The technology relates to edge-emitting laser diodes, such as edge-emitting III-nitride laser diodes.
Conventional edge-emitting semiconductor lasers typically implement a separate confinement heterostructure (SCH). In this structure, an optical waveguide structure may comprise an active junction sandwiched between a top cladding layer and a bottom cladding layer. The cladding layers typically have a lower refractive index so an optical mode can be spatially confined within the waveguide structure. End mirrors or reflective semiconductor/air facets may provide additional optical confinement in a longitudinal direction (e.g., along the direction of laser emission), and may define a laser cavity. The waveguide structure may include an active region, usually multiple quantum wells, sandwiched between p-type and n-type semiconductor layers having a larger bandgap. The p-type and n-type layers help electrically and optically confine the stimulated emission within the active region. Both the optical confinement and the electrical confinement are needed for efficient lasing in the semiconductor structure.
In such a semiconductor laser design, lasing criterion is met if the round-trip optical gain (gmodal) exceeds the round-trip absorption (αi) and mirror losses (αm) in the laser cavity. The optical gain (gmodal) is proportional to the product of material gain (gmat) and a confinement factor (Γ). The confinement factor represents a measure of the degree of transverse spatial overlap of the square of the amplitude of the electric field between the laser's active region (where population inversion takes place) and the laterally-confined optical mode. For higher lasing efficiency, it is desirable to increase the confinement factor.
The inventors have conceived and developed methods and structures for making III-nitride edge-emitting laser diodes with a lattice-matched nanoporous n+-type cladding layer. A highly-doped n+-GaN cladding layer may be epitaxially grown as part of the laser diode structure. The structure may further comprise InGaN/GaN multiple quantum wells sandwiched between n-type GaN and p-type GaN semiconductor layers. The n+-doped GaN layer is later selectively porosified by an electrochemical etching method, after which the material's refractive index significantly lowers while the layer remains highly conductive. The electrochemical porosification process creates an n-side (bottom-side) cladding layer with a high index contrast compared to an adjacent n-type GaN layer of the laser structure. Further, the porous cladding layer is both highly conductive and lattice matched with the adjacent layer. The matched lattice prevents material stress that might otherwise be present for other semiconductor laser diode structures having a high index contrast.
A transparent conductive oxide, such as indium tin oxide (ITO), may be subsequently deposited on top of the laser diode structure as the p-side cladding layer. The large index contrasts on both n and p sides can increase the optical confinement factor by more than a factor of two compared to conventional nitride laser diode structures that use AlGaN as cladding layers, for example. Moreover, the high-index contrast design can reduce the thickness of the p-type layers and possibly eliminate the AlGaN claddings on both sides of the laser diode's active region. Together with more conductive cladding layers, compared to the case of AlGaN, the overall diode resistance may be significantly reduced, which can further enhance the laser diode's performance (e.g., increase an operating speed and reduce ohmic heating losses).
Some embodiments relate to a semiconductor laser diode comprising an active region formed on a substrate and arranged for edge emission of a laser beam and a porous cladding layer formed between the substrate and the active region. In some aspects, a difference in a first refractive index value for the active region and a second refractive index value for the porous cladding layer is greater than 0.1. In some implementations, the porous cladding layer comprises n-doped GaN.
According to some aspects, a doping density of the porous cladding layer is between 1×1018 cm−3 and 1×1019 cm−3. A semiconductor laser diode may further comprise an n-type GaN layer having a doping level between 1×1018 cm−3 and 5×1018 cm−3 located between the porous cladding layer and the substrate. In some implementations, a porosity of the porous cladding layer is between 30% and 60%. In some implementations, an average pore diameter for the porous cladding layer is between 10 nm and 100 nm. A thickness of the porous cladding layer may be between 200 nm and 500 nm.
According to some implementations, the active region of a semiconductor laser diode comprises multiple-quantum wells. A semiconductor laser diode may further comprise a conductive oxide cladding layer formed on a side of the active region opposite the porous cladding layer. A semiconductor laser diode may have a one-dimensional optical confinement factor (Γ1D) between 4% and 10%. In some implementations, the conductive oxide cladding layer comprises indium tin oxide. According to some implementations, a semiconductor laser diode may be incorporated as an optical source for a light that can be used in commercial or residential settings.
Some embodiments relate to a method for making a semiconductor laser diode. A method may comprise acts of forming an n+-doped GaN layer on a substrate; forming an active junction for and edge-emitting semiconductor laser diode adjacent to the n+-doped GaN layer; etching trenches through the active junction to expose a surface of the n+-doped GaN layer; and subsequently wet etching the n+-doped GaN layer to convert the n+-doped GaN layer to a porous cladding layer.
