Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration

Information

  • Patent Grant
  • 8642361
  • Patent Number
    8,642,361
  • Date Filed
    Wednesday, April 25, 2012
    12 years ago
  • Date Issued
    Tuesday, February 4, 2014
    10 years ago
Abstract
A method for large scale manufacture of photovoltaic devices includes loading a substrate into a load lock station and transferring the substrate in a controlled ambient to a first process station. The method includes using a first physical deposition process in the first process station to cause formation of a first conductor layer overlying the surface region of the substrate. The method includes transferring the substrate to a second process station, and using a second physical deposition process in the second process station to cause formation of a second layer overlying the surface region of the substrate. The method further includes repeating the transferring and processing until all thin film materials of the photovoltaic devices are formed. In an embodiment, the invention also provides a method for large scale manufacture of photovoltaic devices including feed forward control.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to photovoltaic materials. More particularly, the present invention provides a method and system for large scale manufacture of multi-junction and single-junction solar modules using integrated manufacturing systems for thin and thick film photovoltaic materials. Merely by way of example, the present method and structure have been implemented using a solar module having multiple thin film materials, but it would be recognized that the invention may have other configurations.


From the beginning of time, human beings have been challenged to find way of harnessing energy. Energy comes in the forms such as petrochemical, hydroelectric, nuclear, wind, biomass, solar, and more primitive forms such as wood and coal. Over the past century, modern civilization has relied upon petrochemical energy as an important source. Petrochemical energy includes gas and oil. Gas includes lighter forms such as butane and propane, commonly used to heat homes and serve as fuel for cooking. Gas also includes gasoline, diesel, and jet fuel, commonly used for transportation purposes. Heavier forms of petrochemicals can also be used to heat homes in some places. Unfortunately, petrochemical energy is limited and essentially fixed based upon the amount available on the planet Earth. Additionally, as more human beings begin to drive and use petrochemicals, it is becoming a rather scarce resource, which will eventually run out over time.


More recently, clean sources of energy have been desired. An example of a clean source of energy is hydroelectric power. Hydroelectric power is derived from electric generators driven by the force of water that has been held back by large dams such as the Hoover Dam in Nevada. The electric power generated is used to power up a large portion of Los Angeles Calif. Other types of clean energy include solar energy. Specific details of solar energy can be found throughout the present background and more particularly below.


Solar energy generally converts electromagnetic radiation from our sun to other useful forms of energy. These other forms of energy include thermal energy and electrical power. For electrical power applications, solar cells are often used. Although solar energy is clean and has been successful to a point, there are still many limitations before it becomes widely used throughout the world. As an example, one type of solar cell uses crystalline materials, which form from semiconductor material ingots. These crystalline materials include photo-diode devices that convert electromagnetic radiation into electrical current. Crystalline materials are often costly and difficult to make on a wide scale. Additionally, devices made from such crystalline materials have low energy conversion efficiencies. Other types of solar cells use “thin film” technology to form a thin film of photosensitive material to be used to convert electromagnetic radiation into electrical current. Similar limitations exist with the use of thin film technology in making solar cells. That is, efficiencies are often poor. Additionally, film reliability is often poor and cannot be used for extensive periods of time in conventional environmental applications. There have been attempts to form heterojunction cells using a stacked configuration. Although somewhat successful, it is often difficult to match currents between upper and lower solar cells. These and other limitations of these conventional technologies can be found throughout the present specification and more particularly below.


From the above, it is seen that improved techniques for manufacturing photovoltaic materials and resulting devices are desired.


BRIEF SUMMARY OF THE INVENTION

The present invention relates generally to photovoltaic materials. More particularly, the present invention provides a method and system for large scale manufacture of multi-junction and single-junction solar module using integrated manufacturing system and method for thin and thick film photovoltaic materials. Merely by way of example, the present method and structure have been implemented using a solar module having multiple thin film materials, but it would be recognized that the invention may have other configurations.


According to a specific embodiment, the invention provides system for manufacturing a photovoltaic device. The system includes a first load lock station and a second load lock station. The system also includes a plurality of process stations arranged in a serial configuration between the first and the second load lock stations. The plurality of process stations numbered from 1 through N, where N is an integer greater than 2. In a specific embodiment, the system includes a transfer station coupled between two adjacent process stations.


According to another embodiment, the invention provides a system for manufacturing a photovoltaic device. The system includes a load lock station and a plurality of process station. Each of the plurality of process stations being coupled to the load lock station. In a specific embodiment, the system also includes a transport station coupled between a first process station and the load lock station.


According to other embodiments of the invention, various methods are provided for large scale manufacture of photovoltaic devices. In a specific embodiment, the method includes loading a substrate into a load lock station and transferring the substrate in a controlled ambient to a first process station. The method includes using a first physical deposition process in the first process station to cause formation of a first conductor layer overlying the surface region of the substrate. The method includes transferring the substrate to a second process station, and using a second physical deposition process in the second process station to cause formation of a second layer overlying the surface region of the substrate. The method further includes repeating the transferring and processing until all thin film materials of the photovoltaic devices are formed.


In another embodiment, the invention also provides a method for large scale manufacture of photovoltaic modules including feed forward control. That is, the method includes in-situ monitoring of the physical, electrical, and optical properties of the thin films. These properties are used to determine or adjust process conditions for subsequent processes.


In an alternative embodiment, the present invention provides a system for large scale manufacture of thin film photovoltaic modules. The system includes a plurality of chambers configured to hold a substrate subjecting one or more thin film processes for manufacture of a thin film photovoltaic module. The substrate is optically transparent and has a lateral dimension of 1.5 meter and greater. The system further includes one or more load locks coupling to the plurality of chambers for loading the substrate into/out of each chamber. Additionally, the system includes a transfer tool configured to transfer the substrate into/out of each of the plurality of chambers via at least one of the one or more load locks. Embodiments of the invention provide that at least some of the plurality of chambers are configured to form a copper-indium composite material with Cu-rich stoichemistry in terms of a Cu:In ratio greater than 1.2 overlying an electrode layer on the substrate and at least one of the plurality of chambers is configured to subject the copper-indium composite material to a thermal process in a sulfur-bearing environment to form a chalcogenide structure photovoltaic film.


In yet another embodiment, the present invention provides a method for manufacture of thin film photovoltaic modules in a system with multi-chamber configuration. The method includes providing a substrate into a first chamber of the system with multi-chamber configuration. The substrate is optically transparent and has a lateral dimension of 1.5 meter and greater. Additionally, the method includes forming an electrode layer overlying the substrate in the first chamber and transferring the substrate out of the first chamber for patterning the electrode layer. The method further includes transferring the substrate with the patterned electrode layer in a second chamber of the system with multi-chamber configuration to form a copper (Cu)-bearing material layer overlying the electrode layer. Furthermore, the method includes transferring the substrate to a third chamber of the system with multi-chamber configuration to form an indium (In) layer overlying the copper-bearing material layer, which correspondingly leads to a formation of a Cu—In composite film with Cu-rich stoichiometry in terms of a Cu:In atomic ratio of 1.2:1 and greater. Moreover, the method includes subjecting the Cu—In composite film to a thermal treatment process in a fourth chamber of the system with multi-chamber configuration. The fourth chamber comprises an environment including sulfur-bearing species where the Cu—In composite film is transformed into a copper-indium-disulfide material. The method also includes forming a photovoltaic absorber layer for a thin film photovoltaic module using the copper-indium-disulfide material.


Various additional objects, features and advantages of the present invention can be more fully appreciated with reference to the detailed description and accompanying drawings that follow.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a simplified view diagram of a system for large scale manufacture of thin film photovoltaic devices according to an embodiment of the present invention;



FIG. 1B is a simplified view diagram of a system for large scale manufacture of thin film photovoltaic devices according to an alternative embodiment of the present invention;



FIG. 2 is a simplified view diagram of a control system for the system for large scale manufacture of thin film photovoltaic devices of FIG. 1 according to an embodiment of the present invention;



FIG. 3 is a simplified view diagram of a single physical vapor deposition tool which can be part of a system for large scale manufacture of thin film photovoltaic devices according to another embodiment of the present invention;



FIG. 4 is a simplified flow chart illustrating a method for large scale manufacture of thin film photovoltaic devices according to an embodiment of the present invention;



FIG. 5 is a simplified flow chart illustrating a method for large scale manufacture of thin film photovoltaic devices according to another embodiment of the present invention;



FIGS. 6-8 are simplified flow charts illustrating a method for large scale manufacture of thin film photovoltaic devices according to another embodiment of the present invention;



FIG. 9 is a simplified flow chart illustrating a method for large scale manufacture of thin film photovoltaic devices according to another embodiment of the present invention;



FIG. 10 is a simplified flow chart illustrating a method for large scale manufacture of thin film photovoltaic devices according to another embodiment of the present invention;



FIG. 11 is a simplified flow chart illustrating a method for large scale manufacture of thin film photovoltaic devices according to an embodiment of the present invention;



FIG. 12 is a simplified flow chart illustrating a method for large scale manufacture of thin film photovoltaic devices according to another embodiment of the present invention;



FIG. 13 is a simplified schematic diagram showing a system with multi-chamber configuration for large scale manufacture of thin film photovoltaic modules according to an embodiment of the present invention;



FIGS. 14-16 are simplified schematic diagrams showing additional processes of a method for large scale manufacture of thin film photovoltaic modules using multi-chamber configuration according to an embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention relates generally to photovoltaic materials. More particularly, the present invention provides a method and system for large scale manufacture of multi-junction and single-junction solar modules using integrated manufacturing systems for thin and thick film photovoltaic materials. Merely by way of example, the present method and structure have been implemented using a solar module having multiple thin film materials, but it would be recognized that the invention may have other configurations.



