Method and system for a solid state drive with on-chip memory integration

Information

  • Patent Grant
  • 11372774
  • Patent Number
    11,372,774
  • Date Filed
    Monday, August 24, 2020
    4 years ago
  • Date Issued
    Tuesday, June 28, 2022
    2 years ago
Abstract
Embodiments include a system for facilitating data storage. During operation, the system receives a request to write data associated with a logical block address (LBA), wherein the LBA indicates a die to which to write the data and includes a sub-LBA which is used as an index for a mapping table stored on the die. The system assigns, based on the LBA, a physical block address (PBA) which indicates the die and includes a sub-PBA which indicates a first physical location in a block of the die at which the data is to be stored. The system stores, in the mapping table based on the sub-LBA, the PBA. The system writes the PBA and the data to the block based on the PBA.
Description
BACKGROUND
Field

This disclosure is generally related to the field of data storage. More specifically, this disclosure is related to a method and system for a solid state drive with on-chip memory integration.


Related Art

Today, various storage systems are being used to store and access the ever-increasing amount of digital content. A storage system can include storage servers with one or more storage devices or drives (such as a solid-state drive (SSD)). A storage device or drive can include storage media with persistent memory, i.e., a non-volatile memory. A conventional SSD generally requires a double data rate (DDR) controller and dynamic random access memory (DRAM) interface in order to access its internal DRAM. This DDR controller and DRAM interface may consume a high amount of power and may also require a significant cost. In addition, due to the volatile nature of DRAM and the loss of data stored in DRAM in the occurrence of a power loss, a conventional SSD must implement power loss protection (e.g., in hardware and firmware) in order to ensure data consistency. As the capacity of storage drives continues to increase, so increases the amount of corresponding metadata which must be stored. In some instances, the amount of storage space required for the corresponding metadata can be on the order of tens of Gigabytes (GBs).


Thus, while conventional SSDs can store an increasing amount of data, some challenges remain in storing the corresponding increasing amount of metadata and in the cost and power consumption involved in using DRAM within the conventional SSDs. These challenges can limit the efficiency of the overall storage system.


SUMMARY

One embodiment provides a system which facilitates data storage. During operation, the system receives a request to write data associated with a logical block address (LBA), wherein the LBA indicates a die to which to write the data and includes a sub-LBA which is used as an index for a mapping table stored on the die. The system assigns, based on the LBA, a physical block address (PBA) which indicates the die and includes a sub-PBA which indicates a first physical location in a block of the die at which the data is to be stored. The system stores, in the mapping table based on the sub-LBA, the PBA. The system writes the PBA and the data to the block based on the PBA.


In some embodiments, prior to storing the PBA in the mapping table and prior to writing the PBA and the data to the block based on the PBA, the system stores, in the mapping table based on the sub-LBA, a physical cache location in a write cache residing on the die. The system writes the PBA and the data to the physical cache location in the write cache. Responsive to writing the PBA and the data from write cache to the block, the system stores the PBA in the mapping table by replacing, in the mapping table, the physical cache location with the PBA. The system generates an acknowledgement for a host of a completion of the write request, wherein generating the acknowledgement and writing the PBA and the data from the write cache to the block are performed asynchronously.


In some embodiments, the system assigns a predetermined percentage of a plurality of blocks of the die for overprovisioning.


In some embodiments, the system performs an intra-die garbage collection process by the following operations. The system detects that a number of free blocks of the die is less than a first predetermined number. The system identifies a target block of the die for recycling based on a number of valid pages in the target block. The system copies a valid page of data from the target block to a new page in a destination block of the die. The system replaces, in the mapping table, a first PBA associated with the valid page of data from the target block with a new PBA associated with the new page in the destination block of the die.


In some embodiments, the system receives a request to read the data associated with the LBA. The system performs, based on the sub-LBA, a search in the mapping table to obtain the physical cache location or the PBA. Responsive to obtaining the physical cache location and determining that the data is stored at the physical cache location in the write cache, the system retrieves the data from the write cache based on the physical cache location. Responsive to obtaining the PBA and determining that the data is stored at the PBA on the die, the system retrieves the data from the die based on the PBA.


In some embodiments, the LBA and the PBA indicate the die as an index for the die which comprises a same number of most significant bits of the LBA and the PBA.


In some embodiments, the mapping table is ordered based on an ascending fixed order for a plurality of sub-LBAs.


In some embodiments, the mapping table is stored in a static random access memory (SRAM) residing on the die. The SRAM, the write cache, and a plurality of blocks including the first block reside on a bottom layer of a plurality of layers of the die.


In some embodiments, a storage system comprises a plurality of dies including the die, and the dies comprise Not-And (NAND) flash dies. A respective die includes a respective static random access memory (SRAM), a respective write cache, and a respective plurality of blocks. A respective mapping table stored in the respective SRAM stores mappings of logical information to physical information for data stored on the respective die in the respective write cache and in the respective plurality of blocks.


In some embodiments, the storage system comprises at least a storage device. The storage device comprises the plurality of dies, a NAND interface, a controller, and a host interface. The storage device does not include an internal dynamic random access memory (DRAM).


Another embodiment provides an apparatus or a storage device, comprising a plurality of NAND dies. A respective NAND die comprises: a plurality of blocks which are configured to store data; and a static random access memory (SRAM) residing on the respective NAND die, wherein the SRAM is configured to store metadata associated with data stored in the blocks or in a write cache of the respective NAND die.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates an exemplary storage device, in accordance with the prior art.



FIG. 2 illustrates an exemplary storage device, including on-chip memory integration, in accordance with an embodiment of the present application.



FIG. 3 illustrates an exemplary partition of a mapping table among multiple dies, in accordance with an embodiment of the present application.



FIG. 4 illustrates an exemplary environment for data storage, in accordance with an embodiment of the present application.



FIG. 5 illustrates an exemplary environment of free and overprovisioned blocks in a storage device, in accordance with an embodiment of the present application.



FIG. 6 illustrates an intra-die garbage collection without controller involvement, in accordance with an embodiment of the present application.



FIG. 7A presents a flowchart illustrating a method for facilitating data storage, including a write operation, in accordance with an embodiment of the present application.



FIG. 7B presents a flowchart illustrating a method for facilitating data storage, including performing an intra-die garbage collection or recycling, in accordance with an embodiment of the present application.



FIG. 8 presents a flowchart illustrating a method for facilitating data storage, including a read operation, in accordance with an embodiment of the present application.



FIG. 9 illustrates an exemplary computer system that facilitates data storage, in accordance with an embodiment of the present application.



FIG. 10 illustrates an exemplary apparatus that facilitates data storage, in accordance with an embodiment of the present application.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the embodiments described herein are not limited to the embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview


The embodiments described herein provide a system which integrates on-chip mapping table management and a data cache, without using the expensive and power-consuming DRAM of conventional storage devices. In addition, the described embodiments provide an intra-die garbage collection which can reduce the amount of internal data traffic among multiple NAND dies.


As described above, the DDR controller and DRAM interface is generally used by a conventional SSD in order to access its internal DRAM. This DDR controller and DRAM interface may consume a high amount of power and may also require a significant cost. In addition, due to the volatile nature of DRAM and the loss of data stored in DRAM in the occurrence of a power loss, a conventional SSD must implement power loss protection (e.g., in hardware and firmware) in order to ensure data consistency. As the capacity of storage drives continues to increase, so increases the amount of corresponding metadata which must be stored. In some instances, the amount of storage space required for the corresponding metadata can be on the order of tens of Gigabytes (GBs).


Thus, while conventional SSDs can store an increasing amount of data, some challenges remain in storing the corresponding increasing amount of metadata and in the cost and power consumption involved in using DRAM within the conventional SSDs. These challenges can limit the efficiency of the overall storage system.


The embodiments described herein address the constraints and challenges associated with conventional storage devices by integrating a mapping table for each NAND die in an SRAM which resides on the bottom layer of the NAND die and by implementing a write cache in a persistent memory which also resides on the bottom layer of the NAND die. This intra-die mapping also provides for a more efficient intra-die garbage collection. In the described embodiments, the system can partition the large amount of metadata by distributing or storing the metadata across multiple NAND dies, where an on-chip SRAM can provide localized metadata storage and querying for a more efficient storage system which does not require DRAM or power loss protection, as described below in relation to FIGS. 2 and 3.