In some cases, a method may further comprise forming a conductive oxide cladding layer adjacent to the active junction. According to some implementations, a method may further comprise forming an n-type current spreading layer adjacent to the n+-doped GaN layer, wherein a doping concentration of the n-type current spreading layer is between 1×1018 cm−3 and 5×1018 cm−3.
In some aspects, forming an active junction comprises depositing n-type GaN, multiple quantum wells, and p-type GaN by epitaxy. In some implementations, the wet etching is performed after forming the active junction. According to some aspects, the wet etching comprises electrochemical etching that laterally porosifies the n+-doped GaN layer and does not require photo-assisted etching. The wet etching may use nitric acid as an electrolyte to porosify the n+-doped GaN layer. In some cases, the wet etching may use hydrofluoric acid as an electrolyte to porosify the n+-doped GaN layer. According to some implementations, the n+-doped GaN layer may have a doping concentration between 5×1018 cm−3 and 2×1020 cm−3.
The foregoing apparatus and method embodiments may be included in any suitable combination with aspects, features, and acts described above or in further detail below. These and other aspects, embodiments, and features of the present teachings can be more fully understood from the following description in conjunction with the accompanying drawings.
The skilled artisan will understand that the figures, described herein, are for illustration purposes only. It is to be understood that in some instances various aspects of the embodiments may be shown exaggerated or enlarged to facilitate an understanding of the embodiments. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the teachings. In the drawings, like reference characters generally refer to like features, functionally similar and/or structurally similar elements throughout the various figures. Where the drawings relate to microfabricated devices, only one device may be shown to simplify the drawings. In practice, a large number of devices may be fabricated in parallel across a large area of a substrate or entire substrate. Additionally, a depicted device may be integrated within a larger circuit.
When referring to the drawings in the following detailed description, spatial references “top,” “bottom,” “upper,” “lower,” “vertical,” “horizontal,” and the like may be used. Such references are used for teaching purposes, and are not intended as absolute references for embodied devices. An embodied device may be oriented spatially in any suitable manner that may be different from the orientations shown in the drawings. The drawings are not intended to limit the scope of the present teachings in any way.
according to some embodiments;
Features and advantages of the illustrated embodiments will become more apparent from the detailed description set forth below when taken in conjunction with the drawings.
The inventors have recognized and appreciated that conventional III-nitride edge-emitting laser diodes, as well as edge-emitting laser diodes fabricated in other semiconductor materials (e.g., GaAs, InP, etc.), have solid semiconductor cladding layers (e.g., formed of AlGaN for a III-nitride system) that limit the refractive index contrast between the active region and cladding layers of the laser diodes. This limit in refractive index contrast means that the optical mode for the laser is often not well confined and spatially does not match well to the diode's active region (the region where stimulated emission occurs). As a result, the inventors have recognized and appreciated that the diode's efficiency is not as high as it could be.
For example, III-nitride semiconductor laser diodes may comprise an SCH structure, like that of GaAs laser diodes. III-nitride laser diode structures may be grown on a GaN substrate or on a GaN template such as sapphire. AlGaN alloys (which have lower refractive index than GaN) may be grown in an epitaxial structure as the cladding layers, as depicted in
To improve the optical confinement in the active region for a III-nitride laser, higher index contrast (Δn=nactiveregion−ncladding) is preferred between the active region and cladding. Since the refractive index of AlGaN decreases with increasing Al ratio, higher Al ratio in the AlGaN cladding layer is needed for higher index contrast (Δn=nGaN×nAlGaN). Preferably, Δn needs to be at least 0.05. However, because of the lattice size decrease with increasing Al ratio in the AlGaN ternary crystal, the increasing lattice mismatch of the AlGaN epitaxial layer to the GaN layer induces increasing tensile strain on GaN. Excessive buildup of such strain can lead to numerous problems including macroscopic epitaxial structure bowing and cracking, and microscopic creation of misfit dislocations and V-shaped morphological defects when grown past a certain (critical) thickness. All these problems can be detrimental to the performance and reliability of the laser diode.
In practice, conventional Al compositions of AlGaN cladding layers have been in a range from 5% to 20% in UV, blue, and green laser diodes. This range of values produces a Δn of roughly 0.02 to 0.08 for AlGaN-cladded III-nitride laser diodes, which only marginally fulfills requirement for refractive index contrast. Because of the low index contrast, the optical confinement factor is only around 2% to 3% for III-nitride diode lasers, even with active regions increased to several hundreds of nanometers thick and cladding layers that are several microns thick. For reference, a one-dimensional confinement factor (Γ1D), for purposes of calculations and numerical results described below, may be expressed as:
where E(x) is the electric field amplitude for the optical mode in the x-direction. The mode confinement is roughly depicted as a dashed ellipse in
A low transverse optical mode confinement in the x direction in
To reduce the effect of the parasitic waveguide, the thickness of the cladding layer may be made sufficiently larger than the lateral expanse of the guided wave to reduce mode loss into the parasitic waveguide. For example, a group from Nichia Chemical reports using a very thick (5 μm thick) Al0.05Ga0.095N:Si bottom-side cladding layer. Osram OS reports suppression of substrate modes by increasing the thickness of the bottom-side cladding layer to 2 μm. To grow such thick AlGaN cladding layers without cracking, superlattice structures are needed that can better resist cracking for thicker layers. However, even with the complexity of these diode designs and superlattice epitaxy, the optical confinement factor remains below about 5%.