FIG. 1A is a simplified view diagram of a system 100 for large scale manufacture of thin film photovoltaic devices according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, system 100 includes load locks #1 and #2 for providing an interface between system 100 and the environment. System 100 also includes process stations P1, P2, . . . , Pm, and transport stations T1, T2, T3, . . . , Tn. Each process station is configured to perform a process required to form the thin film photovoltaic device. Depending on the embodiment, the processes can include thin film formation, patterning, etching, annealing, etc. The process stations are capable of supplying process gases, maintaining process temperature, maintaining process pressure, etc.


In a specific embodiment, a substrate, e.g. a glass substrate, is entered into system 100 through lord lock #1, which can be pumped down to a reduced pressure. Transport stations T1-Tn are configured to allow the substrate to be transported between a load lock and a process station, or between two process stations. The transport stations can provide a controlled ambient to maintain cleanliness of the substrate. For example, a transport station can allow a substrate to be transferred in a vacuum. In another example, a transport station may provide an inert gas ambient of, e.g. nitrogen or argon, and can be maintained at atmospheric pressure or at a reduced pressure.



FIG. 1B is a simplified view diagram of a system 150 for large scale manufacture of thin film photovoltaic devices according to an alternative embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, system 150 includes a load lock, multiple process stations, and multiple transport stations. The functions of the load lock, process stations, and transport stations are similar to those discussed above in connection with system 100 in FIG. 1. System 150, however, has a different configuration. A central load lock is connected to transport stations T1, T2, . . . , Tn, which in turn are coupled to process stations P1, P2, . . . , Pn. In a specific embodiment, after each process steps, the substrate is returned to the central load lock, and the next process station is selected for the next process. Of course, one of ordinary skilled in the art can recognize other configurations, variations, modifications.


System 100 and system 150 are examples of systems for large scale manufacture of thin film photovoltaic devices according to embodiments of the present invention. Depending on the embodiment, the system is configured to allow formation of junction between the window layer and the absorber layer without breaking vacuum and to keep moisture, particles, and oxygen from contaminating the substrate and the device during process. In a specific example, load locks and transport stations are provided. Inert gases can also be used at reduced or atmospheric pressure.


In a specific embodiment, a process sequence in system 100 for large scale manufacture of photovoltaic devices can be briefly summarized below.

    • 1. Load substrate into the load-lock;
    • 2. Pump down the load lock, turn on the heater, and flow inert gas (Ar or N2) until substrate reaches set temperature;
    • 3. Transfer substrate into the selected process station chamber;
    • 4. Flow process gas, turn on sputtering power, and start the sputtering process;
    • 5. Once process is finished, select the next station (process or transfer station), transfer the substrate;
    • 6. Perform the next process in the next process station; and
    • 7. After the process is completed, the substrate is transferred to the second load-lock. The second load lock is vented, and the substrate is removed from the system.



FIG. 2 is a simplified view diagram of a control system 200 for the system for large scale manufacture of thin film photovoltaic devices of FIG. 1 according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, control system 200 includes processors, memories, user interface devices, and interface to network. In an embodiment, the control system performs various control functions of, for example, system 100 or system 150.


In a specific embodiment, the control system 200 also controls various diagnostic tools disposed in-situ in systems 100 and 150 for critical process steps, such as formation of absorber layer and the window layer. Thin film properties are monitored in-situ. Electrical and optical properties are also measured in-situ in the process station. The electrical properties are measured either using probes or using a contactless method. The electrical properties are also used to detect shunts in the thin films. The data is used in feedback to adjust second process for absorber layer or window layer. Alternatively, the diagnostic and monitoring tools can also be used in a feed forward process for adjusting the next process for a second cell or within the cell design. In an embodiment, a process can be stopped based on in-situ measurement data. In another embodiment, process parameters are adjusted before the process is resumed.



FIG. 3 is a simplified view diagram of a single physical vapor deposition (PVD) tool which can be part of a system for large scale manufacture of thin film photovoltaic devices according to another embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. A PVD process is often carried out by sputtering in which collision of high-energy particles with sputtering targets to deposit materials ejected from the sputtering targets on a substrate. In a sputtering process thin films can be formed to a uniform thickness over a large area, and the composition ratio of thin films can be easily adjusted. In magnetron sputtering a magnetic field is used to help create a high-density plasma of energetic particles in a reaction chamber, usually under a low pressure.


As shown in FIG. 3, a substrate 31 is disposed in a vacuum chamber 32. A target 34 is disposed on the opposite side from the substrate 32. Magnets 35 are disposed behind the target 34 to form magnetic field lines of predetermined directions. In addition, a power supply unit 37 supplies a voltage to an electrode 38 which is coupled to target 34. During processing, a vacuum is maintained in the chamber, a gas such as argon is introduced in the chamber, and electric discharge creates plasma. Energetic particles collide with the target and cause atoms to be ejected from the target and deposited on the substrate to form a thin film.


One or more process stations in system 100 in FIG. 1A or system 150 in FIG. 1B may include a balanced magnetron sputtering station. In a specific embodiment, the magnet field are arranged to focus the plasma for large areas of substrate and to provide a uniform thin film over a large area. Depending on the embodiment, the size of the substrate can be 2′ by 5′ or larger. In an embodiment, when the sputtering targets can be about five foot wide or even wider, scanning magnetrons is used to keep uniformity of films. In an embodiment, the sputtering stations allow formation of thin films over large areas substantially free of pin-holes.


According to embodiments of the present invention, various methods are provided for large scale manufacture of photovoltaic devices. Examples of these methods are discussed below in connection with the drawings provided in FIGS. 4-12. It is noted that, in the examples discussed below, transferring the substrate in a controlled ambient can be carried out in different way. For example, the substrate can be transferred under reduced pressure, or the substrate can be transferred in an ambient of an inert gas, such as N2 and Ar. Alternatively, the transfer can be carried out under atmospheric pressure in an inert gas. Additionally, physical deposition processes are used extensively in the examples discussed below. It is noted that in a specific embodiment, the physical deposition processes include sputtering using balanced magnetron.


In various embodiments discussed below, the substrate is a semiconductor, for example, silicon, germanium, compound semiconductor material such as a III-V gallium arsenide, germanium, silicon germanium, and others. Alternatively, the substrate can be a transparent substrate such as glass, quartz, fused silica, and others. Other examples of the substrate include a polymer material or a metal material. The metal chalcogenide material in the examples discussed below include copper (II) oxide (CuO) having a bandgap of about 1.2 eV and others. In a specific embodiment, the first bandgap is less than the second bandgap.


The conductor layers used in various embodiments can be aluminum, tungsten, or other metallic material. The conductor layer can also be a transparent conducting oxide material such as ZnO:Al, SnO:F, ITO, or others. The conductor layer can also be a conductive polymer material. Examples of various materials used in photovoltaic devices can be found in U.S. patent application Ser. No. 11/748,444, filed May 14, 2007, U.S. patent application Ser. No. 11/804,019, filed May 15, 2007, and concurrently filed U.S. Provisional Patent Application No. 60/988,099, filed Nov. 14, 2007. All these applications are commonly assigned, and their contents are hereby incorporated by reference for all purposes.



FIG. 4 is a simplified flow chart illustrating a method for large scale manufacture of single-junction thin film photovoltaic devices according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, the method of manufacturing a single-junction photovoltaic device, also known as the substrate method, can be summarized as follows.

    • 1. loading a substrate into a load lock station, the substrate including a surface region;
    • 2. transferring the substrate under a controlled ambient to a first process station;
    • 3. using a first physical deposition process in the first process station to cause formation of a first conductor layer overlying the surface region of the substrate;
    • 4. transferring the substrate under reduced pressure to a second process station;
    • 5. using a second physical deposition process in the second process station to cause formation of a first p-type absorber material, the first p-type absorber material comprising at least a first metal chalcogenide material overlying the first conductor layer, the first p-type absorber material being characterized by a first bandgap range and a first thickness range;
    • 6. monitoring properties of the first p-type absorber material in the second process station;
    • 7. transferring the substrate in a controlled ambient to a third process station;
    • 8. using a third physical deposition process in the third process station to cause formation of a first n-type window layer, the first n-type window layer comprising at least a second metal chalcogenide material overlying the first p-type absorber material; in a specific embodiment, the third physical deposition process being determined based on the properties of the first p-type absorber material;
    • 9. transferring the substrate under a controlled ambient to a fourth process station; and
    • 10. using a fourth physical deposition process in the fourth process station to cause formation of a second conductor layer overlying the second buffer layer.