In the described embodiments, an SSD can integrate an SRAM and write cache in the bottom layer of each NAND die, which can result in intra-die mapping management. Such a storage device no longer needs to include the off-chip DRAM, the DRAM controller, and the DDR interface. Thus, by eliminating the need for these expensive and power-consuming elements, the described embodiments can result in a reduction in the expense of the design and cost of the overall storage device, and can also result in a more efficient overall storage system.


A “distributed storage system” or a “storage system” can include multiple storage servers. A “non-volatile storage system” can include non-volatile memory. A “storage server” or a “storage system” can refer to a computing device which can include multiple storage devices or storage drives. A “storage device” or a “storage drive” refers to a device or a drive with a non-volatile memory which can provide persistent storage of data, e.g., a solid state drive (SSD), or a flash-based storage device. A storage system can also be a computer system.


“Non-volatile memory” refers to storage media which may be used for persistent storage of data, e.g., flash memory of a NAND die of an SSD, magnetoresistive random access memory (MRAM), phase change memory (PCM), resistive random access memory (ReRAM), or another non-volatile memory. A “non-volatile storage system” refers to a storage system which includes at least one type of non-volatile memory or physical media which can persistently store data.


A “computing device” refers to any server, device, node, entity, drive, or any other entity which can provide any computing capabilities.


In this disclosure, a “logical block address” or “LBA” includes a “NAND die index” as its most significant bits (MSBs) and a “sub-LBA” as its least significant bits (LSBs). The term “NAND die index” refers to an index which identifies a specific NAND die, and the sub-LBA can be used as an index for a mapping table stored on the die.


In this disclosure, a “physical block address” or “PBA” includes a “NAND die index” as its most significant bits (MSBs) and a “sub-PBA” as its least significant bits (LSBs). The term “NAND die index” refers to an index which identifies a specific NAND die, and the sub-PBA can indicate a physical location in a block of the die at which data is to be stored.


The term “write cache” refers to a temporary data cache or region which can store data in a persistent memory or a non-volatile memory. The term “physical cache location” refers to a location in the write cache.


A “mapping table” refers to a data structure which stores logical to physical information, e.g., an LBA to a PBA or other physical location. In this disclosure, a mapping table can refer to data stored in an SRAM residing on a die. LBAs can be partitioned and interleaved across a plurality of dies, as described below in relation to FIG. 3. A mapping table can be indexed based on an ascending order for sub-LBAs, and can store a physical location associated with each sub-LBA index, without storing the actual sub-LBA itself. The physical location can be a physical cache location in a write cache residing on the same die, or a PBA of a block residing on the same die.


The term “intra-die garbage collection” refers to a recycling or a garbage collection process or operation which occurs within each die of a storage device, as described below in relation to FIGS. 6 and 7B.


Exemplary Storage Device in the Prior Art



FIG. 1 illustrates an exemplary storage device, such as an SSD 100, in accordance with the prior art. SSD 100 can include: a power loss protection circuit and firmware 102; a host interface 104; an SSD controller 106; a NAND interface 108, which communicates with or is coupled to NANDs 120, 122, 124, and 126; and a DDR interface/DRAM controller 110, which manages, communicates with, or is coupled to DRAMs 112 and 114. In conventional SSD 100, SSD controller 106 must implement DDR interface/DRAM controller 110 in order to access DRAMs 112 and 114. DDR interface/DRAM controller 110 may consume a high amount of power and may also require a significant cost. In addition, due to the volatile nature of DRAM and the loss of data stored in DRAM in the occurrence of a power loss, conventional SSD 100 must implement power loss protection circuit and firmware 102 in hardware and firmware in order to ensure data consistency. As the capacity of storage drives continues to increase, so increases the amount of corresponding metadata which must be stored. In some instances, the amount of storage space required for the corresponding metadata can be on the order of tens of Gigabytes (GBs).


Thus, the conventional storage device which requires a DDR interface/DRAM controller in order to access the DRAM may result in a significant expense in terms of both cost and power consumption. In addition, the power loss protection is necessary to protect the data in the volatile DRAM, and may be required to protect an increasingly large amount of metadata, to align with the continued growth in capacity of storage drives. These constraints can limit the flexibility and performance of the overall storage system.


Exemplary Storage Device Including On-Chip Memory Integration


The embodiments described herein address the constraints and challenges associated with conventional storage devices (such as in FIG. 1) by integrating a mapping table for each NAND die in an SRAM which resides on the bottom layer of the NAND die and by implementing a write cache in a persistent memory which also resides on the bottom layer of the NAND die. This intra-die mapping can also provide for a more efficient intra-die garbage collection, as described below in relation to FIG. 6. In the described embodiments, the system can partition the large amount of metadata by distributing or storing the metadata across the NAND dies, where an on-chip SRAM can provide localized metadata storage and querying for a more efficient storage system which does not require DRAM or power loss protection.



FIG. 2 illustrates an exemplary storage device SSD 200, including on-chip memory integration, in accordance with an embodiment of the present application. SSD 200 can include: a host interface 204; an SSD controller 206; and a NAND interface 208, which communicates with or is coupled to NAND dies 220, 222, 224, and 226. Each NAND die can include a plurality of layers, such as a three-dimensional (3D) NAND die. For example, NAND 226 can include a plurality of layers, including: a NAND layer 232; a NAND layer 234; a NAND layer 236; and a bottom NAND layer 238. Bottom NAND layer 238 can include: an SRAM 240; and a write cache 242. Bottom NAND layer 238 has sufficient physical space or area in which to place peripheral circuits, e.g., via a micro-design or as integrated modules in a circuit in the bottom layer. SRAM 240 can store a die-specific mapping table, as described below in relation to FIGS. 3 and 4. Write cache 242 can be a persistent memory or any non-volatile memory, such as NAND flash memory, magnetoresistive random access memory (MRAM), phase change memory (PCM), resistive random access memory (ReRAM), or another non-volatile memory.


SSD 200 can integrate SRAM 240 and write cache 242 in the bottom layer of each NAND die, which can result in intra-die mapping management, as described below in relation to FIGS. 3 and 4. Furthermore, SSD 200 no longer needs to include the off-chip DRAM, the DRAM controller, and the DDR interface (as in conventional SSD 100 of FIG. 1). By removing these expensive and power-consuming elements or components from the storage device (e.g., SSD 200), the described embodiments can result in a reduction in the expense of the design and cost of the overall storage device, and can also result in a more efficient overall storage system.


Exemplary Mapping Tables and LBA Format



FIG. 3 illustrates an exemplary partition 300 of a mapping table among multiple dies, in accordance with an embodiment of the present application. Given an original logical-to-physical (L2P) mapping table 310, partition 300 can be based on the number of available NAND dies. The system can interleave the LBAs into each NAND die. In each LBA, the most significant bits (MSBs) of the LBA can indicate the NAND die index, and the least significant bits (LSBs) can be used as an index for the mapping table stored on the given die. An exemplary format for an LBA 370 can include a NAND die index 372 in the MSBs and a sub-LBA 374 in the LSBs. In addition, because the LBA is used both as the index for the mapping table to locate the specific NAND die (as indicated by the MSBs in the NAND die index) and as the access address for the SRAM (or PBA of the die), the system does not need to store the LBA itself in the mapping table, which can result in saving tens of bits for each LBA entry of the mapping table.


Note that each mapping table is ordered based on an ascending order of LBAs (or sub-LBAs). The system can use the fixed ascending order of the LBAs (or sub-LBAs) in a mapping table to store the corresponding SRAM access address (e.g., the physical cache location in the write cache).