The inventors have also recognized and appreciated that an additional problem with AlGaN cladding is its conductivity, and also the conductivity for thick p-type doped GaN layers. Due to a deep level of Mg acceptor and low hole mobility in GaN, p-type GaN is of two orders of magnitude more resistive than Si-doped n-type GaN and still remains a bottleneck for III-nitride solid-state lighting. It has been reported that doping AlGaN with Mg is even less efficient than GaN, due to a difficulty in doping AlGaN. Thick cladding layers, required by low index contrast, and high resistivity will make the overall laser diode a more highly resistive electronic structure and less efficient, since a portion of the electrical current will be lost in ohmic heating of the resistive layers. The inventors have recognized and appreciated that AlGaN cladding layers in III-nitride lasers can adversely limit both optical confinement and electrical efficiency of a III-nitride laser diode.
To overcome limitations of solid AlGaN cladding layers, the inventors have conceived and developed methods and structures for forming porous cladding layers in III-nitride, edge-emitting laser diodes. The porous cladding layers can provide a high refractive index contrast and lower resistivity than conventional cladding layers. As a result, the porous layers can improve the confinement factor, the electrical efficiency, and overall emission efficiency of III-nitride, edge-emitting laser diodes. Porous cladding layers may also be used in edge-emitting laser diodes fabricated from other semiconductor materials. The inventors have also recognized and appreciated that efficient laser diodes may be useful high-intensity light sources instead of light-emitting-diodes (LEDs), because laser diodes emit light via stimulated emission which can avoid a phenomenon of “efficiency droop” that hampers performance of LEDs that emit light via spontaneous emission. Fabrication of an edge-emitting III-nitride laser diode with a nanoporous cladding layer will now be described.
According to some embodiments, a multi-layered semiconductor structure, as depicted in
To electrochemically etch the n+-GaN layer, trenches may be etched into the epitaxial layers depicted in
To form trenches, an oxide layer (e.g., SiO2) may be deposited by plasma-enhanced chemical vapor deposition (PECVD) or any other suitable process over the stack. Other hard mask layer materials may be used in some embodiments. A pattern for the laser cavity may be transferred to the oxide layer using standard photolithography and wet or dry etching to create a hard mask 230, as depicted in
After the trenches 235 are formed, electrochemical (EC) etching may be performed to form a nanoporous n+-GaN cladding layer 213, as depicted in
In other embodiments, other electrolytes may be used to porosify the n+-GaN cladding layer 212. Other electrolytes include, but are not limited to, concentrated hydrofluoric acid, hydrochloric acid, sulfuric acid, and oxalic acid. Etchant concentrations, GaN doping, and bias voltages may be different for these etchants.
In some embodiments, a transparent conductive oxide (TCO) may be deposited to form a p-type cladding layer 410, as depicted in
The use of porous GaN and a TCO can eliminate the need for AlGaN cladding layers in a III-nitride laser diode structure. A porous GaN cladding layer may have several advantages over AlGaN cladding layers, as noted above. For example, a porous GaN layer can allow a high index contrast between the laser diode's active region 216 and porous cladding layer compared to a Δn of only about 0.02˜0.08 when using AlGaN cladding. In some embodiments, the index contrast may be greater than about 0.5 (Δn≥0.5). In some implementations, Δn≥0.2. In some implementations, Δn≥0.1. Additionally, the porosified n+-GaN layer is lattice matched to the adjacent layer, so that no significant material stress accumulates in the structure during epitaxial growth of the layers. Additionally, the porous n+-GaN layer can exhibit a lower resistivity than conventional AlGaN cladding layers.
Analytical calculations were carried out to study the effect of cladding layer porosity on optical confinement, and to compare mode confinement against conventional devices with AlGaN cladding layers. Numerical results from these calculations are plotted in
In terms of resistivity, the inventors have found through measurements that resistivity of nanoporous GaN scales monotonically with the porosity. After EC etching, the porous layer 213 may still have a doping concentration between about 1×1018 cm−3 and about 1×1019 cm−3. Since the n+-GaN cladding layer may be initially doped above 5×1019 cm−3 before porosification, even with a porosity of 40% the carrier concentration level of the nanoporous layer remains above 2×1018 cm−3. Such a high carrier concentration yields a negligible resistivity for the porous GaN cladding (compared to conventional n-AlGaN cladding), while the index contrast Δn can be tuned to as high as 0.5. In some implementations, the porosity of the n+-GaN cladding layer 213 is controlled via EC etching to be between about 30% and about 60%.