In a specific embodiment, the method also includes forming a second barrier layer overlying the first conductor layer. In another embodiment, the method includes forming a first high resistivity layer overlying the first conductor layer before the formation of the first p-type absorber material, the first high resistivity layer being characterized by a resistivity greater than about 10 kohm-cm. The first high resistivity layer is sometimes referred to as a high-resistance transparent conducting oxide buffer layers or HRT. The HRT can minimize effect of shunt defects. In a specific embodiment, the resistivity of the HRT is about 10 k ohm per centimeter, whereas the resistivity of the transparent conduction oxide layer (TCO) is about 7 to 10 ohms per centimeter. In another specific embodiment, the method further includes in-situ monitoring properties of the layer being formed in each process station and determining a process condition in a subsequent physical deposition process based on data obtained in the monitoring of the earlier processes.



FIG. 5 is a simplified flow chart illustrating a method for large scale manufacture of thin film photovoltaic devices according to another embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, another method of manufacturing a single-junction photovoltaic device, also known as the superstrate method, can be briefly summarized below.

    • 1. loading a substrate into a load lock station, the substrate including a surface region;
    • 2. transferring the substrate under a controlled ambient to a first process station;
    • 3. using a first physical deposition process in the first process station to cause formation of a first conductor layer overlying the surface region of the substrate;
    • 4. transferring the substrate under reduced pressure to a second process station;
    • 5. using a second physical deposition process in the second process station to cause formation of a first n-type window layer, the first n-type window layer comprising at least a second metal chalcogenide material overlying the first p-type absorber material;
    • 6. monitoring properties of the first p-type absorber material in the second process station;
    • 7. transferring the substrate in a controlled ambient to a third process station;
    • 8. using a third physical deposition process in the third process station to cause formation of a first p-type absorber material, the first p-type absorber material comprising at least a first metal chalcogenide material overlying the first conductor layer, the first p-type absorber material being characterized by a first bandgap range and a first thickness range; in a specific embodiment, the third physical deposition process is determined based on the properties of the first n-window layer;
    • 9. transferring the substrate under a controlled ambient to a fourth process station; and
    • 10. using a fourth physical deposition process in the fourth process station to cause formation of a second conductor layer overlying the second buffer layer.


In a specific embodiment, the method of FIG. 5 also includes a feed forward control. The method includes the additional processes of in-situ monitoring properties of the layer being formed in each process station, and determining a process condition in a subsequent physical deposition process based on data obtained in the monitoring of the earlier processes.



FIGS. 6-8 are simplified flow charts illustrating a method for large scale manufacture of thin film photovoltaic devices according to another embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, the method is for making two photovoltaic devices stacked to make a tandem device, with each photovoltaic device having two terminals. The method can be briefly summarized as follows.

    • 1. forming a top photovoltaic device using the superstrate method of FIG. 5 as described above;
    • 2. forming a bottom photovoltaic device using the substrate method of FIG. 4 as described above;
    • 3. forming an insulator layer overlying the bottom photovoltaic device; and
    • 4. mounting the top photovoltaic device over the insulator layer and the bottom photovoltaic device.


      In a specific embodiment, the top device, the insulator layer, and the bottom layer are laminated together with an EVA material. Of course, other kinds of adhesive materials can also be used. In another specific embodiment, the method further includes a feed forward process which allows monitoring device properties of the top photovoltaic device and adjusting device parameters and process conditions for the bottom photovoltaic device.



FIG. 9 is a simplified flow chart illustrating a method for large scale manufacture of thin film photovoltaic devices according to another embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, the method is for manufacturing a tandem photovoltaic device, which includes two photovoltaic junctions but has only two external terminals. The method can be briefly summarized as follows.

    • 1. loading a substrate into a load lock station, the substrate including a surface region;
    • 2. transferring the substrate in a controlled ambient to a first process station;
    • 3. using a first physical deposition process in the first process station to cause formation of a first conductor layer overlying the surface region of the substrate;
    • 4. transferring the substrate in a controlled ambient to a second process station;
    • 5. using a second physical deposition process in the second process station to cause formation of a first p-type absorber material, the first p-type absorber material comprising at least a first metal chalcogenide material overlying the first conductor layer, the first p-type absorber material being characterized by a first bandgap range and a first thickness range;
    • 6. transferring the substrate in a controlled ambient to a third process station;
    • 7. using a third physical deposition process in the third process station to cause formation of a first n-type window layer, the first n-type window layer comprising at least a second metal chalcogenide material overlying the first p-type absorber material;
    • 8. transferring the substrate in a controlled ambient to a fourth process station;
    • 9. using a fourth physical deposition process in the fourth process station to cause formation of an n++ type semiconductor material;
    • 10. transferring the substrate in a controlled ambient to a fifth process station;
    • 11. using a fifth physical deposition process in the fifth process station to cause formation of an p++ type semiconductor material, the p++ semiconductor material and the n++ semiconductor material forming a tunneling junction layer;
    • 12. transferring the substrate in a controlled ambient to a sixth process station;
    • 13. using a sixth physical deposition process in the sixth process station to cause formation of a second p-type absorber material, the second p-type absorber material comprising at least a third metal chalcogenide material overlying the tunneling junction layer, the second p-type absorber material being characterized by a second bandgap range and a second thickness range;
    • 14. transferring the substrate in a controlled ambient to a seventh process station;
    • 15. using a seventh physical deposition process in the seventh process station to cause formation of a second n-type window layer, the second n-type window layer comprising at least a fourth metal chalcogenide material overlying the second absorber material;
    • 16. transferring the substrate in a controlled ambient to an eighth process station; and
    • 17. using an eighth physical deposition process in the eighth process station to cause formation of a second conductor layer.


In a specific embodiment of the method of FIG. 9, the method also includes feed forward control, for example, in-situ monitoring properties of the layer being formed in each process station and determining a process condition in a subsequent physical deposition process based on data obtained in the monitoring of the earlier processes. In a specific embodiment, the method also includes forming a first buffer layer overlying the first conductor layer before the formation of the first p-type absorber material. The first buffer layer has a resistivity greater than about 10 kohm-cm. In another embodiment, a second buffer layer is formed overlying the second n-type window layer before the formation of the second conductor layer. The second buffer layer is characterized by a resistivity greater than about 10 kohm-cm.



FIG. 10 is a simplified flow chart illustrating a method for large scale manufacture of thin film photovoltaic devices according to another embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, FIG. 10 illustrates a method for manufacturing a tandem cell having three external terminals. In other words, the top and bottom photovoltaic devices share a common conductor which is coupled to an external terminal. The method can be briefly summarized below.

    • 1. loading a substrate into a load lock station, the substrate including a surface region;
    • 2. transferring the substrate in a controlled ambient to a first process station;
    • 3. using a first physical deposition process in the first process station to cause formation of a first conductor layer overlying the surface region of the substrate;
    • 4. transferring the substrate in a controlled ambient to a second process station;
    • 5. using a second physical deposition process in the second process station to cause formation of a first p-type absorber material, the first p-type absorber material comprising at least a first metal chalcogenide material overlying the first conductor layer, the first p-type absorber material being characterized by a first bandgap range and a first thickness range;
    • 6. transferring the substrate in a controlled ambient to a third process station;
    • 7. using a third physical deposition process in the third process station to cause formation of a first n-type window layer, the first n-type window layer comprising at least a second metal chalcogenide material overlying the first p-type absorber material;
    • 8. transferring the substrate in a controlled ambient to a fourth process station;
    • 9. optionally, using a fourth physical deposition process in the fourth process station to cause formation of a high resistive layer;
    • 10. transferring the substrate in a controlled ambient to a fifth process station;
    • 11. using a fifth physical deposition process in the fifth process station to cause formation of a second conductive layer;
    • 12. transferring the substrate in a controlled ambient to a sixth process station;
    • 13. using a sixth physical deposition process in the sixth process station to cause formation of a second p-type absorber material, the second p-type absorber material comprising at least a third metal chalcogenide material overlying the tunneling junction layer, the second p-type absorber material being characterized by a second bandgap range and a second thickness range;
    • 14. transferring the substrate in a controlled ambient to a seventh process station;
    • 15. using a seventh physical deposition process in the seventh process station to cause formation of a second n-type window layer, the second n-type window layer comprising at least a fourth metal chalcogenide material overlying the second p-type absorber material;
    • 16. transferring the substrate in a controlled ambient to an eighth process station; and
    • 17. using an eighth physical deposition process in the eighth process station to cause formation of a third conductor layer.


In a specific embodiment, the method of FIG. 10 also includes feed forward control. That is, the method also includes in-situ monitoring properties of the layer being formed in each process station and determining a process condition in a subsequent physical deposition process based on data obtained in the monitoring of the earlier processes.



FIG. 11 is a simplified flow chart illustrating a method for large scale manufacture of thin film photovoltaic devices according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, FIG. 11 illustrates a method for large scale manufacturing of single junction photovoltaic devices including feed forward control. The method can be summarized briefly as follows.