LBA 311 can be associated with a mapping table 332 of NAND die 330 (e.g., on the bottom layer of NAND die 330 in an SRAM which resides on NAND die 330). LBA 311 itself is not stored in mapping table 332. Instead, LBA 311, which includes a NAND die index and a sub-LBA, corresponds to the NAND die indicated by its NAND die index (i.e., NAND die 330), and also corresponds to an entry in mapping table 332 of NAND die 330 based on where the sub-LBA fits into the ascending ordered list of sub-LBAs as indices, which correspond to a physical location. In some instances, this physical location indicates a physical cache location in the write cache (e.g., the access address for the SRAM to an address in the write cache), and in other instances, this physical location indicates the PBA in NAND die 330 at which data corresponding to the sub-LBA (or LBA 311) is stored. Similarly: LBA 312 can be associated with a mapping table 342 of NAND die 340; LBA 313 can be associated with a mapping table 352 of a NAND die 350; LBA 314 can be associated with a mapping table 362 of a NAND die 360. In the same manner, the subsequent LBAs of mapping table 310 can be interleaved among the mapping tables of the plurality of NAND dies in the manner shown, e.g.: LBA 315 can be associated with mapping table 332; LBA 316 can be associated with mapping table 342; LBA 317 can be associated with mapping table 352; LBA 318 can be associated with mapping table 362; LBA 319 can be associated with mapping table 332; LBA 320 can be associated with mapping table 342; LBA 321 can be associated with mapping table 352; and LBA 322 can be associated with mapping table 362.


The system can interleave the LBAs by assigning the LBAs to or associated with LBAs with a given NAND die. In some embodiments, a flash translation layer (FTL) can manage or perform the assignment or association of a respective LBA as well as assign a corresponding PBA on a block of the same die associated with the respective LBA.


Exemplary Environment for Data Storage: Write Operation and Intra-Die Garbage Collection



FIG. 4 illustrates an exemplary environment 400 for data storage, in accordance with an embodiment of the present application. Environment 400 can include a flash translation layer 410 and a plurality of NAND dies, such as a NAND die 420 (at a time t0) and a NAND die 450. Each NAND die can include a plurality of NAND blocks. Each NAND die can also include a plurality of layers, such as in a 3D NAND die, where the bottom layer includes an SRAM which stores and manages a mapping table and a write cache for temporary storage of data for low-latency access. For example, NAND die 420 (at time t0) can include: an SRAM 422 with a mapping table indicated as an entry with an index of sub-LBA 401 and a value of a write cache location 424; a write cache 432; and NAND blocks 440 and 442.


During operation, a storage system of environment 400 can receive data to be written to a non-volatile memory of the storage system. The data can be associated with an LBA, where the LBA indicates a die to which to write the data and includes a sub-LBA which is used as an index for a mapping table stored on the die. FTL 410 can assign, based on the LBA, a PBA which indicates the die and includes a sub-PBA which indicates a first physical location in a block of the die at which the data is to be stored. FTL 410 can determine to transmit a sub-LBA 401, a PBA 402, and data 403 to NAND die 420 (e.g., based on the MSBs of the LBA, which can indicate a NAND die index corresponding to NAND die 420). Each die can be labeled with a fixed index or identifier which is predetermined or preconfigured by the system. The system can use sub-LBA 401 as an index for SRAM address 404 (e.g., an entry 404), and can store a write cache address 424 in the mapping table of SRAM 422. The system can write PBA 402 and data 403 to write cache 432, and can generate an acknowledgment for a host of a completion of the write request (not shown). That is, the system can acknowledge the write request as complete when data 403 has been successfully written to write cache 432, prior to, separate from, or asynchronously from data 403 being written to a block of NAND die 420.


At a subsequent time (or asynchronously), the system can perform an asynchronous write 460, which involves writing PBA 402 and data 403 to NAND block 440 at PBA 402. Responsive to this asynchronous write, the system can replace (or overwrite), in the mapping table, write cache address 424 (i.e., the physical cache location) with PBA 402, as shown in NAND die 420 (at time t1).


After data 403 has been written to write cache 432, the system can receive a request to read data 403. The read request can be associated with an LBA, including sub-LBA 401. The system can determine, based on the MSBs of the LBA (which indicate the NAND die), that the corresponding mapping table to be queried is stored in SRAM 422 of NAND die 420. The system can perform, based on sub-LBA 401, a search in the mapping table of SRAM 422, to obtain the physical location stored in the mapping table (e.g., entry 404). If the mapping table stores the physical cache location (e.g., write cache address 424), the system can determine that data 403 is stored in write cache 432, and can retrieve data 403 from write cache 432 based on write cache address 424. If the mapping table stores the PBA (e.g., PBA 402), the system can determine that data 403 is stored in NAND block 440 at PBA 402, and can retrieve data 403 from block 440 based on PBA 402.


The system can also receive a write request which is an update to data already stored in a non-volatile memory of the system (e.g., in a write cache or in a NAND block of a die). In NAND die 420, since SRAM 422 and the persistent memory of write cache 432 can both support an in-place update or write, the system can follow the procedure described above in FIG. 4 for writing new data, by: storing the updated data at a newly assigned PBA; and updating the SRAM mapping table entry accordingly, with the newly assigned PBA.


Overprovisioning


Recall that in the described embodiments, the system assigns the PBA in the same NAND die as the NAND die associated with the LBA. Similar to the LBA, the PBA can also be divided into two parts: the NAND die index; and the sub-PBA, as described below in relation to FIG. 5. Given an LBA and a corresponding LBA, the NAND die indicated in both the LBA and the PBA is the same. That is, the MSBs of both the LBA and the correspondingly assigned PBA match or are the same.



FIG. 5 illustrates an exemplary environment 500 of free and overprovisioned blocks in a storage device, in accordance with an embodiment of the present application. An exemplary format for a PBA 510 can include: a NAND die index 512, which indicates the die to which to write the data; and a sub-PBA 514, which indicates a physical location in a block of the die at which the data is to be stored.


Environment 500 can include an SSD 520, which can include a nominal capacity 522 and an overprovisioning (OP) 524. SSD 520 can include a plurality of NAND dies, e.g., SSD dies 530 and 550. Each SSD NAND die can include an SRAM, a write cache, blocks which provide nominal capacity, and OP blocks which are assigned based on a percentage of blocks of the given NAND die. For example, SSD NAND die 530 can include: an SRAM 532, which can store a mapping table such as described above in relation to FIGS. 3 and 4); a write cache 534, which can be a persistent or a non-volatile memory for temporary storage of data and low-latency access; NAND blocks 536, 538, 540, 542, 544, and 546. The system can assign NAND blocks 544 and 546 as an OP 548, based, e.g., on a predetermined percentage of the plurality of blocks which is to be used for OP. As a result, NAND blocks 536, 538, 540, and 542 can serve as storage for data based on a nominal capacity, while NAND blocks 544 and 546 can be used specifically for OP purposes. Similarly, SSD die 550 can include: an SRAM 552; a write cache 554; nominal capacity NAND blocks 556, 558, 560, and 562; and an OP 568 of NAND blocks 564 and 566.


The system can maintain a predetermined percentage of free blocks for OP purposes, and the system can perform garbage collection inside each NAND die (i.e., “intra-die garbage collection”). The system can determine that the number of free blocks is below a certain predetermined threshold, number, or percentage, and as a result, the system can initiate an intra-die garbage collection, as described below in relation to FIG. 6.


Intra-Die Garbage Collection without Controller Involvement



FIG. 6 illustrates an intra-die garbage collection without controller involvement, in accordance with an embodiment of the present application. An SSD die 600 can include: an SRAM 610; a write cache 620; and NAND blocks 630, 640, and 650. The system can detect that a number of free blocks of SSD die 600 is less than a first predetermined number (or threshold or percentage). The system can select or identify certain NAND blocks with a number of valid pages less than a second predetermined number, and can copy valid pages out to a destination page or block of SSD die 600. The system can also perform an in-place overwrite of the physical information in the mapping table stored in SRAM 610.


For example, the system can identify a target NAND block 630 of SSD die 600 for recycling based on a number of valid pages in NAND block 630, as compared to the second predetermined number. The system can copy a valid page 632 from NAND block 630 to a new page in NAND block 640 at a new PBA (as indicated by a communication 666). The system can also update the physical location information in the mapping table stored in SRAM 610, by replacing the PBA associated with valid page 632 from NAND block 630 (target block) with the new PBA of the new page in NAND block 640 (destination block) (as indicated by a communication 662).


Similarly, the system can copy a valid page 634 from NAND block 630 to a new page in NAND block 650 at a new PBA (as indicated by a communication 668). The system can also update the physical location information in the mapping table stored in SRAM 610, by replacing the PBA associated with valid page 634 from NAND block 630 (target block) with the new PBA of the new page in NAND block 640 (destination block) (as indicated by a communication 664).


