Much effort is currently being devoted to the development of optical networking systems as an alternative to electronic-based networks. In this emerging technology, pulses of light are used instead of currents of electrons to carry out such diverse networking functions as data transmission, data routing, and other forms of data communication and processing. Such functions are achieved with a number of discrete components, but integral to virtually all developing optical networking systems are optical-waveguide structures that are used to guide light being propagated from one location to another. For example, in one specific application that is being aggressively developed, optical waveguides are used to confine and carry optical signals in conformity with a dense wavelength division multiplexed (“DWDM”) protocol. Such a protocol increases the amount of information carried with individual optical signals by multiplexing discrete wavelength components, thereby increasing the effective bandwidth that may be accommodated with the optical networking system.
To illustrate the use of optical waveguides in such systems,
As more wavelength components are incorporated into optical-waveguide channels within DWDM systems, there is a corresponding increase in demand for optical components to perform routing, switching, add/drop, and other functions. A variety of photonic components have the capacity to perform such functions, including, for example, filters, modulators, amplifiers, couplers, multiplexers, cross connects, arrayed waveguide gratings, power splitters, star couplers, and others. As optical networking technology matures, however, one goal is to integrate various photonic components monolithically onto a single structure, such as a silicon-chip or glass substrate.
A number of efforts have been made at such development, but attempts to integrate optical waveguides and photonic components onto a single chip have faced significant challenges. Some approaches have attempted to modify techniques for monolithic integration of electronic components, but have encountered a variety of difficulties. These difficulties often arise from fundamental differences between photonic and electronic applications. For example, the scale of photonics applications is much greater than the scale for electronics applications, sometimes as much as 1-2 orders of magnitude. This difference in scale results in a need to deposit much thicker films in photonics applications, with films commonly having thicknesses of several to tens of microns.
One consequence of this increased thickness is much greater variations in uniformity of the structures. In addition, techniques for monolithic integration of electronic components have been sharply focused on optimizing the dielectric constant of materials because of its importance in electronic applications. In contrast, photonic applications are instead sensitive to optical characteristics of materials, such as its refractive index and birefringence. For a typical waveguide made with SiO2 films, the core and cladding layers may have refractive indices that differ by less than 1%; sometimes product specifications use five digits of significance to define the required refractive index. It has often been found that the methods and materials used for producing structures in electronic applications simply do not meet the optical requirements of photonic applications.
One prior-art technique that has been widely used in producing optical waveguides is flame hydrolysis. This technique is not only very costly, but has, in practice with large substrates, been found to produce structures with poor uniformity. Other techniques have been used in attempts at mitigating thermal strain by separately depositing a lower cladding layer, over which optical cores are formed, and subsequently depositing an upper cladding layer over and between the optical cores. One specific technique that has been used in such efforts is plasma-enhanced chemical-vapor deposition (“PECVD”). An example of an optical-waveguide structure formed using PECVD is shown in
The cross sectional view of the structure 110 provided in
There is accordingly a persistent need for improved methods and systems for manufacturing optical waveguides that meet stringent refractive-index requirements, are resistant to cracking, and are amenable to efficient use in production environments.
These criteria are met in different embodiments of the invention by incorporating a monitoring device within a process chamber for monitoring one or more parameters during processing of films, such as during fabrication of an optical waveguide. The information collected by the monitoring device is used in a feedback arrangement to adjust process conditions and thereby achieve the desired optical properties of the films as they are deposited. The feedback arrangement generally relies on previously determined correlations among the parameters measured with the monitoring device, the desired optical characteristics, and the process conditions. Such correlations may be managed by a trained evaluation system that has self-correcting capabilities so that accumulation of additional data improves its performance, such as implemented with an expert system or neural network. The feedback arrangement permits the formation of stepped-index optical waveguides with narrowly constrained refractive-index properties for the core and cladding, or permits the formation of graded-index optical waveguides in which the core has a refractive index that varies in a precisely controlled manner.