With a high index contrast between the n-GaN semiconductor layer 214 and the porous cladding layer 213, it is desirable to include a low index material as a p-type cladding layer to achieve a symmetrical mode profile in the laser diode and improved optical performance. According to some embodiments, a transparent conductive oxide such as ITO with a high index contrast to GaN (Δn˜0.5) can be used to replace a highly resistive and low-Δn AlGaN p-type cladding. Although ITO has been proposed and used as a cladding layer for GaN laser diodes, its use without a porous bottom-side cladding layer can result in a highly asymmetric optical mode 610, as illustrated in
Numerical simulations were also carried out to plot the confinement factor Γ1D with varying index contrast and waveguide thickness. The results are depicted in the three-dimensional plot of
The use of a nanoporous, bottom-side or substrate-side cladding layer and conductive oxide top-side cladding layer can enable an index contrast of up to 0.5 on both sides of the laser-diode active region and yield a one-dimensional confinement factor greater than 9%, in some embodiments. The crosses near the top left of the graph show confinement factor values for different device structures that use nanoporous GaN and conductive oxide cladding layers. For these structures, the confinement factor has increased by more than a factor of two. In addition to better mode confinement, the preferred waveguide thickness is also reduced by more than a factor of two. The reduction in waveguide thickness, notably for the resistive p-type GaN waveguide layer, will lower the serial resistance of the laser diode and further improve the device performance.
Further details of EC etching are illustrated in
Within the nanoporous region 820, the inventors have found that the pore morphology can be controlled by the sample conductivity and the anodic bias. A higher doping level facilitates the formation of high curvature and smaller meso-pores, and the threshold bias of porosification is reduced accordingly. Tunability of pore morphology is illustrated in
Although the embodiments described above refer to electrically pumped laser diodes, the formation and use of porous cladding layers may be extended to optically-pumped, edge-emitting, semiconductor lasers or optical amplifiers. An optically-pumped device may be formed in the same way, although the top p-type GaN layer 220 may be replaced with a second n-type GaN layer 214, referring to
Nanoporous GaN cladding layers can be used to obtain high index contrast for cladding layers in edge-emitting III-nitride diode lasers, without problems of material stress and resistivity associated with AlGaN cladding layers. The nanoporous GaN cladding layers may be formed from layers grown using metal-organic epitaxial growth conditions, and may be formed in standard III-nitride epitaxial growth systems without significantly altering the growth processes. The porosification of a bottom-side cladding layer and deposition of a top-side TCO cladding layer may be performed after epitaxy, so that these acts will neither induce extra epitaxial constraints nor contribute to defect generation in the epitaxial layers. In some implementations, the fabrication steps may include conventional III-nitride device processes that can be applied in existing chip fabrication facilities. For example, electrochemical etching to form a porous III-nitride cladding layer can be an inexpensive and environmental-friendly technique. It may be conducted in existing chip fabrication facilities, and is compatible with high-volume production.
Numerical values and ranges may be given in the specification and claims as approximate values or exact values. For example, in some cases the terms “about,” “approximately,” and “substantially” may be used in reference to a value. Such references are intended to encompass the referenced value as well as plus and minus reasonable variations of the value. For example, a phrase “between about 10 and about 20” is intended to mean “between exactly 10 and exactly 20” in some embodiments, as well as “between 10±δ1 and 20±δ2” in some embodiments. The amount of variation δ1, δ2 for a value may be less than 5% of the value in some embodiments, less than 10% of the value in some embodiments, and yet less than 20% of the value in some embodiments. In embodiments where a large range of values is given, e.g., a range including two or more orders of magnitude, the amount of variation δ1, δ2 for a value could be 50%. For example, if an operable range extends from 2 to 200, “approximately 80” may encompass values between 40 and 120.
The technology described herein may be embodied as a method, of which at least some acts have been described. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than described, which may include performing some acts simultaneously, even though described as sequential acts in illustrative embodiments. Additionally, a method may include more acts than those described, in some embodiments, and fewer acts than those described in other embodiments.
Having thus described at least one illustrative embodiment of the invention, various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description is by way of example only and is not intended as limiting. The invention is limited only as defined in the following claims and the equivalents thereto.