The raw read data of valid pages 632 and 634 from NAND block 630 may contain a certain number of erroneous bits, where these noisy pages are written to a destination page in another block of the same NAND die (i.e., respectively, blocks 640 and 650). The system can maintain the data based mainly on data retention. After a certain period of time (e.g., based on a predetermined time period, interval, or retention threshold), the system can scrub the data internally based on an error code correction (ECC) process.


In a conventional SSD, background garbage collection operations may both consume the resources of the controller and reduce the overall throughput, which can affect the performance of the SSD and result in a bottleneck associated with the NAND flash controller. By providing intra-die recycling, the described embodiments can reduce the path of communications involved, which can result in reducing, eliminating, or avoiding the bottleneck associated with the throughput of the NAND flash controller in the conventional SSD. By eliminating communications with the NAND flash controller in order to perform the intra-die garbage collection, the system can result in a decrease in the consumption of the resources of the NAND controller, which can result in an improved and more efficient overall storage system.


Furthermore, the conventional SSD generally performs an ECC-related operation for every garbage collection. In contrast, in the described embodiments, data retention may be short, based on data which is updated or recycled frequently, which allows the system to tolerate a low number of error bits. Thus, the system may perform ECC operations on this noisy data less frequently than in the conventional SSD, which can also result in an improved and more efficient overall storage system.


Method for Facilitating Data Storage: Write Operation and Intra-Die Recycling



FIG. 7A presents a flowchart 700 illustrating a method for facilitating data storage, including a write operation, in accordance with an embodiment of the present application. During operation, the system receives a request to write data associated with a logical block address (LBA), wherein the LBA indicates a die to which to write the data and includes a sub-LBA which is used as an index for a mapping table stored on the die (operation 702). The system assigns, based on the LBA, a physical block address (PBA) which indicates the die and includes a sub-PBA which indicates a first physical location in a block of the die at which the data is to be stored (operation 704). The system stores, in the mapping table based on the sub-LBA, a physical cache location in a write cache residing on the die (operation 706). The system writes the PBA and the data to the physical cache location in the write cache (and generates an acknowledgment for a host of a completion of the write request) (operation 708). Asychronously from operation 708, the system writes the PBA and the data from the write cache to the block at the PBA (operation 710). Responsive to writing the PBA and the data from the write cache to the block, the system replaces, in the mapping table, the physical cache location with the PBA (operation 712). The operation continues at Label A of FIG. 7B or Label B of FIG. 8.


In some embodiments, the system can perform a series of slightly modified steps which may not include writing the data to the write cache. For example, the system can receive a request to write data associated with a logical block address (LBA), wherein the LBA indicates a die to which to write the data and includes a sub-LBA which is used as an index for a mapping table stored on the die (as in operation 702). The system can assign, based on the LBA, a physical block address (PBA) which indicates the die and includes a sub-PBA which indicates a first physical location in a block of the die at which the data is to be stored (as in operation 704). The system can store, in the mapping table based on the sub-LBA, the PBA, and can further write the PBA and the data to the block based on the PBA (not shown).



FIG. 7B presents a flowchart 730 illustrating a method for facilitating data storage, including performing an intra-die garbage collection or recycling, in accordance with an embodiment of the present application. During operation, the system detects that a number of free blocks of the die is less than a first predetermined number (operation 732). The system identifies a target block of the die for recycling based on a number of valid pages in the target block (operation 734) (e.g., based on whether the number of valid pages is less than a second predetermined number). The system copies a valid page of data from the target block to a new page in a destination block of the die (operation 736). The system replaces, in the mapping table, a first PBA associated with the valid page of data from the target block with a new PBA associated with the new page in the destination block of the die (operation 738). The operation returns (or can continue at Label B of FIG. 8).


Method for Facilitating Data Storage: Read Operation



FIG. 8 presents a flowchart 800 illustrating a method for facilitating data storage, including a read operation, in accordance with an embodiment of the present application. During operation, the system receives a request to read the data associated with the LBA (operation 802). The system performs, based on the sub-LBA, a search in the mapping table to obtain the physical cache location or the PBA (operation 804). If the system obtains the physical cache location (decision 806), the system determines that the data is stored at the physical cache location in the write cache (operation 808), and the system retrieves the data from the write cache based on the physical cache location (operation 810). If the system obtains the PBA (decision 806), the system determines that the data is stored at the PBA on the die (operation 812), and the system retrieves the data from the die based on the PBA (operation 814). The operation returns.


Exemplary Computer System and Apparatus



FIG. 9 illustrates an exemplary computer system 900 that facilitates data storage, in accordance with an embodiment of the present application. Computer system 900 includes a processor 902, a volatile memory 906, and a storage device 908. In some embodiments, computer system 900 can include a controller 904 (indicated by the dashed lines). Volatile memory 906 can include, e.g., random access memory (RAM), that serves as a managed memory, and can be used to store one or more memory pools. Storage device 908 can include persistent storage which can be managed or accessed via processor 902 (or controller 904). Furthermore, computer system 900 can be coupled to peripheral input/output (I/O) user devices 910, e.g., a display device 911, a keyboard 912, and a pointing device 914. Storage device 908 can store an operating system 916, a content-processing system 918, and data 936.


Content-processing system 918 can include instructions, which when executed by computer system 900, can cause computer system 900 or processor 902 to perform methods and/or processes described in this disclosure. Specifically, content-processing system 918 can include instructions for receiving and transmitting data packets, including data to be read or written and an input/output (I/O) request (e.g., a read request or a write request) (communication module 920).


Content-processing system 918 can further include instructions for receiving a request to write data associated with a logical block address (LBA), wherein the LBA indicates a die to which to write the data and includes a sub-LBA which is used as an index for a mapping table stored on the die (communication module 920). Content-processing system 918 can further include instructions for assigning, based on the LBA, a physical block address (PBA) which indicates the die and includes a sub-PBA which indicates a first physical location in a block of the die at which the data is to be stored (PBA-assigning module 922). Content-processing system 918 can include instructions for storing, in the mapping table based on the sub-LBA, a physical cache location in a write cache residing on the die (mapping table-managing module 924). Content-processing system 918 can also include instructions for writing the PBA and the data to the physical cache location in the write cache (write cache-managing module 926). Content-processing system 918 can include instructions for, responsive to writing the PBA and the data from the write cache to the block (data-writing module 920), replacing, in the mapping table, the physical cache location with the PBA (mapping table-managing module 924).


Content-processing system 918 can additionally include instructions for generating an acknowledgement for a host of a completion of the write request (write cache-managing module 926). Content-processing system 918 can include instructions for assigning a predetermined percentage of a plurality of blocks of the die for overprovisioning (overprovisioning module 930). Content-processing system 918 can also include instructions for performing an intra-die garbage collection process (garbage-collecting module 932).


Content-processing system 918 can further include instructions for receiving a request to read the data associated with the LBA (communication module 920). Content-processing system 918 can include instructions for performing, based on the sub-LBA, a search in the mapping table to obtain the physical cache location or the PBA (mapping table-managing module 924). Content-processing system 918 can include instructions for, responsive to obtaining the physical cache location and determining that the data is stored at the physical cache location in the write cache (mapping table-managing module 924), retrieving the data from the write cache based on the physical cache location (data-reading module 934 and write cache-managing module 926). Content-processing system 918 can include instructions for, responsive to obtaining the PBA and determining that the data is stored at the PBA on the die (mapping table-managing module 924), retrieving the data from the die based on the PBA (data-reading module 934).


Data 936 can include any data that is required as input or generated as output by the methods and/or processes described in this disclosure. Specifically, data 936 can store at least: data; a request; a read request; a write request; an input/output (I/O) request; data or metadata associated with a read request, a write request, or an I/O request; a logical block address (LBA); an indicator of a die; an index; a sub-LBA which is used as an index for a mapping table stored on the die; a physical block address (PBA); a sub-PBA which indicates a first physical location in a block of the die; a physical cache location; an indicator or identifier of a write cache; an indicator of whether data is stored in a write cache or a die; a mapping table; an ascending order; an acknowledgment; a predetermined percentage of blocks of a die to be assigned for overprovisioning; a number of free blocks; a first predetermined number; a target block for recycling; a valid page; a number of valid pages; a destination block; a new page; a result of a search in the mapping table; a number of bits of an LBA or PBA; a number of most significant or least significant bits of an LBA or PBA; an indicator of an SRAM, a write cache, or a block; an indicator of a layer or a bottom layer of a die; and an indicator of a die, a NAND interface, a controller, or a host interface.