Thus, in one embodiment, a method is provided for processing a film over a substrate in a process chamber. A plasma is formed in the process chamber and a process gas suitable for processing the film is flowed into the process chamber in accordance with a predetermined algorithm specifying process conditions. The process gas may include a silicon-containing gas and an oxygen-containing gas to deposit a silicate glass, which may in some instances also be doped to obtain specifically desired optical properties. The predetermined algorithm may be optimized to control a vertical profile of the film, or in some embodiments may be optimized to control a horizontal profile of the film. A parameter is monitored during processing of the film over a thickness greater than 3 μm so that the process conditions may be changed in accordance with a correlation among a value of the parameter, an optical property of the film, and the process conditions. Such changes may be effected by the trained evaluation system. The parameter may comprise a process parameter, such as one related to plasma diagnostics, or may comprise a film-property parameter, such as may determined with a reflectometry or ellipsometry measurement. In one embodiment, the parameter comprises a stress of the film. In another embodiment, the parameter comprises a uniformity of the film.
The methods of the present invention may be embodied in a thick-film processing system having a process chamber, a plasma-generating system, a substrate holder, a gas-delivery system, pressure-control system, a sensor, and a controller. A memory is coupled with the controller and includes a computer-readable storage medium having a computer-readable program embodied therein for directing operation of the thick-film processing system in accordance with the embodiments described above.
A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings.
Embodiments of the invention permit the deposition of thick films over a substrate in a process chamber while maintaining strict control over one or more optical properties as the films are being deposited. As used herein, a “thick” film has a thickness greater than 3 μm and, as such, is 1-2 orders of magnitude thicker in the photonics applications described herein than is used in electronics applications. In some embodiments, the films are deposited with thicknesses greater than 5 μm. Embodiments of the invention permit not only providing careful control of optical properties in the vertical direction as the film is deposited, but also in the horizontal direction across the wafer surface. Such characteristics are useful, for example, in controlling the two-dimensional uniformity of the refractive index for the wafer. Such two-dimensional control is also provided in embodiments of the invention to ensure uniformity in global thickness, dopant-concentration uniformity, and stress uniformity, all of which may be controlled more precisely than in electronics applications.
This control may be achieved according to embodiments of the invention by using one or more of the following mechanisms. First, embodiments of the invention may begin with a predetermined algorithm that is structured to control the vertical profile of a film. Second, in situ monitoring and feedback of process conditions and/or film properties may be used to modify the algorithm to provide for more precise control over such properties. In some instances, a neural-network learning algorithm may be included in defining such feedback, although other types of artificial-intelligence techniques may alternatively be used.
These mechanisms are implemented in embodiments of the invention with a trained evaluation system that is integrated with the processing apparatus, as indicated schematically in
Initial deposition of a film may proceed with the predetermined algorithm to control the vertical profile. Then, as the film is being deposited, the value of a parameter that may be correlated with an optical property of the film and the process conditions 216 is monitored with a parameter monitoring device 208, which may be included within the process chamber 204. In some embodiments, the parameter monitoring device 208 may comprise a device that measures a property of the film, such as a reflectometer or ellipsometer. In other embodiments, the parameter monitoring device 208 may comprise a plasma-diagnostics system to measure RF match output parameters, such as RF impedance, load and tune capacitance, RF current, peak-to-peak voltage, DC bias voltage, etc. The correlation between the value of the parameter, the optical property of the film, and the process conditions is drawn with the trained evaluation system 220, which may rely on data stored in a knowledge database 224 for making the correlation. For example, the trained evaluation system 220 may comprise an expert system or neural network that has been prepared to evaluate the monitored parameter, to determine what the value of the monitored parameter should be to achieve the desired optical property of the film, and to determine how to modify the process conditions to achieve or maintain the appropriate value of the monitored parameter. Such monitoring and evaluation may be performed throughout the deposition of the thick film, either periodically or continuously, to achieve very tight control over the optical properties of the fully deposited film.
Any of a variety of different types of CVD apparatus may be incorporated into embodiments of the invention. For instance, the CVD apparatus may comprise a PECVD apparatus configured for deposition of thick films, etching of thick films, annealing of thick films, and/or any other optical application. Examples of suitable processing chambers are described in detail in commonly assigned U.S. Pat. Nos. 5,558,717 and 5,853,607, the entire disclosures of which are incorporated herein by reference in their entireties.
To configure the apparatus for deposition of thick films, a number of modifications may be made when compared with similar CVD apparatus used for the deposition of relatively thin films. For example, the optical properties of thick films are known to be very sensitive at the edges of the substrate. It is accordingly desirable to expand the plasma in the horizontal direction across the substrate to improve uniformity in a number of aspects, such as thickness, dopant concentration, and stress. The substrate may be maintained in a process chamber on a pedestal with a clamping ring. In one embodiment, this configuration is flattened and extended horizontally in comparison with thin-film deposition configurations, allowing improvements in uniformity with resultant improvements in optical properties at the edges of the wafer.