    • 1. loading a substrate into a load lock station, the substrate including a surface region;
    • 2. transferring the substrate under a controlled ambient to a first process station;
    • 3. using a first physical deposition process in the first process station to cause formation of a first conductor layer overlying the surface region of the substrate;
    • 4. transferring the substrate under a controlled ambient to a second process station;
    • 5. using a second physical deposition process in the second process station to cause formation of a first p-type absorber material, the first p-type absorber material comprising at least a first metal chalcogenide material overlying the first conductor layer, the first p-type absorber material being characterized by a first bandgap range and a first thickness range;
    • 6. monitoring properties of the first p-type absorber material in the second process station;
    • 7. determining a process condition in a third physical deposition process based on data obtained in the monitoring;
    • 8. transferring the substrate in a controlled ambient to a third process station;
    • 9. using the third physical deposition process in the third process station to cause formation of a first n-type window layer, the first n-type window layer comprising at least a second metal chalcogenide material overlying the first p-type absorber material,
    • 10. transferring the substrate under a controlled ambient to a fourth process station; and
    • 11. using a fourth physical deposition process in the fourth process station to cause formation of a second conductor layer overlying the second buffer layer.



FIG. 12 is a simplified flow chart illustrating a method for large scale manufacture of thin film photovoltaic devices according to another embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, FIG. 12 illustrates a method for making a tandem photovoltaic device having a bottom photovoltaic cell and a top photovoltaic cell using methods similar to those of FIGS. 4-11, but also includes in-situ monitoring of the properties of the lower cell. These properties include thin film material properties and electrical and optical properties of the junction. If the properties are not within a predetermined specification, then the process and device parameters of the upper cell are adjusted. Subsequently the adjusted process is used to make the upper cell.


According to another specific embodiment of the present invention, a method is provided for making a single junction photovoltaic device including feed forward control. The method can be briefly summarized below.

    • 1. loading a substrate into a load lock station, the substrate including a surface region;
    • 2. transferring the substrate under a controlled ambient to a first process station;
    • 3. using a first physical deposition process in the first process station to cause formation of a first conductor layer overlying the surface region of the substrate;
    • 4. transferring the substrate under a controlled ambient to a second process station;
    • 5. using a second physical deposition process in the second process station to cause formation of a first p-type absorber material, the first p-type absorber material comprising at least a first metal chalcogenide material overlying the first conductor layer, the first p-type absorber material being characterized by a first bandgap range and a first thickness range;
    • 6. monitoring properties of the first p-type absorber material in the second process station;
    • 7. determining a process condition in a third physical deposition process based on data obtained in the monitoring;
    • 8. transferring the substrate in a controlled ambient to a third process station;
    • 9. using the third physical deposition process in the third process station to cause formation of a first n-type window layer, the first n-type window layer comprising at least a second metal chalcogenide material overlying the first p-type absorber material,
    • 10. transferring the substrate under a controlled ambient to a fourth process station; and
    • 11. using a fourth physical deposition process in the fourth process station to cause formation of a second conductor layer overlying the second buffer layer.



FIG. 13 is a simplified schematic diagram showing a system with multi-chamber configuration for large scale manufacture of thin film photovoltaic module according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, a system 1300 (at least partially) with multi-chamber configuration for large scale manufacture of thin film photovoltaic modules is provided and several thin film processes are illustrated. In particular, a large substrate 1310 is provided as shown as a first step I into a Chamber 1 of the system 1300 with multi-chamber configuration. In an embodiment, a transfer tool 1390 including a process stage is used to support the large substrate 1310. Additionally, one or more loading locks or intermediate chambers 1306 can be used to assist the execution of in/out substrate transfer process. FIG. 13 merely shows a schematic example of the transfer tool 1390 and merely shows a location of the load lock chamber 1306 without providing structure details and even not shown in true dimensions. In an embodiment, the substrate 1310 is an optically transparent solid material. For example, the substrate 1310 can be a glass (e.g., the popular soda lime window glass), quartz, fused silica, or a plastic, or other optically transparent composite materials. In an example, the large substrate 1310 can be as large as 1.5 meters or greater in lateral dimension that is used for direct manufacture thin film photovoltaic module thereon. Depending upon embodiments, the substrate 1310 can be a single material, multiple materials, which are layered, composites, or stacked, including combinations of these, and the like. Of course there can be other variations, modifications, and alternatives.


As shown in FIG. 13 the substrate 1310 includes a surface region 1311 and is held in the process stage exposing to a deposition source disposed in Chamber 1. For example, the deposition source can be a sputtering target 1301 held a short distance above the surface region 1311. In an embodiment, the Chamber 1 is used for forming an electrode layer of a thin film photovoltaic module. In particular, an electrode layer 1320 can be sputtering deposited overlying the surface region 1311 of the substrate 1310. For example, the sputtering target 1301 made of substantially conductive material is predisposed. The conductive material for the electrode layer includes molybdenum, tungsten, aluminum, copper, silver, and the other metals. In an implementation, three sputtering targets made of 99.9999% pure molybdenum (Mo) material are used. The first target is used for forming a first Mo sublayer of the electrode layer 1320 and the other two target sequentially disposed in Chamber 1 are used for forming a second Mo sublayer of the electrode layer 1320.


The Chamber 1 can be maintained in a vacuum condition measured with a pressure of about 10 microbar. One or more working gases for assisting the sputtering process can be flowed in with rate control. For example, during the formation of the first Mo sublayer one working gas is pure Argon gas with a flow rate of about 100 sccm and another is Argon gas mixed with about 1% Oxygen gas with a flow rate of about 5-10 sccm. The first Mo sublayer can be 50 to 400 Angstroms according to embodiments of the invention. Subsequently, the second Mo sublayer can be formed overlying the first Mo sublayer. In an embodiment, two sputtering targets made of molybdenum material are disposed in series to form the second Mo sublayer with a total thickness of 3000 to 3500 Angstroms. Using two targets may allow the sputtering process to occur at a relative lower power density. In another embodiment, a single molybdenum target is also capable of forming the total thickness of the second Mo sublayer. During the formation of the second Mo sublayer, a pure Argon gas with a flow rate of about 100 sccm is introduced into the Chamber 1.


Of course, other thin film deposition techniques may be used including evaporation (e.g., using electron beam), chemical vapor deposition, electro-plating, atomic layer deposition, or any combination of these, and the like according to a specific embodiment. The electrode layer with a total thickness of about 300 to 400 nm can be characterized by resistivity of about 100 ohm-cm to 10 ohm-cm and less according to a specific embodiment. As shown in FIG. 13, the formation of the electrode layer 1320 refers a completion of a second step II performed in the Chamber 1.


Referring to FIG. 13, after the process finishes in the Chamber 1, the substrate 1310 with overlying electrode layer 1320 can be transferred out of the Chamber 1 by the transfer tool 1390 via a load lock 1306. In an embodiment, the process of manufacture thin film photovoltaic module includes patterning the electrode layer. The electrode layer 1320 needs to be reconfigured and patterned to form a plurality of electrodes that can be used to draw photo-electric currents when the thin film photovoltaic module finally is set to use under the sun. In particular, the patterning process can use a mechanical patterning technique, a laser patterning technique, a chemical patterning technique, etc. In an implementation, the patterning process is performed in atmosphere environment outside the Chamber 1. The transfer tool 1390 is configured to move the substrate from the Chamber 1 through one of loading lock 1306 to a specific work station for performing the patterning process.


The lower left part of FIG. 13 schematically shows that a patterning process is performed, as a step III, to the electrode layer 1320 to form one or more electrode pattern 1321. In an embodiment, laser ablation is used for forming the electrode pattern 1321. The electrode layer 1320 is subjected to a laser radiation at certain predetermined locations. The laser radiation can be a laser beam from a pulsed laser source or CW laser source. The laser beam can be aligned from above the electrode layer 1320 or from a backside of the transparent substrate 1310. For example the laser beam is generated from a Nd: YAG infrared Q-Switched pulse laser source with wavelength of about 1065 nm. As the laser beam irradiates the electrode layer 1320, an ablation process occurs during which a portion of the electrode layer 1320 under the laser beam can be removed from the substrate 1310. In particular, the laser energy causes vaporization of electrode layer material, e.g., molybdenum, under a beam spot or simply blows away from the substrate 1310. The laser beam can be scanned along a predetermined pattern and subsequently additional amount of certain conducting material is removed. Each time after the laser beam ablates a spot of electrode layer material, the beam is moved (may be pulsed OFF) to a next spot, then the laser power is pulsed ON to irradiate the new spot again to cause the electrode layer material under the new spot to be removed. As a result, one or more electrode patterns 1321 form in the electrode layer 1320.


Next, the substrate with patterned electrode layer can be further transferred into the system with multi-chamber configuration. In particular as shown in FIG. 13, the substrate 1310 is provided into a Chamber 2 of the system 1300. The Chamber 2 is a process chamber designed to couple with a load lock 1306 which may also coupled to the Chamber 1. In certain implementation, the patterning process can be directly performed within the Chamber 1 so that the transfer tool 1390 can further load the substrate 1310 directly from the Chamber 1 via the load lock 1306 into the Chamber 2 for continuing the large scale manufacture of the thin film photovoltaic module. Of course, there can be many alternatives, variations, and modifications.