FIG. 10 illustrates an exemplary apparatus 1000 that facilitates data storage, in accordance with an embodiment of the present application. Apparatus 1000 can comprise a plurality of units or apparatuses which may communicate with one another via a wired, wireless, quantum light, or electrical communication channel. Apparatus 1000 may be realized using one or more integrated circuits, and may include fewer or more units or apparatuses than those shown in FIG. 10. Furthermore, apparatus 1000 may be integrated in a computer system, or realized as a separate device or devices capable of communicating with other computer systems and/or devices.


Apparatus 1000 can comprise modules or units 1002-1016 which are configured to perform functions or operations similar to modules 920-934 of computer system 900 of FIG. 9, including: a communication unit 1002; a PBA-assigning unit 1004; a mapping table-managing unit 1006; a write cache-managing unit 1008; a data-writing unit 1010; an overprovisioning unit 1012; a garbage-collecting unit 1014; and a data-reading unit 1016.


Apparatus 1000 can also comprise a storage device with a plurality of NAND dies (not shown). A respective NAND die can include a plurality of blocks which are configured to store data; and a static random access memory (SRAM) residing on the respective NAND die, wherein the SRAM is configured to store metadata associated with data stored in the blocks or in a write cache of the respective NAND die. The respective NAND die can also include a write cache residing on the respective NAND die. Exemplary NAND dies are described above in relation to FIGS. 2 and 4.


The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.


The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.


Furthermore, the methods and processes described above can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.


The foregoing embodiments described herein have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the embodiments described herein to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the embodiments described herein. The scope of the embodiments described herein is defined by the appended claims.