Similarly, deposition of thick films tends to produce films that are loose at the substrate edges when configurations appropriate for thin-film deposition are used. This edge film quality results in the accumulation of loose byproducts, which reduce the pumping capability of the deposition system. The inventors have found that increasing an electrode gap opening used in generating the plasma results in improved film quality, particularly at the edges where the accumulation of loose byproducts is reduced. Accordingly, in some embodiments of the invention a PECVD apparatus is used with an extended and flattened pedestal and with an increased electrode gap opening, both of which improve the deposition of thick films. These approaches may also be extended to accommodate even larger deposition areas in some embodiments.
The processing of a film can be implemented using a computer program product that is executed by a controller that runs system control software, an exemplary structure for which is shown in
Each process set includes a predetermined algorithm that acts to control the vertical profile of a film as it is processed. Also, as described in more detail below, these process conditions 216 may be modified interactively during the process with the trained evaluation system 220 to effect more precise control. The process selector subroutine 373 identifies (i) the desired process chamber and (ii) the desired process set of initial process conditions 216 for operating the process chamber to perform the desired process. The initial process conditions 216 of a given process set may comprise, for example, process gas composition and flow rates, temperature, pressure, plasma conditions such as RF power levels and the low frequency RF frequency, cooling gas pressure, and chamber wall temperature. These initial process conditions are provided to the user with a suitable interface.
A process sequencer subroutine 375 comprises program code for accepting the identified process chamber and set of initial process conditions from the process selector subroutine 373, and for controlling operation of the various process chambers. Multiple users can enter process set numbers and process chamber numbers, or a user can enter multiple process set numbers and process chamber numbers, so the sequencer subroutine 375 operates to schedule the selected processes in the desired sequence. Preferably, the sequencer subroutine 375 includes a program code to perform the steps of (i) monitoring the operation of the process chambers to determine if the chambers are being used, (ii) determining what processes are being carried out in the chambers being used, and (iii) executing the desired process based on availability of a process chamber and type of process to be carried out. Conventional methods of monitoring the process chambers can be used, such as polling. When scheduling which process is to be executed, sequencer subroutine 375 takes into consideration the present condition of the process chamber being used in comparison with the desired process conditions for a selected process, or the “age” of each particular user entered request, or any other relevant factor a system programmer desires to include for determining scheduling priorities.
Once the sequencer subroutine 375 determines which process chamber and process set combination is going to be executed next, the sequencer subroutine 375 initiates execution of the process set by passing the particular process set to a chamber manager subroutine 377a-c, which controls multiple processing tasks in a process chamber according to the process set determined by the sequencer subroutine 375. For example, the chamber manager subroutine 377a comprises program code for optical-waveguide deposition process operations in the process chamber. The chamber manager subroutine 377 also controls execution of various chamber component subroutines that control operation of the chamber components necessary to carry out the selected process set. Examples of chamber component subroutines are substrate positioning subroutine 380, process gas control subroutine 383, monitoring-device control subroutine 384, pressure control subroutine 385, heater control subroutine 387, and plasma control subroutine 390. Those having ordinary skill in the art will readily recognize that other chamber control subroutines can be included depending on what processes are to be performed in the process chamber.
In operation, the chamber manager subroutine 377a selectively schedules or calls the process component subroutines in accordance with the particular process set being executed. The chamber manager subroutine 377a schedules the process component subroutines much like the sequencer subroutine 375 schedules which process chamber and process set are to be executed next. Typically, the chamber manager subroutine 377a includes steps of monitoring the various chamber components, determining which components need to be operated based on the process parameters for the process set to be executed, and causing execution of a chamber component subroutine responsive to the monitoring and determining steps.
