% KOH solution to 60% HEDP with stirring and cooling until the right pH is reached. In this regard, see
4.) Combinations of HEDP and potassium hydroxide as above with the addition of 0.25-1 g/l of BTA. In this regard, see
5.) Combinations of HEDP and potassium hydroxide having a pH of about 7.8 prepared as above, with the addition of about 0.05 g/l to about 0.2 g/l of 5-aminobenzotriazole (5-amino-BTA). 5-amino-BTA in this medium at greater than or equal to about 0.1 g/l was found to be a more effective inhibitor (wider potential range) than BTA at about 1 g/l.
6.) Combinations of HEDP and potassium hydroxide having a pH of about 7.8 or about 5.75, prepared as above, with the addition of about 2 g/l to about 6 g/l of benzotriazole-5-carboxylic acid (BTA-5-COOH). BTA-5-COOH having a pH of about 7.8 at about 2 g/l was found to be a weaker inhibitor than about 1 g/l BTA, but at about 6 g/l it was found to be slightly stronger than about 1 g/l BTA. At a pH of about 5.75, BTA-5-COOH shows very slight inhibitory activity.
With regard to the above slightly basic compositions, all else being equal, a composition comprising a non-volatile base such as potassium hydroxide or sodium hydroxide or a low volatility base such as ethanolamine may be preferable to a composition containing a volatile base such as ammonia, when factors such as process control and work environment are considered. It should also be noted that, even though the example compositions given above are highly concentrated (typically 30-50% solids), planarization can also be obtained with more dilute solutions in the range of about 5% to about 30% solids as long as active inhibitors such as BTA or BTA derivatives are present.
Compositions Based on Aqueous Phytic Acid (50%) with Added Alkylsulfonates and BTA.
Phytic acid (myo-inositol hexakis(dihydrogen phosphate) has been suggested as being a useful corrosion inhibitor for copper. For example, see N. Takenori, et al., Journal of the Japan Copper and Brass Research Association, vol. 25, pp. 21-28 (1986), the entire disclosure of which is incorporated herein by reference. A potentially useful combination using this medium includes concentrated solutions of phytic acid (e.g. 50-60%), with added alkylsulfonate and BTA. In this regard, see
As discussed above, electrochemical dissolution of copper can lead to roughening and/or pitting of a surface, or to its smoothing. In order to prevent roughening, it is desirable to operate under mass transport control. Accordingly, at constant current, the planarization effectiveness of various solutions can be expected to depend on the amount of copper dissolved before the copper anode potential reaches values typical of mass transport control. In the absence of agitation, which is an extreme condition that applies to the bottom of a high aspect ratio trench, it was found that the most viscous mixtures, for example, combinations of HEDP and NMI, were also the ones that reached this particular transition time the fastest. These mixtures also exhibited electropolishing without significant roughening effects.
To demonstrate planarization on a bench-top scale, a special tool was built, which is shown schematically in
This tool makes the electropolishing of wafer fragments under controlled “downforce” possible, while performing electrochemical measurements. In this tool, the downforce is supplied by a set of springs. Copper-plated samples, cut to dimensions of about 4 cm by about 4 cm from 200 mm wafers, included special test patterns. These patterns included groups of trenches of varying widths, ranging from about 0.14 microns to about 100 microns, with or without “cheesing” (i.e., interspersing small metal and dielectric areas in a larger feature, a practice that has as one result the reduction of dishing of large features during CMP). In this regard, see
In experiments performed using this tool, the average copper overburden was about 650 nm. Resistivity measurements using a four point probe indicated that, between about 150 nm and about 400 nm of copper was removed.
The state of a sample surface before and after each experiment was assessed by profilometry. The “planarization factor” (PF), which quantifies the efficiency of the process, was defined as the ratio s/λ, which compares the decrease in average step height, s (i.e., s1−s2, where s1 and s2 are shown as 515 and 516 in
High planarization factors were obtained by using either of two solution compositions, herein designated as Composition A and Composition B. Composition A comprised a combination of HEDP (60%), ammonium hydroxide (about 28% ammonia), and BTA (1-2 g/l), having a pH of about 7.7. Composition B comprised a combination of HEDP (60%), potassium hydroxide solution (8M), and BTA (1 g/l), having a pH of about 7.8. The pad used in combination with each of these compositions was a fixed abrasive pad, MWR66, made by 3M. This pad is illustrated schematically in
In performing the experiments, the pad was cut into the shape shown in
Planarization results using two samples of Composition A are shown in
Similar experiments were carried out using Composition B. These experiments were conducted with a downward force of about 2.5 psi, a rotation rate of about 100 rpm, and a current density of about 18 mA/cm2. Under these conditions, the average removal rate was about 250 nm/min. Starting with overburden recesses 590 nm deep, about 370 nm were removed in about 90 seconds while reducing the recesses (also known in CMP parlance as “dishing”) by about 400 nm, to about 190 nm, for a planarization factor of about 1. In a second case, starting with recesses about 410 nm deep, about 270 nm were removed in about 60 seconds while reducing the recesses by about 270 nm, to about 140 nm, i.e. PF=1. After a total of about 120 seconds, a total of about 500 nm were removed and recesses were reduced by a total of about 360 nm, to about 50 nm, i.e. PF=0.72 overall.
Using the same medium as in Composition B but replacing the about 0.5 g/l BTA with about 0.2 g/l of 5-amino-BTA, and under the same experimental conditions as in the previous two cases, about 560 nm recesses were reduced to about 170 nm in about 90 seconds while removing an average of about 540 nm, i.e. PF=(560−170)/540=0.72.
Using the same medium as in Composition B but replacing the BTA with about 6 g/l of BTA-5-COOH, and under the same experimental conditions as above, about 600 nm recesses were reduced to about 550 nm in about 65 seconds while removing an average of about 300 nm, i.e. PF=50/300=0.17.
Phosphate-based solutions with added inhibitors can be used as well. Thus, a composition based on phosphoric acid and potassium hydroxide was generated out of KH2PO4 and KOH (about 350 g of KH2PO4, about 118 g of KOH, and about 525 ml of water) to give a pH of about 7.8. BTA was added (about 0.33 g) to give a concentration of about 0.5 g/l. Using the same experimental conditions as above, about 600 nm recesses were reduced to about 300 nm in about 65 seconds while removing an average of about 300 nm, i.e. PF˜1.
The samples obtained in the examples described above are not perfectly polished. The substantial roughness that remains is at least in part due to shortcomings of the experimental setup (stationary pad/cathode assembly, details of pad structure) that can be overcome quite easily. To further improve the surface finish, a moderate increase in viscosity of the solutions can be expected to help, and such can also be achieved by replacing some of the components with others that increase viscosity; e.g., a mixed water-glycerol medium can be used, and/or some of the KOH or ammonia in the composition can be replaced by NMI or ethanolamine, etc.
While in the above performed examples, between about 1000 Angstroms and about 8000 Angstroms of copper were removed, there is no problem in applying the technique to thicker copper or thinner copper, the challenge being the achievement of full planarization (s2=0) while polishing away a minimal thickness of copper. As the above examples show, PF values ranging from slightly above 0, such as about 0.17, to about 1 can be achieved.