In an embodiment, Chamber 2 is configured to form a copper layer overlying the electrode layer formed in last process. In particular, a copper (Cu)-bearing layer 1330 can be formed overlying the electrode layer 1320 using another sputtering process. In an example, the substrate 1310 with overlying electrode layer 1320 is exposed to a Cu-bearing sputtering target 1302 in Chamber 2. Please note, the electrode layer 1320 on the substrate 1310 likely is a layer with one or more electrode patterns 1321 formed in a previous step, even though no specific pattern is explicitly shown in the schematic illustrating of the process within the Chamber 2. In another example, a DC magnetron sputtering technique can be used to deposit the Cu-bearing layer 1330 onto the electrode layer 1320 under a following condition: The deposition is controlled to be about a vacuum environment having a pressure of 6.2 mTorr or lower with Ar gas. The gas flow rate is set to about 32 sccm. The deposition temperature can be just at room temperature without need of intentionally heating the substrate. Of course, minor heating may be resulted due to the plasma generated during the deposition. Additionally, the DC power supply of about 115 W may be required. According to certain embodiments, DC power in a range from 100 W to 150 W is suitable depending specific cases with different materials. The full deposition time for the Cu-bearing layer 1330 of about 330 nm thickness is about 6 minutes or more. Of course, the deposition condition can be varied and modified according to a specific embodiment. For example, a Cu-bearing target also includes a gallium (Ga) content or both Cu target and Ga target are disposed in series in the Chamber 2 so that the Cu-bearing layer 1330 comprises Cu—Ga alloy.


Referring to FIG. 13 again, after the formation of the Cu-bearing layer 1330, the system 1300 is configured to transfer the substrate 1310 with overlying electrode layer 1320 and Cu-bearing layer 1330 from the Chamber 2 to a next chamber, Chamber 3. In an embodiment, this chamber is designed to allow the transfer tool 1390 further load the substrate in and perform one or more processes of providing an indium (In) layer overlying the Cu-bearing layer for manufacture a thin film photovoltaic module. In particular as shown, the indium In layer 1340 is formed overlying the copper Cu-bearing layer 1330. In an implement, the indium layer can be deposited using a sputtering process and the Cu-bearing layer 1330 is exposed to an In-based sputtering target 1303 when the substrate 1310 with overlying electrode layer 1320 and Cu-bearing layer 1330 is loaded into the Chamber 3. In an example, the indium sputtering target contains 99.999% pure indium material and a DC magnetron sputtering technique can be used to deposit the In layer 1340 overlying the Cu layer 120 under a similar condition for depositing the Cu-bearing layer 1330. The deposition time for the indium layer 1340 may be shorter than that for Cu-bearing layer 1330. For example, 2 minutes and 45 seconds may be enough for depositing an In layer of about 410 nm in thickness according to a specific embodiment. In another example, the indium layer 1340 is provided overlying the Cu-bearing layer 1330 by an electro-plating process, or other techniques dependent on specific embodiment.


According to embodiments of the present invention, FIG. 13 illustrates a method and system with multi-chamber configuration of forming a multilayered structure comprising at least copper and indium material on a transparent substrate for manufacture of a thin film photovoltaic module. In an embodiment, the Cu-bearing layer 1330 as well as the indium layer 1340 are provided with a controlled stoichiometric composition so that the multilayered structure is a Cu-rich composite material with an atomic ratio of Cu:In greater than 1 therein. For example, the atomic ratio of Cu:In within the multilayered structure can be in a range from 1.2:1 to 2.0:1 or larger depending upon the specific embodiment. In an implementation, the atomic ratio of Cu:In is between 1.35:1 and 1.60:1. In another implementation, the atomic ratio of Cu:In is selected to be about 1.55:1. In a specific embodiment, the formation process of indium layer 1340 substantially causes no change in atomic stoichiometry in the copper layer 1330 formed earlier. Alternatively, the formation process of the indium layer 1340 can be performed earlier within the Chamber 2 overlying the electrode layer 1320 while the formation process of the Cu-bearing layer 1330 is then performed later within the Chamber 3 overlying the indium layer 1340.


Referring to FIG. 13 further, the system 1300 is configured to use the multi-chamber configuration for forming a thin film photovoltaic module according to an embodiment of the present invention. As shown, after the formation of a multilayered structure comprising at least an indium layer 1340 over a Cu-bearing layer 1330, the substrate 1310 bearing the multilayered structure is further transferred from the Chamber 3 to a Chamber 4 by the transfer tool 1390 to subject a thermal treatment process. As an embodiment, the Chamber 4 is configured to supply thermal energy using a plurality of heaters 1305 and provide an environment 1307 containing a sulfur bearing species 1308. The plurality of heaters 1305 are capable of heat the Chamber 4 to a temperature of about 400 Degrees Celsius to about 600 Degrees Celsius for at least about three to fifteen minutes. In a specific embodiment, the plurality of heaters 1305 combined with the Chamber 4 are configured to be a rapid thermal processor. In one example, the sulfur bearing species 1308 are in a fluid phase. As an example, the sulfur can be provided in a solution, which has dissolved Na2S, CS2, (NH4)2S, thiosulfate, and others.


In a preferred embodiment, the sulfur bearing species 1308 are hydrogen sulfide in gas phase flowed through a valve into the Chamber 4. In other embodiments, the sulfur bearing species can be provided in a solid phase and heated or allowed to boil, which vaporizes into a gas phase sulfur. In particular, the gas phase sulfur is reacting to the indium/copper layers within the environment 1307 with a temperature about 500 Degrees Celsius. In other embodiments, other combinations of sulfur species can be used. Of course, the thermal treatment process includes certain predetermined ramp-up and ramp down period with certain predetermined speed for temperature changes. For example, the thermal treatment process is a rapid thermal annealing process. The hydrogen sulfide gas is provided through one or more nozzles with a suitable flow rate control. During the process Chamber 4 can be configured to control the hydrogen sulfide gas pressure using one or more pumps (not shown). Of course, there can be other variations, modifications, and alternatives.


In an alternative embodiment, the sulfur species can be provided as a layer overlying the indium and copper-bearing layers or copper and indium layers. In a specific embodiment, the sulfur material is provided as a thin layer or patterned layer. Depending upon the embodiment, the sulfur species can be provided as a slurry, powder, solid material, gas, paste, or other suitable form. Of course, there can be other variations, modifications, and alternatives. Accordingly, the Chamber 4 of the system 1300 can be reconfigured to adapt those alternative sulfur incorporation processes.


Referring back to the FIG. 13, the thermal treatment process performed in the Chamber 4 causes a reaction between copper indium composite material within the multilayered structure formed on the substrate 1310 and the gas phase sulfur bearing species 1308 introduced in the Chamber 4. As a result of the reaction, a layer of copper indium disulfide material 1360 (or a copper indium disulfide thin film) can be formed. In one example, the copper indium disulfide material 1360 is transformed from the copper indium composite material by incorporating sulfur ions/atoms stripped or decomposed from the sulfur bearing species 1308 into the indium layer 1340 overlying the Cu-bearing layer 1330 with indium atoms and copper atoms mutually diffusing therein. In an embodiment, the thermal treatment process would result in a formation of a cap layer 1370 over the transformed copper indium disulfide material 1360. The cap layer 1370 contains substantially copper sulfide material but substantially free of indium atoms. The cap layer 1370 is substantially thinner than the copper indium disulfide material 1360. Depending on the applications, the thickness of the copper sulfide material 1370 is on an order of about five to ten nanometers and greater associated with original Cu—In composite material made of an indium layer 1340 overlying the Cu-bearing layer 1330. The cap layer 1370 includes a surface region 1371 of the same copper sulfide material substantially free of indium atoms. In a specific embodiment, the formation of this cap layer 1370 is under a Cu-rich stoichiometry conditions within the original Cu—In composite material. Of course, there can be other variations, modifications, and alternatives.



FIGS. 14-16 are simplified schematic diagrams illustrating additional processes using the system with multi-chamber configuration for manufacture of a thin film photovoltaic module according to an embodiment of the present invention. These diagrams are merely examples, which should not unduly limit the claims herein. One skilled in the art would recognize other variations, modifications, and alternatives. As shown in FIG. 14, a dip process 1400 is performed to the copper sulfide material 1370 that covers the copper indium disulfide thin film 1360. In particular, the dip process is an etching process performed by exposing the surface region 1371 of the copper sulfide material 1370 to 1 to about 10 wt % solution of potassium cyanide 1410 according to a specific embodiment. The potassium cyanide in solution 1410 acts as an etchant capable of selectively removing copper sulfide material 1370. The etching process starts from the exposed surface region 1371 down to the thickness of the copper sulfide material 1370 and substantially stops at the interface between the copper sulfide material 1370 and copper indium disulfide material 1360. As a result the copper sulfide cap layer 1370 can be selectively removed by the etching process so that a new surface region 1368 of the remaining copper indium disulfide thin film 1360 is exposed according to a specific embodiment. In a preferred embodiment, the etch selectivity is about 1:100 or more between copper sulfide material and copper indium disulfide thin film. In other embodiments, other selective etching species can be used. In a specific embodiment, the etching species can be hydrogen peroxide. In other embodiments, other techniques including electro-chemical etching, plasma etching, sputter-etching, or any combination of these can be used. In a specific embodiment, the copper sulfide material can be mechanically removed, chemically removed, electrically removed, or any combination of these, among others. In a specific embodiment, the absorber layer made of copper indium disulfide is about 1 to 10 microns, but can be others. Of course, there can be other variations, modifications, and alternatives.