The chamber manager subroutine 377a also receives instructions from the trained evaluation system 220 to modify the process conditions. Such modifications are determined by the trained evaluation system 220 from data received by the monitoring device 327 to ensure that certain desired characteristics are achieved during processing. The instructions from the trained evaluation system 220 may provide continuous or periodic updates of the process conditions. The effect of the interaction between the trained evaluation system 220 and the chamber manager 377a results in a process that may individualize processing characteristics rather than strictly following a recipe. Each process begins by implementing the initial process conditions specified, but causes individualized variations in those process conditions for each implementation. These variations may be different every time the process is executed, inherently taking account of subtle differences in external parameters that may affect the process. A consequence of including such individualized variations through the process is greater uniformity in the results. Such improved uniformity may comprise improved uniformity in global thickness, improved dopant-concentration uniformity, improved stress uniformity, and the like, in different embodiments.
Operation of particular chamber component subroutines will now be described. The substrate positioning subroutine 380 comprises program code for controlling chamber components that are used to load the substrate at a desired height in the chamber. The process gas control subroutine 383 has program code for controlling process gas composition and flow rates. The process gas control subroutine 383 controls the open/close position of safety shut-off valves, and also ramps up/down mass flow controllers to obtain the desired gas flow rate. The process gas control subroutine 383 is invoked by the chamber manager subroutine 377a, as are all chamber component subroutines, and receives a specification of process conditions from the chamber manager subroutine defining the desired gas flow rates. Typically, the process gas control subroutine 383 operates by opening gas supply lines and repeatedly (i) reading the necessary mass flow controllers, (ii) comparing the readings to the desired flow rates received from the chamber manager subroutine 377a and perhaps modified by the trained evaluation system 216, and (iii) adjusting the flow rates of the gas supply lines as necessary. Furthermore, the process gas control subroutine 383 includes steps for monitoring the gas flow rates for unsafe rates and for activating the safety shut-off valves when an unsafe condition is detected.
In some processes, an inert gas such as helium or argon is flowed into the chamber to stabilize the pressure in the chamber before reactive process gases are introduced. For these processes, the process gas control subroutine 383 is programmed to include steps for flowing the inert gas into the chamber for an amount of time necessary to stabilize the pressure in the chamber, and then the steps described above would be carried out. Additionally, when a process gas is to be vaporized from a liquid precursor, for example, tetraethylorthosilane (“TEOS”), the process gas control subroutine 383 is written to include steps for bubbling a delivery gas, such as helium, through the liquid precursor in a bubbler assembly or introducing a carrier gas, such as helium or nitrogen, to a liquid injection system.
The monitoring-device control subroutine 384 comprises program code for controlling the monitoring device. The specific nature of the code may depend on what type of monitoring device is being controlled and, in some instances, the program code may include provisions for controlling a variety of different types of monitoring devices. If the monitoring device comprises a reflectometer, for example, the monitoring device functions by reflecting polychromatic light off the substrate and spectrally analyzing the reflected spectrum; accordingly, the program code specifies when measurements are to be taken and which light source is to be used if the reflectometer has multiple light sources. If the monitoring device comprises an ellipsometer, the device functions by reflecting monochromatic light off the substrate and permits calculation of the thickness of the substrate; the program code thus specifies when measurements are to be taken and the wavelength of the light to be used. In some cases, the monitoring device may comprise a combined ellipsometer/reflectometer, in which case the program code additionally coordinates whether to invoke the ellipsometry functions or the reflectometry functions.
The pressure control subroutine 385 comprises program code for controlling the pressure in the chamber by regulating the size of an opening of a throttle valve in an exhaust system of the chamber. The size of the opening of the throttle valve is set to control the chamber pressure to the desired level in relation to the total process gas flow, size of the process chamber, and pumping setpoint pressure for the exhaust system. When the pressure control subroutine 385 is invoked, the desired, or target, pressure level is received from the chamber manager subroutine 377a. The pressure control subroutine 385 operates to measure the pressure in the chamber by reading one or more conventional pressure manometers connected to the chamber, to compare the measure value(s) to the target pressure, to obtain PID (proportional, integral, and differential) values from a stored pressure table corresponding to the target pressure, and to adjust the throttle valve according to the PID values obtained from the pressure table. Alternatively, the pressure control subroutine 385 can be written to open or close the throttle valve to a particular opening size to regulate the chamber to the desired pressure. Changes in pressure during the process may be made in accordance with instructions received from the trained evaluation system 216.