Claims
  • 1. A computer-implemented method, comprising: receiving a request to write data associated with a logical block address (LBA), wherein the LBA indicates a die to which to write the data and includes a sub-LBA which is used as an index for a mapping table stored on the die;assigning, based on the LBA, a physical block address (PBA) which indicates the die and includes a sub-PBA which indicates a first physical location in a block of the die at which the data is to be stored;storing, in the mapping table based on the sub-LBA, the PBA; andwriting the PBA and the data to the block based on the PBA.
  • 2. The method of claim 1, wherein prior to storing the PBA in the mapping table and prior to writing the PBA and the data to the block based on the PBA, the method further comprises: storing, in the mapping table based on the sub-LBA, a physical cache location in a write cache residing on the die;writing the PBA and the data to the physical cache location in the write cache;responsive to writing the PBA and the data from write cache to the block, storing the PBA in the mapping table by replacing, in the mapping table, the physical cache location with the PBA; andgenerating an acknowledgement for a host of a completion of the write request,wherein generating the acknowledgement and writing the PBA and the data from the write cache to the block are performed asynchronously.
  • 3. The method of claim 1, further comprising: assigning a predetermined percentage of a plurality of blocks of the die for overprovisioning.
  • 4. The method of claim 1, wherein the method further comprises performing an intra-die garbage collection process by: detecting that a number of free blocks of the die is less than a first predetermined number;identifying a target block of the die for recycling based on a number of valid pages in the target block;copying a valid page of data from the target block to a new page in a destination block of the die; andreplacing, in the mapping table, a first PBA associated with the valid page of data from the target block with a new PBA associated with the new page in the destination block of the die.
  • 5. The method of claim 2, further comprising: receiving a request to read the data associated with the LBA;performing, based on the sub-LBA, a search in the mapping table to obtain the physical cache location or the PBA;responsive to obtaining the physical cache location and determining that the data is stored at the physical cache location in the write cache, retrieving the data from the write cache based on the physical cache location; andresponsive to obtaining the PBA and determining that the data is stored at the PBA on the die, retrieving the data from the die based on the PBA.
  • 6. The method of claim 1, wherein the LBA and the PBA indicate the die as an index for the die which comprises a same number of most significant bits of the LBA and the PBA.
  • 7. The method of claim 1, wherein the mapping table is ordered based on an ascending fixed order for a plurality of sub-LBAs.
  • 8. The method of claim 1, wherein the mapping table is stored in a static random access memory (SRAM) residing on the die, andwherein the SRAM, the write cache, and a plurality of blocks including the first block reside on a bottom layer of a plurality of layers of the die.
  • 9. The method of claim 1, wherein a storage system comprises a plurality of dies including the die,wherein the dies comprise Not-And (NAND) flash dies,wherein a respective die includes a respective static random access memory (SRAM), a respective write cache, and a respective plurality of blocks, andwherein a respective mapping table stored in the respective SRAM stores mappings of logical information to physical information for data stored on the respective die in the respective write cache and in the respective plurality of blocks.
  • 10. The method of claim 9, wherein the storage system comprises at least a storage device,wherein the storage device comprises the plurality of dies, a NAND interface, a controller, and a host interface, andwherein the storage device does not include an internal dynamic random access memory (DRAM).
  • 11. A computer system, comprising: a processor; anda memory coupled to the processor and storing instructions which, when executed by the processor, cause the processor to perform a method, the method comprising: receiving a request to write data associated with a logical block address (LBA), wherein the LBA indicates a die to which to write the data and includes a sub-LBA which is used as an index for a mapping table stored on the die;assigning, based on the LBA, a physical block address (PBA) which indicates the die and includes a sub-PBA which indicates a first physical location in a block of the die at which the data is to be stored;storing, in the mapping table based on the sub-LBA, the PBA; andwriting the PBA and the data to the block based on the PBA.
  • 12. The computer system of claim 11, wherein prior to storing the PBA in the mapping table and prior to writing the PBA and the data to the block based on the PBA, the method further comprises: storing, in the mapping table based on the sub-LBA, a physical cache location in a write cache residing on the die;writing the PBA and the data to the physical cache location in the write cache;responsive to writing the PBA and the data from write cache to the block, storing the PBA in the mapping table by replacing, in the mapping table, the physical cache location with the PBA; andgenerating an acknowledgement for a host of a completion of the write request,wherein generating the acknowledgement and writing the PBA and the data from the write cache to the block are performed asynchronously.
  • 13. The computer system of claim 11, wherein the method further comprises: assigning a predetermined percentage of a plurality of blocks of the die for overprovisioning.
  • 14. The computer system of claim 11, wherein the method further comprises performing an intra-die garbage collection process by: detecting that a number of free blocks of the die is less than a first predetermined number;identifying a target block of the die for recycling based on a number of valid pages in the target block;copying a valid page of data from the target block to a new page in a destination block of the die; andreplacing, in the mapping table, a first PBA associated with the valid page of data from the target block with a new PBA associated with the new page in the destination block of the die.
  • 15. The computer system of claim 12, wherein the method further comprises: receiving a request to read the data associated with the LBA;performing, based on the sub-LBA, a search in the mapping table to obtain the physical cache location or the PBA;responsive to obtaining the physical cache location and determining that the data is stored at the physical cache location in the write cache, retrieving the data from the write cache based on the physical cache location; andresponsive to obtaining the PBA and determining that the data is stored at the PBA on the die, retrieving the data from the die based on the PBA.
  • 16. The computer system of claim 11, wherein the LBA and the PBA indicate the die as an index for the die which comprises a same number of most significant bits of the LBA and the PBA.
  • 17. The computer system of claim 11, wherein the mapping table is ordered based on an ascending fixed order for a plurality of sub-LBAs.
  • 18. The computer system of claim 11, wherein the mapping table is stored in a static random access memory (SRAM) residing on the die, andwherein the SRAM, the write cache, and a plurality of blocks including the first block reside on a bottom layer of a plurality of layers of the die.
  • 19. The computer system of claim 11, wherein the storage system comprises a plurality of dies including the die,wherein the dies comprise Not-And (NAND) flash dies,wherein a respective die includes a respective static random access memory (SRAM), a respective write cache, and a respective plurality of blocks,wherein a respective mapping table stored in the respective SRAM stores mappings of logical information to physical information for data stored on the respective die in the respective write cache and in the respective plurality of blocks,wherein the storage system comprises at least a storage device,wherein the storage device comprises the plurality of dies, a NAND interface, a controller, and a host interface, andwherein the storage device does not include an internal dynamic random access memory (DRAM).