The copper indium disulfide material 1360 formed at previous processes can have a p-type semiconductor characteristic through a proper impurity doping. For example, the copper indium disulfide material 1360 can be transformed to a photovoltaic absorber layer by doping sodium, boron, aluminum impurity materials. The grain of the film assisted by the doped impurity material can include substantially a crystallographic chalcogenide structure, which in general belongs to a chalcopyrite structure characterized by properties with excellent photoelectric conversion efficiency. In an embodiment, the copper indium disulfide material based photovoltaic absorber layer formed at previous processes can have a p-type semiconductor characteristic. In another embodiment, the copper indium disulfide material based photovoltaic absorber layer is subjected to additional doping process to have certain region with p++ characteristic therein for the purpose of forming a high efficiency thin film photovoltaic modules. In an example, the copper indium disulfide material 1360 is mixed with a copper indium aluminum disulfide material. Of course, there can be other variations, modifications, and alternatives.


Subsequently as shown in FIG. 15, a window layer 1510 is formed overlying the p-type copper indium disulfide material 1360. The window layer 1510 can be selected from a group of materials consisting of a cadmium sulfide (CdS), a zinc sulfide (ZnS), zinc selenium (ZnSe), zinc oxide (ZnO), zinc magnesium oxide (ZnMgO), or others and may be doped with impurities for conductivity, e.g., n+ type. The window layer 1510 is intended to serve another part of a PN-junction associated with a photovoltaic cell. Therefore, the window layer 1510, during or after its formation, is heavily doped to form a n+-type semiconductor layer. In one example, indium species are used as the doping material to cause formation of the n+-type characteristic associated with the window layer 1510. In another example, the doping process is performed using suitable conditions. In a specific embodiment, ZnO window layer that is doped with aluminum can range from about 200 to 500 nanometers. Of course, there can be other variations, modifications, and alternative


As shown in FIG. 16, a conductive layer 1530 is added at least partially on top of the window layer 1510 to form a top electrode layer for the photovoltaic module. In one embodiment, the conductive layer 1530 is a transparent conductive oxide TCO layer. For example, TCO can be selected from a group consisting of In2O3:Sn (ITO), ZnO:Al (AZO), SnO2:F (TFO), and can be others. In another embodiment, the formation of the TCO layer is followed a certain predetermined pattern for effectively carried out the function of top electrode layer for the photovoltaic module with considerations of maximizing the efficiency of the thin film based photovoltaic modules. In a specific embodiment, the TCO can also act as a window layer, which essentially eliminates a separate window layer. Of course there can be other variations, modifications, and alternatives.


Although the above has been illustrated according to specific embodiments, there can be other modifications, alternatives, and variations. It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.

Claims
  • 1. A method of manufacturing a photovoltaic device, the method comprising; placing a substrate having a surface region at a first process station;forming a first electrode layer overlying the surface region of the substrate at the first process station using a first process;transferring the substrate to a second process station;forming a barrier layer overlying the first electrode layer at the second process station using a second process;transferring the substrate in a controlled ambient to a third process station;forming a p-type absorber layer overlying the first electrode layer at the third process station using a third process, the p-type absorber layer being characterized by a first bandgap range and a first thickness range;transferring the substrate in the controlled ambient to a fourth process station; andforming a second electrode layer at the fourth process station using a fourth process.
  • 2. The method of claim 1 further comprising prior to forming the first electrode layer: transferring the substrate to a fifth process station; andforming another barrier layer overlying the surface region of the substrate at the fifth process station using a fifth process.
  • 3. The method of claim 1 further comprising prior to forming the second electrode layer: transferring the substrate to a sixth process station; andforming a resistive layer at the sixth process station using a sixth process.
  • 4. The method of claim 1 further comprising: in-situ monitoring properties of each layer being formed at each process station; anddetermining a process condition for a subsequent process based on data obtained in the monitoring of the earlier processes.
  • 5. The method of claim 1 wherein transferring the substrate comprises transferring the substrate under reduced pressure.
  • 6. The method of claim 1 wherein the process stations are in process communication with one another such that the substrate is maintained in an environment separate from an ambient environment external to the process chambers at all times during the method.
  • 7. The method of claim 1 wherein transferring the substrate comprises transferring the substrate in an ambient comprising N2 or Ar.
  • 8. The method of claim 1 wherein the substrate comprises: silicon, germanium, a compound semiconductor material, germanium, or silicon-germanium.
  • 9. The method of claim 1 wherein the substrate comprises glass, quartz, or fused silica.
  • 10. The method of claim 1 wherein the first electrode layer comprises aluminum or tungsten.
  • 11. The method of claim 1 wherein the first electrode layer comprises a transparent conducting oxide material selected from ZnO:Al, SnO:F, or ITO.
  • 12. The method of claim 1 wherein the first electrode layer comprises a conductive polymer material.
  • 13. The method of claim 1 wherein the second electrode layer comprises a transparent conducting oxide material selected from ZnO:Al, SnO:F, or ITO.
  • 14. A method comprising: placing a substrate having a surface region in a first process station;forming a first electrode layer overlying the surface region at the first process station;transferring the substrate to a second process station;forming a resistive layer overlying the first electrode layer at the second process station;transferring the substrate to a third process station;forming a window layer overlying the first electrode layer at the third process station;transferring the substrate to a fourth process station;forming an absorber layer overlying the window layer at the fourth process station;transferring the substrate to a fifth process station; andforming a second electrode layer overlying the absorber layer at the fifth process station.
  • 15. The method of claim 14 further comprising prior to forming the first electrode layer: transferring the substrate to a sixth process station; andforming a barrier layer overlying the surface region of the substrate at the sixth process station.
  • 16. The method of claim 14 further comprising: in-situ monitoring properties of each layer being formed in each process station; anddetermining a process condition for a subsequent process based on data obtained in the monitoring of one or more earlier processes.
  • 17. The method of claim 14 wherein the process stations are mechanically coupled with one another such that the substrate is maintained in an environment separate from an ambient environment external to the process chambers at all times during the method.
  • 18. A method comprising: placing a substrate having a surface region at a first process station;forming a first electrode layer overlying the surface region of the substrate at the first process station;transferring the substrate to a second process station;forming a first absorber layer overlying the first electrode layer at the second process station;transferring the substrate to a third process station;forming a first window layer overlying the first absorber layer at the third process station;transferring the substrate to a fourth process station;forming a n-type tunnel junction layer overlying the first window layer at the fourth process station;transferring the substrate to a fifth process station;forming a p-type tunnel junction layer overlying the n-type tunnel junction layer at the fifth process station;transferring the substrate to a sixth process station;forming a second window layer overlying the p-type tunnel junction layer at the sixth process station;transferring the substrate to an seventh process station; andforming a second electrode layer overlying the second window layer at the seventh process station.
  • 19. The method of claim 18 further comprising prior to forming the n-type tunnel junction layer: forming a first resistive layer overlying the first window layer, the first resistive layer being characterized by a resistivity of at least 10 kohm-cm.
  • 20. The method of claim 18 further comprising prior to forming the second electrode layer: forming a second resistive layer overlying the second window layer.
  • 21. The method of claim 18 further comprising: in-situ monitoring properties of each layer being formed in each process station;determining a process condition for a subsequent process based on data obtained in the monitoring of one or more earlier processes.
  • 22. The method of claim 18 wherein the process stations are in mechanical communication with one another such that the substrate is transferred from one process station to the next without being exposed to an ambient environment external to the process chambers.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/179,713 filed on Jul. 11, 2011, which is a continuation of and claims priority to U.S. patent application Ser. No. 12/269,768, filed Nov. 12, 2008, which claims priority to commonly assigned U.S. Provisional Application No. 60/988,089 filed Nov. 14, 2007 and U.S. Provisional Patent Application No. 60/988,099, filed Nov. 14, 2007, the disclosures of all the applications are incorporated by reference herein in their entirety for all purposes. This application is also related to U.S. patent application Ser. No. 11/748,444, filed May 14, 2007 and U.S. patent application Ser. No. 11/804,019, filed May 15, 2007, both of which are commonly assigned and incorporated by references herein for all purposes.

