1. Field of the Invention
This invention relates to a mask assembly and a method using the mask assembly for forming solder bodies on a substrate.
2. Description of the Related Art
As shown in
Because of industrial requirements, two or more different solder pastes (e.g., tin-zinc solder material, tin-copper solder material, etc.) are required to be printed on the circuit board 12. Although the method described above can be employed to form solder bodies on many regions of the circuit board 12, only one kind of solder paste (referred as a “first solder paste” hereinafter) can be printed thereon using the aforesaid procedure. If the other kind of solder paste (referred as a “second solder paste” hereinafter) is to be applied to the circuit board 12, on which the solder bodies of the first solder paste have been formed, using the aforesaid procedure with a second mask plate, the solder bodies of the first solder paste are likely to be damaged by the second mask plate. Therefore, the current procedure for applying a second solder paste to the circuit board cannot be conducted by the aforesaid printing techniques and can only be conducted by manually forming the solder bodies one at a time, thereby resulting in waste of time and manpower.
Therefore, there is a need in the art to provide a method and a mask assembly that can permit application of two different kinds of solder pastes to a substrate using a conventional printing apparatus.
Therefore, the object of the present invention is to provide a method and a mask assembly that can overcome the aforesaid drawback of the prior art.
According to one aspect of the present invention, there is provided a method for forming solder bodies on a substrate. The method includes: positioning a first mask plate, which is formed with at least one first through-hole, on the substrate; filling the first through-hole with a first solder paste so as to form a first solder body on the substrate; positioning a second maskplate, which is formed with at least one second through-hole and at least one recess spaced apart from the second through-hole, on the substrate in such a manner that the first solder body is received in the recess; and filling the second through-hole with a second solder paste so as to form a second solder body on the substrate.
According to another aspect of the present invention, there is provided a mask assembly for forming solder bodies on first and second solder-forming regions of a substrate. The mask assembly includes: a first mask plate formed with at least one first through-hole that is adapted to be aligned with the first solder-forming region of the substrate when the first mask plate is stacked on the substrate; and a second mask plate formed with at least one second through-hole that is adapted to be aligned with the second solder-forming region of the substrate when the second mask plate is stacked on the substrate, and a recess that is spaced apart from the second through-hole, that is adapted to be aligned with the first solder-forming region of the substrate when the second mask plate is stacked on the substrate, and that has a size greater than that of the first through-hole.
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments of this invention, with reference to the accompanying drawings, in which:
Referring to
As shown in
As shown in
As shown in
Subsequently, as shown in
A second solder paste 42 is then applied to the second mask plate 3 and is subsequently moved into the second through-hole 33 by moving the printing squeegee 7 on the second mask plate 3 (see
After removing the second mask plate 3, the substrate 5 formed with the first solder body 41′ of the first solder paste 41 and the second solder body 42′ of the second solder paste 42 is obtained (see
With the inclusion of the mask assembly in the method of this invention, solder bodies made from two different solder pastes can be formed on the same surface of the substrate using the printing apparatus in a conventional manner, thereby resulting in a decrease in manufacturing time and labor expenses.
While the present invention has been described in connection with what are considered the most practical and preferred embodiments, it is understood that this invention is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
96126143 A | Jul 2007 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5740730 | Thompson, Sr. | Apr 1998 | A |
20020146646 | Jao et al. | Oct 2002 | A1 |
20070090171 | Ochiai et al. | Apr 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20090022928 A1 | Jan 2009 | US |