  • 20. A non-transitory computer-readable storage medium, comprising: a plurality of NAND dies, wherein a respective NAND die comprises: a plurality of blocks which are configured to store data; anda static random access memory (SRAM) residing on the respective NAND die, wherein the SRAM is configured to store a mapping table which comprises metadata associated with data stored in the blocks or in a write cache of the respective NAND die,wherein the non-transitory computer-readable storage medium stores instructions which when executed by a computer cause the computer to perform a method, the method comprising: receiving a request to write data associated with a logical block address (LBA), wherein the LBA indicates the respective NAND die to which to write the data and includes a sub-LBA which is used as an index for the mapping table stored in the SRAM on the respective NAND die;assigning, based on the LBA, a physical block address (PBA) which indicates the respective NAND die and includes a sub-PBA which indicates a first physical location in a block of the respective NAND die at which the data is to be stored:storing, in the mapping table based on the sub-LBA, the PBA; andwriting the PBA and the data to the block based on the PBA.
US Referenced Citations (413)
Number Name Date Kind
3893071 Bossen Jul 1975 A
4562494 Bond Dec 1985 A
4718067 Peters Jan 1988 A
4775932 Oxley Oct 1988 A
4858040 Hazebrouck Aug 1989 A
5394382 Hu Feb 1995 A
5602693 Brunnett Feb 1997 A
5715471 Otsuka Feb 1998 A
5732093 Huang Mar 1998 A
5802551 Komatsu Sep 1998 A
5930167 Lee Jul 1999 A
6098185 Wilson Aug 2000 A
6148377 Carter Nov 2000 A
6226650 Mahajan et al. May 2001 B1
6243795 Yang Jun 2001 B1
6457104 Tremaine Sep 2002 B1
6658478 Singhal Dec 2003 B1
6795894 Neufeld Sep 2004 B1
7351072 Muff Apr 2008 B2
7565454 Zuberi Jul 2009 B2
7599139 Bombet Oct 2009 B1
7953899 Hooper May 2011 B1
7958433 Yoon Jun 2011 B1
8085569 Kim Dec 2011 B2
8144512 Huang Mar 2012 B2
8166233 Schibilla Apr 2012 B2
8260924 Koretz Sep 2012 B2
8281061 Radke Oct 2012 B2
8452819 Sorenson, III May 2013 B1
8516284 Chan Aug 2013 B2
8527544 Colgrove Sep 2013 B1
8751763 Ramarao Jun 2014 B1
8819367 Fallone Aug 2014 B1
8825937 Atkisson Sep 2014 B2
8832688 Tang Sep 2014 B2
8868825 Hayes Oct 2014 B1
8904061 O'Brien, III Dec 2014 B1
8949208 Xu Feb 2015 B1
9015561 Hu Apr 2015 B1
9031296 Kaempfer May 2015 B2
9043545 Kimmel May 2015 B2
9088300 Chen Jul 2015 B1
9092223 Pani Jul 2015 B1
9129628 Fallone Sep 2015 B1
9141176 Chen Sep 2015 B1
9208817 Li Dec 2015 B1
9213627 Van Acht Dec 2015 B2
9280472 Dang Mar 2016 B1
9280487 Candelaria Mar 2016 B2
9311939 Malina Apr 2016 B1
9336340 Dong May 2016 B1
9436595 Benitez Sep 2016 B1
9495263 Pang Nov 2016 B2
9529601 Dharmadhikari Dec 2016 B1
9529670 O'Connor Dec 2016 B2
9575982 Sankara Subramanian Feb 2017 B1
9588698 Karamcheti Mar 2017 B1
9588977 Wang Mar 2017 B1
9607631 Rausch Mar 2017 B2
9671971 Trika Jun 2017 B2
9747202 Shaharabany Aug 2017 B1
9852076 Garg Dec 2017 B1
9875053 Frid Jan 2018 B2
9912530 Singatwaria Mar 2018 B2
9946596 Hashimoto Apr 2018 B2
10013169 Fisher Jul 2018 B2
10199066 Feldman Feb 2019 B1
10229735 Natarajan Mar 2019 B1
10235198 Qiu Mar 2019 B2
10268390 Warfield Apr 2019 B2
10318467 Barzik Jun 2019 B2
10361722 Lee Jul 2019 B2
10437670 Koltsidas Oct 2019 B1
10459663 Agombar Oct 2019 B2
10642522 Li May 2020 B2
10649657 Zaidman May 2020 B2
10678432 Dreier Jun 2020 B1
10756816 Dreier Aug 2020 B1
10928847 Suresh Feb 2021 B2
10990526 Lam Apr 2021 B1
20010032324 Slaughter Oct 2001 A1
20020010783 Primak Jan 2002 A1
20020039260 Kilmer Apr 2002 A1
20020073358 Atkinson Jun 2002 A1
20020095403 Chandrasekaran Jul 2002 A1
20020112085 Berg Aug 2002 A1
20020161890 Chen Oct 2002 A1
20030074319 Jaquette Apr 2003 A1
20030145274 Hwang Jul 2003 A1
20030163594 Aasheim Aug 2003 A1
20030163633 Aasheim Aug 2003 A1
20030217080 White Nov 2003 A1
20040010545 Pandya Jan 2004 A1
20040066741 Dinker Apr 2004 A1
20040103238 Avraham May 2004 A1
20040143718 Chen Jul 2004 A1
20040255171 Zimmer Dec 2004 A1
20040267752 Wong Dec 2004 A1
20040268278 Hoberman Dec 2004 A1
20050038954 Saliba Feb 2005 A1
20050097126 Cabrera May 2005 A1
20050138325 Hofstee Jun 2005 A1
20050144358 Conley Jun 2005 A1
20050149827 Lambert Jul 2005 A1
20050174670 Dunn Aug 2005 A1
20050177672 Rao Aug 2005 A1
20050177755 Fung Aug 2005 A1
20050195635 Conley Sep 2005 A1
20050235067 Creta Oct 2005 A1
20050235171 Igari Oct 2005 A1
20060031709 Hiraiwa Feb 2006 A1
20060101197 Georgis May 2006 A1
20060156012 Beeson Jul 2006 A1
20060184813 Bui Aug 2006 A1
20070033323 Gorobets Feb 2007 A1
20070061502 Lasser Mar 2007 A1
20070101096 Gorobets May 2007 A1
20070250756 Gower Oct 2007 A1
20070266011 Rohrs Nov 2007 A1
20070283081 Lasser Dec 2007 A1
20070283104 Wellwood Dec 2007 A1
20070285980 Shimizu Dec 2007 A1
20080034154 Lee Feb 2008 A1
20080065805 Wu Mar 2008 A1
20080082731 Karamcheti Apr 2008 A1
20080112238 Kim May 2008 A1
20080163033 Yim Jul 2008 A1
20080301532 Uchikawa Dec 2008 A1
20090006667 Lin Jan 2009 A1
20090089544 Liu Apr 2009 A1
20090113219 Aharonov Apr 2009 A1
20090125788 Wheeler May 2009 A1
20090183052 Kanno Jul 2009 A1
20090254705 Abali Oct 2009 A1
20090282275 Yermalayeu Nov 2009 A1
20090287956 Flynn Nov 2009 A1
20090307249 Koifman Dec 2009 A1
20090307426 Galloway Dec 2009 A1
20090310412 Jang Dec 2009 A1
20100031000 Flynn Feb 2010 A1
20100169470 Takashige Jul 2010 A1
20100217952 Iyer Aug 2010 A1
20100229224 Etchegoyen Sep 2010 A1
20100241848 Smith Sep 2010 A1
20100321999 Yoo Dec 2010 A1
20100325367 Kornegay Dec 2010 A1
20100332922 Chang Dec 2010 A1
20110031546 Uenaka Feb 2011 A1
20110055458 Kuehne Mar 2011 A1
20110055471 Thatcher Mar 2011 A1
20110060722 Li Mar 2011 A1
20110072204 Chang Mar 2011 A1
20110099418 Chen Apr 2011 A1
20110153903 Hinkle Jun 2011 A1
20110161784 Selinger Jun 2011 A1
20110191525 Hsu Aug 2011 A1
20110218969 Anglin Sep 2011 A1
20110231598 Hatsuda Sep 2011 A1
20110239083 Kanno Sep 2011 A1
20110252188 Weingarten Oct 2011 A1
20110258514 Lasser Oct 2011 A1
20110289263 McWilliams Nov 2011 A1
20110289280 Koseki Nov 2011 A1
20110292538 Haga Dec 2011 A1
20110296411 Tang Dec 2011 A1
20110299317 Shaeffer Dec 2011 A1
20110302353 Confalonieri Dec 2011 A1
20120017037 Riddle Jan 2012 A1
20120039117 Webb Feb 2012 A1
20120084523 Littlefield Apr 2012 A1
20120089774 Kelkar Apr 2012 A1
20120096330 Przybylski Apr 2012 A1
20120117399 Chan May 2012 A1
20120147021 Cheng Jun 2012 A1
20120151253 Horn Jun 2012 A1
20120159099 Lindamood Jun 2012 A1
20120159289 Piccirillo Jun 2012 A1
20120173792 Lassa Jul 2012 A1
20120203958 Jones Aug 2012 A1
20120210095 Nellans Aug 2012 A1
20120233523 Krishnamoorthy Sep 2012 A1
20120246392 Cheon Sep 2012 A1
20120278579 Goss Nov 2012 A1
20120284587 Yu Nov 2012 A1
20120324312 Moyer Dec 2012 A1
20120331207 Lassa Dec 2012 A1
20130013880 Tashiro Jan 2013 A1
20130016970 Koka Jan 2013 A1
20130018852 Barton Jan 2013 A1
20130024605 Sharon Jan 2013 A1
20130054822 Mordani Feb 2013 A1
20130061029 Huff Mar 2013 A1
20130073798 Kang Mar 2013 A1
20130080391 Raichstein Mar 2013 A1
20130145085 Yu Jun 2013 A1
20130145089 Eleftheriou Jun 2013 A1
20130151759 Shim Jun 2013 A1
20130159251 Skrenta Jun 2013 A1
20130159723 Brandt Jun 2013 A1
20130166820 Batwara Jun 2013 A1
20130173845 Aslam Jul 2013 A1
20130191601 Peterson Jul 2013 A1
20130205183 Fillingim Aug 2013 A1
20130219131 Alexandron Aug 2013 A1
20130227347 Cho Aug 2013 A1
20130238955 D Abreu Sep 2013 A1
20130254622 Kanno Sep 2013 A1
20130318283 Small Nov 2013 A1
20130318395 Kalavade Nov 2013 A1
20130329492 Yang Dec 2013 A1
20140006688 Yu Jan 2014 A1
20140019650 Li Jan 2014 A1
20140025638 Hu Jan 2014 A1
20140082273 Segev Mar 2014 A1
20140082412 Matsumura Mar 2014 A1
20140095769 Borkenhagen Apr 2014 A1
20140095827 Wei Apr 2014 A1
20140108414 Stillerman Apr 2014 A1
20140108891 Strasser Apr 2014 A1
20140164447 Tarafdar Jun 2014 A1
20140164879 Tam Jun 2014 A1
20140181532 Camp Jun 2014 A1
20140195564 Talagala Jul 2014 A1
20140215129 Kuzmin Jul 2014 A1
20140223079 Zhang Aug 2014 A1
20140233950 Luo Aug 2014 A1
20140250259 Ke Sep 2014 A1
20140279927 Constantinescu Sep 2014 A1
20140304452 De La Iglesia Oct 2014 A1
20140310574 Yu Oct 2014 A1
20140359229 Cota-Robles Dec 2014 A1
20140365707 Talagala Dec 2014 A1
20150019798 Huang Jan 2015 A1
20150082317 You Mar 2015 A1
20150106556 Yu Apr 2015 A1
20150106559 Cho Apr 2015 A1
20150121031 Feng Apr 2015 A1
20150142752 Chennamsetty May 2015 A1
20150143030 Gorobets May 2015 A1
20150199234 Choi Jul 2015 A1
20150227316 Warfield Aug 2015 A1
20150234845 Moore Aug 2015 A1
20150269964 Fallone Sep 2015 A1
20150277937 Swanson Oct 2015 A1
20150286477 Mathur Oct 2015 A1
20150294684 Qjang Oct 2015 A1
20150301964 Brinicombe Oct 2015 A1
20150304108 Obukhov Oct 2015 A1