US Referenced Citations (266)
Number Name Date Kind
3520732 Nakayama et al. Jul 1970 A
3828722 Reuter et al. Aug 1974 A
3975211 Shirland Aug 1976 A
4062038 Cuomo et al. Dec 1977 A
4263336 Thompson et al. Apr 1981 A
4332974 Fraas Jun 1982 A
4335266 Mickelsen et al. Jun 1982 A
4441113 Madan Apr 1984 A
4442310 Carlson et al. Apr 1984 A
4461922 Gay et al. Jul 1984 A
4465575 Love et al. Aug 1984 A
4471155 Mohr et al. Sep 1984 A
4499658 Lewis Feb 1985 A
4507181 Nath et al. Mar 1985 A
4517403 Morel et al. May 1985 A
4518855 Malak May 1985 A
4532372 Nath et al. Jul 1985 A
4542255 Tanner et al. Sep 1985 A
4581108 Kapur et al. Apr 1986 A
4589194 Roy May 1986 A
4598306 Nath et al. Jul 1986 A
4599154 Bender et al. Jul 1986 A
4611091 Choudary et al. Sep 1986 A
4623601 Lewis et al. Nov 1986 A
4625070 Berman et al. Nov 1986 A
4638111 Gay Jan 1987 A
4661370 Tarrant Apr 1987 A
4663495 Berman et al. May 1987 A
4705912 Nakashima et al. Nov 1987 A
4724011 Turner et al. Feb 1988 A
4727047 Bozler et al. Feb 1988 A
4775425 Guha et al. Oct 1988 A
4793283 Sarkozy Dec 1988 A
4798660 Ermer et al. Jan 1989 A
4816082 Guha et al. Mar 1989 A
4816420 Bozler et al. Mar 1989 A
4837182 Bozler et al. Jun 1989 A
4865999 Xi et al. Sep 1989 A
4873118 Elias et al. Oct 1989 A
4915745 Pollock et al. Apr 1990 A
4950615 Basol et al. Aug 1990 A
4968354 Nishiura et al. Nov 1990 A
4996108 Divigalpitiya et al. Feb 1991 A
5008062 Anderson et al. Apr 1991 A
5011565 Dube et al. Apr 1991 A
5028274 Basol et al. Jul 1991 A
5039353 Schmitt Aug 1991 A
5045409 Eberspacher et al. Sep 1991 A
5069727 Kouzuma et al. Dec 1991 A
5078803 Pier et al. Jan 1992 A
5125984 Kruehler et al. Jun 1992 A
5133809 Sichanugrist et al. Jul 1992 A
5137835 Karg Aug 1992 A
5154777 Blackmom et al. Oct 1992 A
5180686 Banerjee et al. Jan 1993 A
5211824 Knapp May 1993 A
5217564 Bozler et al. Jun 1993 A
5231047 Ovshinsky et al. Jul 1993 A
5248345 Sichanugrist et al. Sep 1993 A
5259883 Yamabe et al. Nov 1993 A
5261968 Jordan Nov 1993 A
5298086 Guha et al. Mar 1994 A
5336381 Dalzell, Jr. et al. Aug 1994 A
5336623 Sichanugrist et al. Aug 1994 A
5346853 Guha et al. Sep 1994 A
5397401 Toma et al. Mar 1995 A
5399504 Ohsawa Mar 1995 A
5436204 Albin et al. Jul 1995 A
5445847 Wada et al. Aug 1995 A
5474939 Pollock et al. Dec 1995 A
5501744 Albright et al. Mar 1996 A
5512107 Van den Berg Apr 1996 A
5528397 Zavracky et al. Jun 1996 A
5536333 Foote et al. Jul 1996 A
5578103 Araujo et al. Nov 1996 A
5578503 Karg et al. Nov 1996 A
5622634 Noma et al. Apr 1997 A
5626688 Probst et al. May 1997 A
5665175 Safir Sep 1997 A
5676766 Probst et al. Oct 1997 A
5698496 Fastnacht et al. Dec 1997 A
5726065 Szlufcik et al. Mar 1998 A
5738731 Shindo et al. Apr 1998 A
5858819 Miyasaka Jan 1999 A
5868869 Albright et al. Feb 1999 A
5925228 Panitz et al. Jul 1999 A
5977476 Guha et al. Nov 1999 A
5981868 Kushiya et al. Nov 1999 A
5985691 Basol et al. Nov 1999 A
6040521 Kushiya et al. Mar 2000 A
6048442 Kushiya et al. Apr 2000 A
6092669 Kushiya et al. Jul 2000 A
6107562 Hashimoto et al. Aug 2000 A
6127202 Kapur et al. Oct 2000 A
6160215 Curtin Dec 2000 A
6166319 Matsuyama Dec 2000 A
6172297 Hezel et al. Jan 2001 B1
6258620 Morel et al. Jul 2001 B1
6294274 Kawazoe et al. Sep 2001 B1
6307148 Takeuchi et al. Oct 2001 B1
6323417 Gillespie et al. Nov 2001 B1
6328871 Ding et al. Dec 2001 B1
RE37512 Szlufcik et al. Jan 2002 E
6361718 Shinmo et al. Mar 2002 B1
6372538 Wendt et al. Apr 2002 B1
6423565 Barth et al. Jul 2002 B1
6632113 Noma et al. Oct 2003 B1
6635307 Huang et al. Oct 2003 B2
6653701 Yamazaki et al. Nov 2003 B1
6667492 Kendall Dec 2003 B1
6690041 Armstrong et al. Feb 2004 B2
6692820 Forrest et al. Feb 2004 B2
6784492 Morishita Aug 2004 B1
6852920 Sager et al. Feb 2005 B2
6878871 Scher et al. Apr 2005 B2
6974976 Hollars Dec 2005 B2
7122398 Pichler Oct 2006 B1
7179677 Ramanathan et al. Feb 2007 B2
7194197 Wendt et al. Mar 2007 B1
7220321 Barth et al. May 2007 B2
7235736 Buller et al. Jun 2007 B1
7252923 Kobayashi Aug 2007 B2
7265037 Yang et al. Sep 2007 B2
7319190 Tuttle Jan 2008 B2
7364808 Sato et al. Apr 2008 B2
7442413 Zwaap et al. Oct 2008 B2
7544884 Hollars Jun 2009 B2
7736755 Igarashi et al. Jun 2010 B2
7741560 Yonezawa Jun 2010 B2
7855089 Farris, III et al. Dec 2010 B2
7863074 Wieting Jan 2011 B2
7910399 Wieting Mar 2011 B1
7955891 Wieting Jun 2011 B2
7960204 Lee Jun 2011 B2
7993954 Wieting Aug 2011 B2
7993955 Wieting Aug 2011 B2
7998762 Lee et al. Aug 2011 B1
8003430 Lee Aug 2011 B1
8008110 Lee Aug 2011 B1
8008111 Lee Aug 2011 B1
8008112 Lee Aug 2011 B1
8017860 Lee Sep 2011 B2
8142521 Wieting Mar 2012 B2
8168463 Wieting May 2012 B2
8178370 Lee et al. May 2012 B2
8183066 Lee et al. May 2012 B2
8217261 Wieting Jul 2012 B2
8263494 Patterson Sep 2012 B2
8287942 Huang et al. Oct 2012 B1
20020002992 Kariya et al. Jan 2002 A1
20020004302 Fukumoto Jan 2002 A1
20020061361 Nakahara May 2002 A1
20020063065 Sonoda et al. May 2002 A1
20030075717 Kondo et al. Apr 2003 A1
20030089899 Lieber et al. May 2003 A1
20030188777 Gaudiana et al. Oct 2003 A1
20030230338 Menezes Dec 2003 A1
20040063320 Hollars Apr 2004 A1
20040084080 Sager et al. May 2004 A1
20040095658 Buretea et al. May 2004 A1
20040110393 Munzer et al. Jun 2004 A1
20040161539 Miyakawa Aug 2004 A1
20040187917 Pichler Sep 2004 A1
20040245912 Thurk et al. Dec 2004 A1
20040252488 Thurk Dec 2004 A1
20040256001 Mitra et al. Dec 2004 A1
20050074915 Tuttle et al. Apr 2005 A1
20050098205 Roscheisen et al. May 2005 A1
20050109392 Hollars May 2005 A1
20050164432 Lieber et al. Jul 2005 A1
20050194036 Basol Sep 2005 A1
20050287717 Heald et al. Dec 2005 A1
20060034065 Thurk Feb 2006 A1
20060040103 Whiteford et al. Feb 2006 A1
20060051505 Kortshagen et al. Mar 2006 A1
20060096536 Tuttle May 2006 A1
20060096537 Tuttle May 2006 A1
20060096635 Tuttle May 2006 A1
20060102230 Tuttle May 2006 A1
20060112983 Parce et al. Jun 2006 A1
20060130890 Hantschel et al. Jun 2006 A1
20060160261 Sheats et al. Jul 2006 A1
20060173113 Yabuta et al. Aug 2006 A1
20060174932 Usui et al. Aug 2006 A1
20060219288 Tuttle Oct 2006 A1
20060219547 Tuttle Oct 2006 A1
20060220059 Satoh et al. Oct 2006 A1
20060249202 Yoo et al. Nov 2006 A1
20060267054 Martin et al. Nov 2006 A1
20070006914 Lee Jan 2007 A1
20070089782 Scheuten et al. Apr 2007 A1
20070116892 Zwaap May 2007 A1
20070116893 Zwaap May 2007 A1
20070151596 Nasuno et al. Jul 2007 A1
20070163643 Van Duren et al. Jul 2007 A1
20070169810 Van Duren et al. Jul 2007 A1
20070193623 Krasnov Aug 2007 A1
20070209700 Yonezawa et al. Sep 2007 A1
20070264488 Lee Nov 2007 A1
20070283998 Kuriyagawa et al. Dec 2007 A1