This application is a national stage of PCT/US2016/033270, entitled “A Method and Device Concerning III-Nitride Edge Emitting Laser Diode of High Confinement Factor with Lattice Matched Cladding Layer” filed May 19, 2016, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 62/163,811, entitled “A Method and Device Concerning III-Nitride Edge Emitting Laser Diode of High Confinement Factor with Lattice Matched Cladding Layer” filed May 19, 2015. The contents of these applications are incorporated herein by reference in their entirety.
This invention was made with government support under grant No. W911NF-09-1-0514 awarded by the U. S. Army Research Office. The government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/033270 | 5/19/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/187421 | 11/24/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5262021 | Volker et al. | Nov 1993 | A |
5307361 | Kahen | Apr 1994 | A |
5502787 | Capasso | Mar 1996 | A |
5509026 | Sasaki et al. | Apr 1996 | A |
5644156 | Suzuki et al. | Jul 1997 | A |
5818861 | Tan et al. | Oct 1998 | A |
5919430 | Hasenzahl et al. | Jul 1999 | A |
6306672 | Kim | Oct 2001 | B1 |
6320206 | Coman et al. | Nov 2001 | B1 |
6537838 | Stockman | Mar 2003 | B2 |
6597017 | Seko et al. | Jul 2003 | B1 |
6597490 | Tayebati | Jul 2003 | B2 |
6759310 | Hiroshi | Jul 2004 | B2 |
6990132 | Kneissl et al. | Jan 2006 | B2 |
7271417 | Chen | Sep 2007 | B2 |
7750234 | Deng et al. | Jul 2010 | B2 |
7751455 | Kneissl | Jul 2010 | B2 |
7923275 | Nakagawa | Apr 2011 | B2 |
7989323 | Shenai-Khatkhate | Aug 2011 | B2 |
8343788 | Kuo et al. | Jan 2013 | B2 |
8344409 | Peng et al. | Jan 2013 | B2 |
8497171 | Wu et al. | Jul 2013 | B1 |
8507925 | Kuo et al. | Aug 2013 | B2 |
8519430 | Peng et al. | Aug 2013 | B2 |
9206524 | Zhang et al. | Dec 2015 | B2 |
9356187 | Ryu et al. | May 2016 | B2 |
9583353 | Han | Feb 2017 | B2 |
20020036295 | Nunoue et al. | Mar 2002 | A1 |
20020070125 | Ng et al. | Jun 2002 | A1 |
20020075929 | Cunningham | Jun 2002 | A1 |
20020153595 | Tayanaka | Oct 2002 | A1 |
20020158265 | Eisenbeiser | Oct 2002 | A1 |
20030178633 | Flynn et al. | Sep 2003 | A1 |
20030189963 | Deppe et al. | Oct 2003 | A1 |
20040021147 | Ishibashi et al. | Feb 2004 | A1 |
20040104398 | Hon et al. | Jun 2004 | A1 |
20050029224 | Aspar et al. | Feb 2005 | A1 |
20050184307 | Li et al. | Aug 2005 | A1 |
20050224816 | Kim et al. | Oct 2005 | A1 |
20050242365 | Yoo | Nov 2005 | A1 |
20060046513 | Shea et al. | Mar 2006 | A1 |
20060110926 | Hu et al. | May 2006 | A1 |
20060199353 | Kub et al. | Sep 2006 | A1 |
20070007241 | DeLouise | Jan 2007 | A1 |
20070040162 | Song | Feb 2007 | A1 |
20070085100 | Diana et al. | Apr 2007 | A1 |
20070111345 | Wong et al. | May 2007 | A1 |
20070194330 | Ibbetson et al. | Aug 2007 | A1 |
20070284607 | Epler et al. | Dec 2007 | A1 |
20080029773 | Jorgenson | Feb 2008 | A1 |
20080067532 | Watson et al. | Mar 2008 | A1 |
20080179605 | Takase et al. | Jul 2008 | A1 |
20080280140 | Ferrari et al. | Nov 2008 | A1 |
20080285610 | Hall et al. | Nov 2008 | A1 |
20080296173 | Mishra | Dec 2008 | A1 |
20080298419 | Hori et al. | Dec 2008 | A1 |
20090001416 | Chua et al. | Jan 2009 | A1 |
20090117675 | Yamanaka et al. | May 2009 | A1 |
20090140274 | Wierer, Jr. et al. | Jun 2009 | A1 |
20090143227 | Dubrow et al. | Jun 2009 | A1 |
20090168819 | Otoma | Jul 2009 | A1 |
20090173373 | Walukiewicz et al. | Jul 2009 | A1 |
20100195689 | Ariga et al. | Aug 2010 | A1 |
20100246625 | Kawashima | Sep 2010 | A1 |
20100270649 | Ishibashi et al. | Oct 2010 | A1 |
20100317132 | Rogers et al. | Dec 2010 | A1 |
20110076854 | Takeo et al. | Mar 2011 | A1 |
20110101391 | Mild et al. | May 2011 | A1 |
20110188528 | Kisin | Aug 2011 | A1 |
20120018753 | Hao et al. | Jan 2012 | A1 |
20120025231 | Krames et al. | Feb 2012 | A1 |
