The U-shaped carrier body, which is installed in the reactor, may consist of monocrystalline, multicrystalline or polycrystalline silicon. The inert gas is preferably supplied through the supply line and the discharge line and then through the supply and discharge openings of the base plate, in which case a heat exchanger or a saturator may also be installed in the lines. Furthermore, the inert gas is preferably supplied into the deposition reactor's bell jar which is raised in order to extract the polysilicon rod. The inert gas is in this case preferably supplied through an upwardly directed nozzle swiveled into place. Nitrogen or a noble gas, such as argon or helium, is for example used as the inert gas. Nitrogen or argon are preferably used, most preferably nitrogen.
The method according to the invention protects the base plate as well as the supply and discharge lines of the deposition reactor against the ingress of environmental effects, in particular humidity, and removes halosilane residues, in particular trichlorosilane residues or polysilane residues from the supply and discharge lines. The formation of hydrogen halide, in particular hydrogen chloride, is therefore avoided and concomitant leaching of dopants, in particular phosphorus, from the material of the supply and discharge lines is avoided.
The method of the invention also leads to a reduced variation of the dopant level, in particular of phosphorus, from batch to batch, and makes it possible to produce a polycrystalline silicon rod which has a high electrical resistivity on the surface of the thin rod immediately after the start of deposition, compared with known polycrystalline silicon rods. This leads to a polycrystalline silicon rod which has a larger gradient of the radial profile of the electrical resistivity. The invention therefore also relates to a polycrystalline silicon rod, which has a gradient mρ of the radial profile of the electrical resistivity of at least 75 Ωcm/mm, preferably between 80 Ωcm/mm and 200 Ωcm/mm. Such polycrystalline silicon rods are most preferably produced by deposition from trichlorosilane.
The high electrical resistivity of the polycrystalline silicon rod is due to reduced dopant ingress, in particular of phosphorus, into the polysilicon at the start of the deposition process. The polycrystalline silicon crystal according to the invention is preferably suitable for the production of monocrystalline silicon, more preferably for the production of monocrystalline silicon according to the FZ method.
The invention furthermore relates to a device for carrying out the method according to the invention. Such a device is represented in
In order to carry out the method according to the invention by means of this device, the stop valves (7) and (8) for the waste gas (6) and the reaction gas (1) are closed before the deposition reactor is opened in order to remove the deposited rods of polycrystalline silicon which have been cooled to room temperature. The two delivery valves (9) and (10) for the inert gas are subsequently opened. The inert gas then flows simultaneously through the lines for the waste gas (6) and the reaction gas (1) through the supply opening (2) and the discharge opening (5) through the base plate (3) into the reactor (4). The inert gas flow rate to avoid backward diffusion in the supply line is preferably at least 0.5 m3/h, more preferably from 1 m3/h to 10 m3/h, depending on the line cross section being used. Correspondingly, the amount of inert gas in the discharge line is for the same reasons preferably at least 1 m3/h, more preferably from 3 m3/h to 10 m3/h.
The device according to the invention preferably furthermore comprises an inert gas outlet (13) directed vertically upward for the inert gas (12), consisting of one or more nozzles (“showerhead principle”), which can be regulated by means of a stop valve (12). The flow rate of the inert gas is in this case preferably at least 0.5 m3/h, more preferably from 3 m3/h to 10 m3/h.
When carrying out the method according to the invention by using a device according to
This method is continued without interruption until the deposited polycrystalline silicon has been fully removed from the deposition reactor, and thin rods and electrodes for the next deposition have been installed. Immediately before closing the reactor for the start of the next deposition, the device (13) for inert gas flushing of the bell jar (14) is removed, for example by unsuspending it or swiveling it away, and the inert gas valve (12) is closed. After the reactor has been closed by lowering the bell jar, the inert gas valves (9) and (10) are closed. The stop valves (7) and (8) for the waste gas (6) and the reactants (1) are reopened. The deposition reactor is now ready for the next deposition, which is carried out as known in the prior art.
The following examples serve to explain the invention further. The characterization of the polysilicon in respect of resistance and dopant concentration was respectively carried out according to the prior art. To this end, samples were taken from the polycrystalline silicon according to the standard SEMI MF 1723-1104 (23.10.2003) and were prepared by float zone (FZ) pulling. The resistance was determined according to standard SEMI MF 397-02 (22.10.2003) and the dopants were determined according to standard SEMI MF 1389-0704 (22.10.2003). Said standards are published by: Semiconductor Equipment and Materials International (SEMI®), San Jose, Calif. (USA).
The polycrystalline silicon was deposited as described in DE 1209113. Trichlorosilane was used as the silicon-containing component of the reaction gas. The supply and discharge lines as well as the bell jar were flushed with inert gas during the batch change, as can be seen in
The minimum resistivity of the polysilicon on the surface of the thin rod immediately after the start of deposition was studied. To this end 80 batches, deposited by means of the method according to the invention with inert gas flushing, were compared with 200 batches according to the prior art (without inert gas flushing).
The polycrystalline silicon was deposited as described in Ex. 1. The phosphorus content and the average resistivity of this polysilicon were respectively determined over the entire deposited diameter (between 100 and 150 mm). To this end 80 batches were deposited by means of the method according to the invention with inert gas flushing and compared with 200 batches according to the prior art (without inert gas flushing).
A polysilicon rod which was produced by means of the method according to the invention (inert gas flushing) also shows a substantially higher average electrical resistivity p over the entire deposited rod diameter (
The polycrystalline silicon was deposited as described in Ex. 1. The radial profile of the electrical resistivity of the polysilicon rod was determined over the entire deposited diameter. To this end 5 batches deposited by means of the method according to the invention with inert gas flushing (batches 1-5) were compared with 5 batches deposited according to the prior art (without inert gas flushing) (batches 1C to 5C). Except for the inert gas flushing, i.e. yes or no, the parameters of the deposition were the same for all 10 batches. Table 1 shows the measured values.
Polysilicon rods produced by means of the method according to the invention have a steeper profile of the radial electrical resistivity than polysilicon rods produced according to the prior art. The resistance plateau at the rod edge is reached faster with the method according to the invention, starting from the minimum resistance of the polysilicon on the surface of the thin rod immediately after the start of deposition. The gradient mρ is between 75 and 180 Ωcm/mm. For batches without inert gas flushing, the gradient mρ is between 50 and 70 Ωcm/mm.
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. It is noted that while the term “bell jar” is typically used by those skilled in the art to refer to the deposition reactor, the reactors may be of varied geometries, and the terms “bell jar” and “reactor” include all such geometries.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 037 020.1 | Aug 2006 | DE | national |