20150310916 Leem Oct 2015 A1
20150317095 Voigt Nov 2015 A1
20150341123 Nagarajan Nov 2015 A1
20150347025 Law Dec 2015 A1
20150363271 Haustein Dec 2015 A1
20150363328 Candelaria Dec 2015 A1
20150372597 Luo Dec 2015 A1
20160014039 Reddy Jan 2016 A1
20160026575 Samanta Jan 2016 A1
20160041760 Kuang Feb 2016 A1
20160048327 Jayasena Feb 2016 A1
20160048341 Constantinescu Feb 2016 A1
20160054922 Awasthi Feb 2016 A1
20160062885 Ryu Mar 2016 A1
20160077749 Ravimohan Mar 2016 A1
20160077764 Ori Mar 2016 A1
20160077968 Sela Mar 2016 A1
20160098344 Gorobets Apr 2016 A1
20160098350 Tang Apr 2016 A1
20160103631 Ke Apr 2016 A1
20160110254 Cronie Apr 2016 A1
20160132237 Jeong May 2016 A1
20160154601 Chen Jun 2016 A1
20160155750 Yasuda Jun 2016 A1
20160162187 Lee Jun 2016 A1
20160179399 Melik-Martirosian Jun 2016 A1
20160188223 Camp Jun 2016 A1
20160188890 Naeimi Jun 2016 A1
20160203000 Parmar Jul 2016 A1
20160224267 Yang Aug 2016 A1
20160232103 Schmisseur Aug 2016 A1
20160234297 Ambach Aug 2016 A1
20160239074 Lee Aug 2016 A1
20160239380 Wideman Aug 2016 A1
20160274636 Kim Sep 2016 A1
20160306699 Resch Oct 2016 A1
20160306853 Sabaa Oct 2016 A1
20160321002 Jung Nov 2016 A1
20160335085 Scalabrino Nov 2016 A1
20160342345 Kankani Nov 2016 A1
20160343429 Nieuwejaar Nov 2016 A1
20160350002 Vergis Dec 2016 A1
20160350385 Poder Dec 2016 A1
20160364146 Kuttner Dec 2016 A1
20160381442 Heanue Dec 2016 A1
20170004037 Park Jan 2017 A1
20170010652 Huang Jan 2017 A1
20170075583 Alexander Mar 2017 A1
20170075594 Badam Mar 2017 A1
20170091110 Ash Mar 2017 A1
20170109199 Chen Apr 2017 A1
20170109232 Cha Apr 2017 A1
20170123655 Sinclair May 2017 A1
20170147499 Mohan May 2017 A1
20170161202 Erez Jun 2017 A1
20170162235 De Jun 2017 A1
20170168986 Sajeepa Jun 2017 A1
20170177217 Kanno Jun 2017 A1
20170177259 Motwani Jun 2017 A1
20170185498 Gao Jun 2017 A1
20170192848 Pamies-Juarez Jul 2017 A1
20170199823 Hayes Jul 2017 A1
20170212708 Suhas Jul 2017 A1
20170220254 Warfield Aug 2017 A1
20170221519 Matsuo Aug 2017 A1
20170228157 Yang Aug 2017 A1
20170242722 Qiu Aug 2017 A1
20170249162 Tsirkin Aug 2017 A1
20170262176 Kanno Sep 2017 A1
20170262178 Hashimoto Sep 2017 A1
20170262217 Pradhan Sep 2017 A1
20170269998 Jung Sep 2017 A1
20170279460 Camp Sep 2017 A1
20170285976 Durham Oct 2017 A1
20170286311 Juenemann Oct 2017 A1
20170322888 Booth Nov 2017 A1
20170344470 Yang Nov 2017 A1
20170344491 Pandurangan Nov 2017 A1
20170353576 Guim Bernat Dec 2017 A1
20180024772 Madraswala Jan 2018 A1
20180024779 Kojima Jan 2018 A1
20180033491 Marelli Feb 2018 A1
20180052797 Barzik Feb 2018 A1
20180067847 Oh Mar 2018 A1
20180069658 Benisty Mar 2018 A1
20180074730 Inoue Mar 2018 A1
20180076828 Kanno Mar 2018 A1
20180088867 Kaminaga Mar 2018 A1
20180107591 Smith Apr 2018 A1
20180113631 Zhang Apr 2018 A1
20180143780 Cho May 2018 A1
20180150640 Li May 2018 A1
20180165038 Authement Jun 2018 A1
20180165169 Camp Jun 2018 A1
20180165340 Agarwal Jun 2018 A1
20180167268 Liguori Jun 2018 A1
20180173620 Cen Jun 2018 A1
20180188970 Liu Jul 2018 A1
20180189175 Ji Jul 2018 A1
20180189182 Wang Jul 2018 A1
20180212951 Goodrum Jul 2018 A1
20180219561 Litsyn Aug 2018 A1
20180226124 Perner Aug 2018 A1
20180232151 Badam Aug 2018 A1
20180260148 Klein Sep 2018 A1
20180270110 Chugtu Sep 2018 A1
20180293014 Ravimohan Oct 2018 A1
20180300203 Kathpal Oct 2018 A1
20180321864 Benisty Nov 2018 A1
20180322024 Nagao Nov 2018 A1
20180329776 Lai Nov 2018 A1
20180336921 Ryun Nov 2018 A1
20180349396 Blagojevic Dec 2018 A1
20180356992 Lamberts Dec 2018 A1
20180357126 Dhuse Dec 2018 A1
20180373428 Kan Dec 2018 A1
20180373655 Liu Dec 2018 A1
20180373664 Vijayrao Dec 2018 A1
20190012111 Li Jan 2019 A1
20190050327 Li Feb 2019 A1
20190065085 Jean Feb 2019 A1
20190073261 Halbert Mar 2019 A1
20190073262 Chen Mar 2019 A1
20190087089 Yoshida Mar 2019 A1
20190087115 Li Mar 2019 A1
20190087328 Kanno Mar 2019 A1
20190116127 Pismenny Apr 2019 A1
20190171532 Abadi Jun 2019 A1
20190172820 Meyers Jun 2019 A1
20190196748 Badam Jun 2019 A1
20190196907 Khan Jun 2019 A1
20190205206 Hornung Jul 2019 A1
20190212949 Pletka Jul 2019 A1
20190220392 Lin Jul 2019 A1
20190227927 Miao Jul 2019 A1
20190272242 Kachare Sep 2019 A1
20190278654 Kaynak Sep 2019 A1
20190317901 Kachare Oct 2019 A1
20190339998 Momchilov Nov 2019 A1
20190377632 Oh Dec 2019 A1
20190377821 Pleshachkov Dec 2019 A1
20190391748 Li Dec 2019 A1
20200004456 Williams Jan 2020 A1
20200004674 Williams Jan 2020 A1
20200013458 Schreck Jan 2020 A1
20200042223 Li Feb 2020 A1
20200042387 Shani Feb 2020 A1
20200089430 Kanno Mar 2020 A1
20200097189 Tao Mar 2020 A1
20200143885 Kim May 2020 A1
20200159425 Flynn May 2020 A1
20200167091 Haridas May 2020 A1
20200225875 Oh Jul 2020 A1
20200242021 Gholamipour Jul 2020 A1
20200250032 Goyal Aug 2020 A1
20200257598 Yazovitsky Aug 2020 A1
20200326855 Wu Oct 2020 A1
20200328192 Zaman Oct 2020 A1
20200348888 Kim Nov 2020 A1
20200387327 Hsieh Dec 2020 A1
20200401334 Saxena Dec 2020 A1
20200409791 Devriendt Dec 2020 A1
20210010338 Santos Jan 2021 A1
20210089392 Shirakawa Mar 2021 A1
20210103388 Choi Apr 2021 A1
Foreign Referenced Citations (4)
Number Date Country
2003022209 Jan 2003 JP
2011175422 Sep 2011 JP
9418634 Aug 1994 WO
1994018634 Aug 1994 WO
Non-Patent Literature Citations (19)
Entry
C. Wu, D. Wu, H. Chou and C. Cheng, “Rethink the Design of Flash Translation Layers in a Component-Based View”, in IEEE Acess, vol. 5, pp. 12895-12912, 2017.
Po-Liang Wu, Yuan-Hao Chang and T. Kuo, “A file-system-aware FTL design for flash-memory storage systems,” 2009, pp. 393-398.
S. Choudhuri and T. Givargis, “Preformance improvement of block based NAND flash translation layer”, 2007 5th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and Systems Synthesis (CODES+ISSS). Saizburg, 2007, pp. 257-262.
A. Zuck, O. Kishon and S. Toledo. “LSDM: Improving the Preformance of Mobile Storage with a Log-Structured Address Remapping Device Driver”, 2014 Eighth International Conference on Next Generation Mobile Apps, Services and Technologies, Oxford, 2014, pp. 221-228.
J. Jung and Y. Won, “nvramdisk: A Transactional Block Device Driver for Non-Volatile RAM”, in IEEE Transactions on Computers, vol. 65, No. 2, pp. 589-600, Feb. 1, 2016.
Te I et al. (Pensieve: a Machine Assisted SSD Layer for Extending the Lifetime: (Year: 2018).
ARM (“Cortex-R5 and Cortex-R5F”, Technical reference Manual, Revision r1p1) (Year:2011).
https://web.archive.org/web/20071130235034/http://en.wikipedia.org:80/wiki/logical_block_addressing Wikipedia screen shot retriefed on wayback Nov. 20, 2007 showing both physical and logical addressing used historically to access data on storage devices (Year: 2007).
Ivan Picoli, Carla Pasco, Bjorn Jonsson, Luc Bouganim, Philippe Bonnet. “uFLIP-OC: Understanding Flash I/O Patterns on Open-Channel Solid-State Drives.” APSys'17, Sep. 2017, Mumbai, India, pp. 1-7, 2017, <10.1145/3124680.3124741>. <hal-01654985>.
EMC Powerpath Load Balancing and Failover Comparison with native MPIO operating system solutions. Feb. 2011.
Tsuchiya, Yoshihiro et al. “DBLK: Deduplication for Primary Block Storage”, MSST 2011, Denver, CO, May 23-27, 2011 pp. 1-5.
Chen Feng, et al. “CAFTL: A Content-Aware Flash Translation Layer Enhancing the Lifespan of Flash Memory based Solid State Devices”< FAST'11, San Jose, CA Feb. 15-17, 2011, pp. 1-14.
Wu, Huijun et al. “HPDedup: A Hybrid Prioritized Data Deduplication Mechanism for Primary Storage in the Cloud”, Cornell Univ. arXiv: 1702.08153v2[cs.DC], Apr. 16, 2017, pp. 1-14https://www.syncids.com/#.
WOW: Wise Ordering for Writes—Combining Spatial and Temporal Locality in Non-Volatile Caches by Gill (Year: 2005).
Helen H. W. Chan et al. “HashKV: Enabling Efficient Updated in KV Storage via Hashing”, https://www.usenix.org/conference/atc18/presentation/chan, (Year: 2018).
S. Hong and D. Shin, “NAND Flash-Based Disk Cache Using SLC/MLC Combined Flash Memory,” 2010 International Workshop on Storage Network Architecture and Parallel I/Os, Incline Village, NV, 2010, pp. 21-30.
Arpaci-Dusseau et al. “Operating Systems: Three Easy Pieces”, Originally published 2015; Pertinent: Chapter 44; flash-based SSDs, available at http://pages.cs.wisc.edu/˜remzi/OSTEP/.
Jimenex, X., Novo, D. and P. Ienne, “Pheonix:Reviving MLC Blocks as SLC to Extend NAND Flash Devices Lifetime, ”Design, Automation & Text in Europe Conference & Exhibition (DATE), 2013.
Yang, T. Wu, H. and W. Sun, “GD-FTL: Improving the Performance and Lifetime of TLC SSD by Downgrading Worn-out Blocks,” IEEE 37th International Performance Computing and Communications Conference (IPCCC), 2018.
Related Publications (1)
Number Date Country
20220058136 A1 Feb 2022 US