20120068214 | Kuo et al. | Mar 2012 | A1 |
20120189030 | Miyoshi | Jul 2012 | A1 |
20120205665 | Nam | Aug 2012 | A1 |
20130011656 | Zhang | Jan 2013 | A1 |
20130050686 | Wunderer et al. | Feb 2013 | A1 |
20130134457 | Peng et al. | May 2013 | A1 |
20130140517 | Tang et al. | Jun 2013 | A1 |
20130210180 | Wang | Aug 2013 | A1 |
20130248911 | Hwang et al. | Sep 2013 | A1 |
20130328102 | Peng et al. | Dec 2013 | A1 |
20130334555 | Hsieh et al. | Dec 2013 | A1 |
20140003458 | Han | Jan 2014 | A1 |
20140048830 | Kuo et al. | Feb 2014 | A1 |
20140064313 | Sato et al. | Mar 2014 | A1 |
20140191369 | Tsuchiya et al. | Jul 2014 | A1 |
20140339566 | Seo et al. | Nov 2014 | A1 |
20150303655 | Han et al. | Oct 2015 | A1 |
20160153113 | Zhang et al. | Jun 2016 | A1 |
20160197151 | Han et al. | Jul 2016 | A1 |
20170133826 | Han | May 2017 | A1 |
20170237234 | Han et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
101443887 | May 2009 | CN |
102782818 | Nov 2012 | CN |
103762286 | Apr 2014 | CN |
H05-315316 | Nov 1993 | JP |
H10-135500 | May 1998 | JP |
H11-195562 | Jul 1999 | JP |
2000-349267 | Dec 2000 | JP |
2001-223165 | Aug 2001 | JP |
2004-055611 | Feb 2004 | JP |
2005-244089 | Sep 2005 | JP |
2007-073945 | Mar 2007 | JP |
2007-518075 | Jul 2007 | JP |
2007-335879 | Dec 2007 | JP |
2009-055056 | Mar 2009 | JP |
2009-067658 | Apr 2009 | JP |
2009-231833 | Oct 2009 | JP |
2009-239034 | Oct 2009 | JP |
2010-218510 | Sep 2010 | JP |
2000-0038997 | Jul 2000 | KR |
10-0480764 | Jun 2005 | KR |
WO 2005066612 | Jul 2005 | WO |
WO 2009048265 | Apr 2009 | WO |
WO 2011094391 | Aug 2011 | WO |
WO 2013050686 | Apr 2013 | WO |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2013/046852, dated Oct. 29, 2013. |
International Preliminary Report on Patentability for International Application No. PCT/US2013/046852, dated Jan. 8, 2015. |
Extended European Search Report for European Application No. 11737629.3, dated Oct. 12, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2011/022701, dated Apr. 8, 2011. |
International Preliminary Report on Patentability, dated Aug. 9, 2012 for Application No. PCT/US2011/022701. |
Extended European Search Report for European Application No. 15846362.0, dated Apr. 24, 2018. |
International Search Report and Written Opinion for International Application No. PCT/US2015/053254, dated Dec. 29, 2015. |
International Preliminary Report on Patentability for International Application No. PCT/US2015/053254, dated Apr. 13, 2017. |
Extended European Search Report for European Application No. 16797298.3, dated Dec. 3, 2018. |
International Search Report and Written Opinion for International Application No. PCT/US2016/033270, datedd Aug. 25, 2016. |
International Preliminary Report on Patentability for International Application No. PCT/US2016/033270, dated Nov. 30, 2017. |
Amano et al., P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Jpn J Appl Phys. 1989;28:L2112-4. |
Bernardini et al., Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B. 1997;56(16):R10024-7. |
Bour et al., AIGaInN MQW Laser Diodes. III-V Nitride Semiconductors Applications and Devices. E.T. Yu (Ed.). Taylor and Francis Books, Inc., New York, NY, vol. 16, Chapter 10. 2003. |
Bour et al., Design and performance of asymmetric waveguide nitride laser diodes. IEEE J Quantum Electron. 2000;36(2):184-191. doi: 10.1109/3.823464. |
Chen et al., Flexible, Compliant GaN Nanomembranes for Photonic Applications. 10th International Conference on Nitride Semiconductors. Abstract. Aug. 25, 2013. 2 pages. |
Chen et al., High reflectance membrane-based distributed Bragg reflectors for GaN photonics. Appl Phys Lett. 2012;101:221104. |
Chen, et al., Nanopores in GaN by electrochemical anodization in hydrofluoric acid: formation and mechanism. J. App. Phys. 2012;112:064303. |