The heater control subroutine 387 comprises program code for controlling the current to a heating unit that is used to heat the substrate 320. The heater control subroutine 387 is also invoked by the chamber manager subroutine 377a and receives a target, or set-point, temperature parameter. The heater control subroutine 387 measures the temperature by measuring voltage output of a thermocouple located in a pedestal that supports the substrate within the process chamber, comparing the measured temperature to the set-point temperature, and increasing or decreasing current applied to the heating unit to obtain the set-point temperature. The temperature is obtained from the measured voltage by looking up the corresponding temperature in a stored conversion table, or by calculating the temperature using a fourth-order polynomial. When an embedded loop is used to heat the pedestal, the heater control subroutine 387 gradually controls a ramp up/down of current applied to the loop. Additionally, a built-in fail-safe mode can be included to detect process safety compliance, and can shut down operation of the heating unit if the process chamber is not properly set up. The temperature of the substrate may be modified during the process in accordance with instructions received from the trained evaluation system 216.
The plasma control subroutine 390 comprises program code for setting the low and high frequency RF power levels applied to the process electrodes in the chamber and for setting the low frequency RF frequency employed. Similar to the previously described chamber component subroutines, the plasma control subroutine 390 is invoked by the chamber manager subroutine 377a and its operation may be modified during the process in accordance with instructions from the trained evaluation system 216.
The above reactor description is mainly for illustrative purposes, and the methods of the present invention are not limited to any specific apparatus or to any specific plasma excitation method.
The above overview of how the program code implements processing of films in accordance with embodiments of the invention is summarized with the flow diagram provided in
Such a neural-network-based algorithm may use a pattern-recognition algorithm to identify which values of the process conditions may be most effectively manipulated to achieve the desired properties of deposited films. In a specific implementation of the pattern-recognition algorithm, reliability is thus ensured by training the evaluation system 220 with a set of certifiable data that accounts for different factors that bear on the properties of the deposited films as defined by specific measurable parameters. Some examples of these data are discussed specifically below. In particular, a variety of sample process conditions are used to determine the effect on film properties, such as on optical film properties, experimentally. The resulting correlations between the measurable parameters corresponding to the film properties and the process conditions are used to train the evaluation system 220. The results are stored in the knowledge database 224 for use when the evaluation system is presented 220 with new data. The ability to interpolate among known values, and to modify the knowledge database 224 with new results, permits the evaluation system 220 to determine appropriate process conditions reliably and to be self-correcting as new data are accumulated.
The neural network acts in an adaptive manner. For example, the network may instruct the chamber manager to alter process conditions in a certain manner with the expectation that a certain film property will result. If the film property is subsequently measured and found to differ from the expected property, such as by having too large a refractive index, this information may be fed back to the network, with the network then modifying itself so that over time it improves its accuracy in defining process conditions. Other types of trained evaluation systems may alternatively be used. For example, in one embodiment the trained evaluation system comprises an expert system. In other embodiments, still other artificial-intelligence systems known to those of skill in the art may be adapted to the functions described herein.
Exemplary Film Deposition Results
A number of experiments have been carried out to illustrate effects that may be used by the trained evaluation system. Results are presented specifically for experiments using deposition of undoped silicate glass (“USG”), and the inventors have verified that similar trends exist for the deposition of doped silicate glasses, including phosphosilicate glass (“PSG”) and borophosphosilicate glass (“BPSG”). In a specific embodiment set forth below, optical waveguides are formed using a combination of USG, PSG, and BPSG.
The experiments described in connection with
The results of
The results of
The success of implementing the power stepping is illustrated with the results provided in
As shown in
The results in
Also, while the results in
as a function of the radius r through the core. Such a specific graded-index variation in the waveguide may be achieved with the feedback provided in embodiments of the invention and cannot easily be realized with static process conditions.
In a specific embodiment, the methods and systems of the invention are used to form an optical waveguide having the structure shown in
After reading the above description, other variations will be apparent to those of skill in the art without departing from the spirit of the invention. For example, while the invention has been described in detail for a plasma deposition process, the principles of the invention may also be used in other nonplasma deposition processes such as MOCVD processes. Also, while the description has focussed on deposition of silicon-containing thick films, the methods and systems of the invention may also be used for deposition of non-silicon-containing thick films, such as III-V and/or II-VI semiconductor thick films. These equivalents and alternatives are intended to be included within the scope of the present invention. Therefore, the scope of this invention should not be limited to the embodiments described, but should instead be defined by the following claims.