20070289624 Kuriyagawa et al. Dec 2007 A1
20080029154 Mishtein et al. Feb 2008 A1
20080032044 Kuriyagawa et al. Feb 2008 A1
20080041446 Wu et al. Feb 2008 A1
20080057616 Robinson et al. Mar 2008 A1
20080092945 Munteanu et al. Apr 2008 A1
20080092953 Lee Apr 2008 A1
20080092954 Choi Apr 2008 A1
20080105294 Kushiya et al. May 2008 A1
20080110495 Onodera et al. May 2008 A1
20080121264 Chen et al. May 2008 A1
20080121277 Robinson et al. May 2008 A1
20080204696 Kamijima Aug 2008 A1
20080210303 Lu et al. Sep 2008 A1
20080280030 Van Duren et al. Nov 2008 A1
20080283389 Aoki' Nov 2008 A1
20090021157 Kim et al. Jan 2009 A1
20090058295 Auday et al. Mar 2009 A1
20090084438 den Boer et al. Apr 2009 A1
20090087940 Kushiya Apr 2009 A1
20090087942 Meyers Apr 2009 A1
20090145746 Hollars Jun 2009 A1
20090217969 Matsushima et al. Sep 2009 A1
20090234987 Lee et al. Sep 2009 A1
20090235983 Girt et al. Sep 2009 A1
20090235987 Akhtar et al. Sep 2009 A1
20090293945 Peter Dec 2009 A1
20100081230 Lee Apr 2010 A1
20100087016 Britt et al. Apr 2010 A1
20100087026 Winkeler et al. Apr 2010 A1
20100096007 Mattmann et al. Apr 2010 A1
20100101648 Morooka et al. Apr 2010 A1
20100101649 Huignard et al. Apr 2010 A1
20100122726 Lee May 2010 A1
20100197051 Schlezinger et al. Aug 2010 A1
20100210064 Hakuma et al. Aug 2010 A1
20100233386 Krause et al. Sep 2010 A1
20100258179 Wieting Oct 2010 A1
20100267189 Yu et al. Oct 2010 A1
20100267190 Hakuma et al. Oct 2010 A1
20110018103 Wieting Jan 2011 A1
20110020980 Wieting Jan 2011 A1
20110070682 Wieting Mar 2011 A1
20110070683 Wieting Mar 2011 A1
20110070684 Wieting Mar 2011 A1
20110070685 Wieting Mar 2011 A1
20110070686 Wieting Mar 2011 A1
20110070687 Wieting Mar 2011 A1
20110070688 Wieting Mar 2011 A1
20110070689 Wieting Mar 2011 A1
20110070690 Wieting Mar 2011 A1
20110071659 Farris, Iii et al. Mar 2011 A1
20110073181 Wieting Mar 2011 A1
20110203634 Wieting Aug 2011 A1
20110212565 Wieting Sep 2011 A1
20110259395 Wieting et al. Oct 2011 A1
20110259413 Wieting et al. Oct 2011 A1
20110269260 Buquing Nov 2011 A1
20110277836 Lee Nov 2011 A1
20120003789 Doering et al. Jan 2012 A1
20120021552 Alexander et al. Jan 2012 A1
20120045886 Lee Feb 2012 A1
20120094432 Wieting Apr 2012 A1
20120122304 Wieting May 2012 A1
20120186975 Lee et al. Jul 2012 A1
20120240989 Ramanathan et al. Sep 2012 A1
Foreign Referenced Citations (20)
Number Date Country
199878651 Feb 1999 AU
200140599 Aug 2001 AU
3314197 Nov 1983 DE
10104726 Aug 2002 DE
102005062977 Sep 2007 DE
2646560 Nov 1990 FR
2124826 Feb 1984 GB
2000173969 Jun 2000 JP
2000219512 Aug 2000 JP
2002167695 Jun 2002 JP
2002270871 Sep 2002 JP
2002299670 Oct 2002 JP
2004332043 Nov 2004 JP
2005311292 Nov 2005 JP
0757932 Aug 2001 WO
2005011002 Feb 2005 WO
2006126598 Nov 2006 WO
2007022221 Feb 2007 WO
2007077171 Jul 2007 WO
2008025326 Mar 2008 WO
Non-Patent Literature Citations (20)
Entry
Baumann, A., et al., Photovoltaic Technology Review, presentation Dec. 6, 2004, 18 pages.
Chopra et al., “Thin-Film Solar Cells: An Overview”, 2004, Progress in Photovoltaics: Research and Applications, 2004, vol. 12, pp. 69-92.
Ellmer et al., Copper Indium Disulfide Solar Cell Absorbers Prepared in a One-Step Process by Reactive Magnetron Sputtering from Copper and Indium Targets; Elsevier Science B.V; Thin Solid Films 413 (2002) pp. 92-97.
Guillen C., “CuInS2 Thin Films Grown Sequentially from Binary Sulfides as Compared to Layers Evaporated Directly from the Elements”, Semiconductor Science and Technology, vol. 21, No. 5, May 2006, pp. 709-712.
Huang et al., Photoluminescence and Electroluminescence of ZnS:Cu Nanocrystals in Polymeric Networks, Applied Physics, Lett. 70 (18), May 5, 1997, pp. 2335-2337.
Huang et al., Preparation of ZnxCd1—xS Nanocomposites in Polymer Matrices and their Photophysical Properties, Langmuir 1998, 14, pp. 4342-4344.
International Solar Electric Technology, Inc. (ISET) “Thin Film CIGS”, Retrieved from http://www.isetinc.com/cigs.html on Oct. 1, 2008, 4 pages.
Kapur et al., “Fabrication of CIGS Solar Cells via Printing of Nanoparticle Precursor Inks”, DOE Solar Program Review Meeting 2004, DOE/GO-102005-2067, p. 135-136.
Kapur et al., “Non-Vacuum Printing Process for CIGS Solar Cells on Rigid and Flexible Substrates”, 29th IEEE Photovoltaic Specialists Conf., New Orleans, LA, IEEE, 2002, pp. 688-691.
Kapur et al., “Non-Vacuum Processing of CIGS Solar Cells on Flexible Polymer Substrates”, Proceedings of the Third World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2P-D3-43, 2003.
Kapur et al., “Non-Vacuum Processing of CuIn1-xGaxSe2 Solar Cells on Rigid and Flexible Substrates using Nanoparticle Precursor Inks”, Thin Solid Films, 2003, vol. 431-432, pp. 53-57.
Kapur et al., “Fabrication of Light Weight Flexible CIGS Solar Cells for Space Power Applications”, Materials Research Society, Proceedings vol. 668, (2001) pp. H3.5.1-H3.5.6.
Kapur et al., “Nanoparticle Oxides Precursor Inks for Thin Film Copper Indium Gallium Selenide (CIGS) Solar Cells”, Materials Research Society Proceedings, vol. 668, (2001) pp. H2.6.1-H2.6.7.
Mehta et al., “A graded diameter and oriented nanorod-thin film structure for solar cell application; a device proposal”, Solar Energy Materials & Solar Cells, 2005, vol. 85, pp. 105-113.
Onuma et al., Preparation and Characterization of CuInS2 Thin Films Solar Cells with Large Grain, Elsevier Science B.V; Solar Energy Materials & Solar Cells 69 (2001) pp. 261-269.
Salvador, “Hole diffusion length in n-TiO2 single crystals and sintered electrodes: photoelectrochemical determination and comparative analysis,” Journa; of Applied Physics, vol. 55, No. 8, pp. 2977-2985, Apr. 15, 1984.
Srikant V., et al., “On the Optical Band Gap of Zinc Oxide”, Journal of Applied Physics, vol. 83, No. 10, May 15, 1998, pp. 5447-5451.
Yang et al., “Preparation, Characterization and Electroluminescence of ZnS Nanocrystals in a Polymer Matrix”, Journal Material Chem., 1997, vol. 7, No. 1, pp. 131-133.
Yang et al., “Electroluminescence from ZnS/CdS Nanocrystals/Polymer Composite”, Synthetic Metals 1997, vol. 91, pp. 347-349.
Yang et al., “Fabrication and Characteristics of ZnS Nanocrystals/Polymer Composite Doped with Tetraphenylbenzidine Single Layer Structure Light-emitting Diode”, Applied Physics Letters, vol. 69, No. 3, Jul. 15, 1996, pp. 377-379.
Related Publications (1)
Number Date Country
20120270341 A1 Oct 2012 US
Provisional Applications (2)
Number Date Country
60988089 Nov 2007 US
60988099 Nov 2007 US
Continuations (2)
Number Date Country
Parent 13179713 Jul 2011 US
Child 13456095 US
Parent 12269768 Nov 2008 US
Child 13179713 US