Choquette et al., Selective Oxidation of Buried AIGaAs for Fabrication of Vertical-Cavity Lasers. Conference: Spring meeting of the Materials Research Society (MRS, San Francisco, CA, Apr. 8-12, 1996. OSTI 244633. Jun. 1996. 10 pages. |
Chung et al., Effect of Oxygen on the Activation of Mg Acceptor in GaN Epilayers Grown by Metalorganic Chemical Vapor Deposition. Jpn J Appl Phys. 2000;39(1,8):4749-50. |
Dorsaz et al., Selective oxidation of AllnN layers for current confinement in Ill-nitride devices. Appl Phys Lett. 2005;87:072102. |
Eiting et al., Growth of low resistivity p-type GaN by metal organic chemical vapour deposition. Electron Lett. Nov. 6, 1997;33(23):1987-1989. doi: 10.1049/e1.19971257. |
Gautier et al., Observations of Macroporous Gallium Nitride Electrochemically Etched from High Doped Single Crystal Wafers in HF Based Electrolytes. ECS J of Solid State Science and Technology. 2013;2(4):P146-P148. |
Higuchi et al., Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection. Appl Phys Express. 2008;1(12):121102. doi: 10.1143/APEX.1.121102. |
Holder et al., Demonstration of nonpolar GaN based vertical-cavity surface-emitting lasers. Proc SPIE. Mar. 13, 2013;8639:863906. doi: 10.1117/12.2008277. |
Jeon et al., Investigation of Mg doping in high-Al content p-type Al×Ga 1-x N (0.3<x<0.5). Appl Phys Lett. 2005;86:082107. doi: 10.1063/1.1867565. |
Jiang et al., Semiconductor lasers: Expanding into blue and green. Nat Photon. 2011;5:521-2. |
Kamiura et al., Photo-Enhanced Activation of Hydrogen-Passivated Magnesium in P-Type GaN Films. Jpn J Appl Phys. 1998;37(2,8B):L970-1. |
Kasahara et al., Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature. Appl Phys Express. 2011;4(7):072103. doi: 10.1143/APEX.4.072103. |
Kiefer et al., Si/Ge junctions formed by nanomembrane bonding. ACS Nano. Feb. 22, 2011;5(2):1179-89. doi: 10.1021/nn103149c. Epub Jan. 19, 2011 11 pages. |
Kim et al., Reactivation of Mg acceptor in Mg-doped GaN by nitrogen plasma treatment. Appl Phys Lett. May 22, 2000;76(21):3079-81. |
Kozodoy et al., Enhanced Mg doping efficiency in Al 0.2 Ga 0.8 N/GaN superlattices. Appl Phys Lett. 1999;74:3681. doi: 10.1063/1.123220. |
Krishnamoorthy et al., InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes. Appl Phys Lett. Jun. 10, 2014;105(14):141104. doi: 10.1063/1.4897342. 16 pages. |
Kurokawa et al., Multijunction GaInN-based solar cells using a tunnel junction. Appl Phys Express. Mar. 3, 2014;7(3):034104.1-4. |
Kuwano et al., Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions. Jpn J Appl Phys. Aug. 20, 2013;52(8S):08JK12.1-3. |
Laino et al., Substrate Modes of (Al,In)GaN Semiconductor Laser Diodes on SiC and GaN Substrates. IEEE J Quantum Electron. 2007:43(1):16-24. doi: 10.1109/JQE.2006.884769. |
Lin et al., Current steering effect of GaN nanoporous structure. Thin Solid Films. Nov. 2014;570(Part B):293-7. |
Lu et al., CW lasing of current injection blue GaN-based vertical cavity surface emitting laser. Appl Phys Lett. 2008;92:141102. |
Myers et al., Diffusion, release, and uptake of hydrogen in magnesium-doped gallium nitride: Theory and experiment. J Appl Phys. Mar. 15, 2001;89(6):3195-202. |
Nagahama et al., High-Power and Long-Lifetime InGaN Multi-Quantum-Well Laser Diodes Grown on Low-Dislocation-Density GaN Substrates. Jpn J Appl Phys. 2000;39, part 2(7a):L647. doi: 10.1143/JJAP.39.L647. |
Nakamura et al., Hole Compensation Mechanism of P-Type GaN Films. Jpn J Appl Phys. May 1992;31(1,5A):1258-66. |
Nakamura et al., The Blue Laser Diode: The Complete Story. Springer. 2000. pp. 24-28, 237-239. |
Nakayama et al., Electrical Transport Properties of p-GaN. Jpn J Appl Phys. 1996;35, Part 2(3A):L282. doi: 10.1143/JJAP.35.L282. |
Okamoto et al., Pure Blue Laser Diodes Based on Nonpolar m-Plane Gallium Nitride with InGaN Waveguiding Layers. Jpn J Appl Phys. 2007;46:L820. doi: 10.1143/JJAP.46.L820. |
Pandey et al., Formation of self-organized nanoporous anodic oxide from metallic gallium. Langmuir. 2012;28(38):13705-11. |
Park et al., Doping selective lateral electrochemical etching of GaN for chemical lift-off. Jun. 5, 2009. Applied Physics Letters. AIP Publishing LLC, US. vol. 94(22) pp. 221907-1-221907-3. |
Park et al., High Diffuse Reflectivity of Nanoporous GaN Distributed Bragg Reflector Formed by Electrochemical Etching. Applied Physics Express. Jun. 14, 2013;4;6(7):072201-1-4. |
Paskiewicz et al., Defect-free single-crystal SiGe: a new material from nanomembrane strain engineering. ACS Nano. Jul. 26, 2011;5(7):5814-22. doi: 10.1021/nn201547k. Epub Jun. 16, 2011. |
Piprek, Blue light emitting diode exceeding 100% quantum efficiency. Phys Status Solidi RRL. Feb. 4, 2014;8(5):424-6. doi: 10.1002/pssr.201409027. |
Piprek, Efficiency droop in nitride-based light-emitting diodes. Physica Status Solidi A. Oct. 2010;207(10):2217-25. |
Pourhashemi et al., High-power blue laser diodes with indium tin oxide cladding on semipolar (202−1−) GaN substrates. Appl Phys Lett. 2015;106:111105. |
Rogers et al., Synthesis, assembly and applications of semiconductor nanomembranes. Nature. Aug. 31, 2011;477(7362):45-53. doi: 10.1038/nature10381. |
Ruoyuan et al., Wet oxidation of AlGaAs/GaAs distributed Bragg reflectors. Chin J Semiconductors. Aug. 2005;26(8):1519-23. |
Sarzyński et al., Elimination of AlGaN epilayer cracking by spatially patterned AlN mask Appl Phys Lett. 2005;88:121124. |
Someya et al., Room temperature lasing at blue wavelengths in gallium nitride microcavities. Science. Sep. 7, 1999;285(5435):1905-6. |
Sundararajan et al., Gallium nitride: Method of defect characterization by wet oxidation in an oxalic acid electrolytic cell. J Vac Sci Tech B. Sep. 27, 2002;20(4):1339-41. |
Tanaka et al., p-type conduction in Mg-doped GaN and A10.08Ga0.92N grown by metalorganic vapor phase epitaxy. Appl Phys Lett. 1994;65:593. doi: 10.1063/1.112309. |
Todt et al., Oxidation kinetics and microstructure of wet-oxidized MBE-grown short-period AIGaAs superlattices. Mat Res Soc Symp Proc. 2002;692:561-6. |
Vajpeyi et al., High Optical Quality Nanoporous GaN Prepared by Photoelectrochemical Etching. Electrochemical and Solid-State Letters. 2005;8(4):G85-8. |
Waldrip et al., Stress engineering during metalorganic chemical vapor deposition of AIGaN/GaN distributed Bragg Reflectors. Appl Phys Lett. 2001;78:3205. |
Wierer et al., Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photonics Rev. Nov. 2013;7(6):963-93. |
Yam et al., Porous GaN prepared by UV assisted electrochemical etching. Thin Solid Films. Elsevier, Amsterdam, NL, Feb. 15, 2007; vol. 515(7-8), pp. 3469-3474. |
Yam et al., Structural and optical characteristics of porous GaN generated by electroless chemical etching. Mater Lett. 2008;63:724-7. |
Yerino et al., Shape transformation of nanoporous GaN by annealing: From buried cavities to nanomembranes. Appl Phys Lett. Jun. 2011;98(25):251910.1-3. doi: 10.1063/1.3601861. |
Zhang et al., A conductivity-based selective etching for next generation GaN devices. Physica Status Solidi B. Jul. 2010;247(7):1713-6. doi: 10.1002/pssb.200983650. |
Zhang et al., Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green. J Appl Phys. 2009;105:023104. |
Zhang et al., Mesoporous GaN for Photonic Engineering-Highly Reflective GaN Mirrors as an Example. ACS Photonics. 2015;2(7):980-6. |
Zheng et al., Synthesis of Ultra-Long and Highly Oriented Silicon Oxide Nanowires from Liquid Alloys. Adv Mater. Jan. 2002;14(2):122-4. |
Zhou et al., Near ultraviolet optically pumped vertical cavity laser. Electron Lett. 2000;36:1777-9. |
Number | Date | Country | |
---|---|---|---|
20180152003 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62163811 | May 2015 | US |