1. Field of the Invention
The field of the invention relates to microelectromechanical systems (MEMS), and more particularly, to methods and systems for packaging MEMS devices.
2. Description of the Related Technology
Microelectromechanical systems (MEMS) include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. An interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. One plate may comprise a stationary layer deposited on a substrate, the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Embodiments” one will understand how the features of this invention provide advantages over other display devices.
One embodiment of a microelectromechanical system (MEMS) device comprises a substrate, a MEMS device formed on the substrate, a backplane, a primary seal positioned proximate a perimeter of the MEMS device and in contact with the substrate and the backplane, and a secondary seal positioned proximate an outer periphery of the primary seal and in contact with the substrate and the backplane.
The primary seal or the secondary seal may each be either a continuous or a non-continuous seal. In some embodiments, the secondary seal comprises an anisotropic conductive film (ACF). The ACF may comprise a tailored sealing portion proximate the outer periphery of the primary seal.
In some embodiments, the secondary seal is in contact with the primary seal. The secondary seal may comprise a hydrophobic material, an adhesive, and/or a metal. In some embodiments, the MEMS device comprises an interferometric modulator array.
The MEMS device may comprise a display system comprising a processor that is in electrical communication with the MEMS device, the processor being configured to process image data, and a memory device in electrical communication with the processor. The display system may further comprise a first controller configured to send at least one signal to the MEMS device, and a second controller configured to send at least a portion of the image data to the first controller.
In some embodiments, the display system further comprises an image source module configured to send the image data to the processor. In addition, the image source module may comprise at least one of a receiver, transceiver, and transmitter.
In certain embodiments, the display system further comprises an input device configured to receive input data and to communicate the input data to the processor.
One embodiment of a method of sealing a MEMS device package comprises providing a MEMS device package comprising a backplane and a substrate, wherein a MEMS device is formed on the substrate, providing a primary seal formed proximate a perimeter of the MEMS device and between the backplane and the substrate, and forming a secondary seal proximate an outer periphery of the primary seal and in contact with the substrate and the backplane.
In some embodiments, the primary seal is formed on at least one of the backplane and the substrate. In certain embodiments, forming the secondary seal comprises placing a solder preform proximate an outer periphery of the primary seal, and melting the solder preform to contact the substrate and the backplane. In addition, placing the solder preform may occur before the backplane, the primary seal, and the substrate are assembled, wherein the melting occurs after the assembly.
One embodiment of a system for sealing a MEMS device package comprises a MEMS device package comprising a backplane and a substrate, wherein a MEMS device is formed on the substrate, a primary seal formed proximate a perimeter of the MEMS device and between the backplane and the substrate, and means for sealing an outer periphery of the primary seal, wherein the means is in contact with the substrate and the backplane.
One embodiment of a MEMS device package comprises a primary inner seal and a secondary outer seal, wherein the package is produced by a method comprising providing a MEMS device package comprising a backplane and a substrate, wherein a MEMS device is formed on the substrate, providing a primary seal formed proximate a perimeter of the MEMS device and between the backplane and the substrate, and forming a secondary seal proximate an outer periphery of the primary seal and in contact with the substrate and the backplane.
One embodiment of a MEMS device package comprises a substrate, a MEMS device formed on the substrate, a backplane, a seal positioned proximate a perimeter of the MEMS device and in contact with the substrate and the backplane, a flexible circuit, and an anisotropic conductive film in contact with the flexible circuit, the substrate, and the backplane. In some embodiments, the anisotropic conductive film is in contact with the seal.
The MEMS device may comprise an interferometric modulator array, and the anisotropic conductive film may comprise a tailored sealing portion proximate the seal.
One embodiment of a method of assembling a MEMS device package comprises contacting a flexible circuit, an anisotropic conductive film, and a substrate, wherein the substrate comprises a MEMS device thereon, and a seal proximate a perimeter of the MEMS device and in contact with the substrate and a backplane, and applying a force to the flexible circuit so as to force the anisotropic conductive film into contact with the backplane.
The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the embodiments may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
A plurality of embodiments of MEMS device package structures including improved sealant structures are described below. In one embodiment, the MEMS device is packaged between a backplane and a substrate which are held together by a primary seal. The MEMS device package structure further comprises a second seal that is located around a perimeter of the primary seal and may be in contact with at least the substrate and the backplane. In some embodiments, the second seal is also in contact with the primary seal. One embodiment of a method of sealing a MEMS device package including a second seal comprises forming a second seal with an anisotropic conductive film, wherein the anisotropic conductive film also forms an electrical connection between a flexible circuit and conductive leads on a periphery of the package substrate. During attachment or contact of the flexible circuit and anisotropic conductive film to the substrate, a force is applied to the flexible circuit so as to force the anisotropic conductive film into contact with the backplane, thereby forming a second seal. These embodiments are discussed in more detail below in reference to
One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in
The depicted portion of the pixel array in
The fixed layers 16a, 16b are electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more layers each of chromium and indium-tin-oxide onto a transparent substrate 20. The layers are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the deformable metal layers 14a, 14b are separated from the fixed metal layers by a defined gap 19. A highly conductive and reflective material such as aluminum may be used for the deformable layers, and these strips may form column electrodes in a display device.
With no applied voltage, the cavity 19 remains between the layers 14a, 16a and the deformable layer is in a mechanically relaxed state as illustrated by the pixel 12a in
In one embodiment, the processor 21 is also configured to communicate with an array controller 22. In one embodiment, the array controller 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a display array or panel 30. The cross section of the array illustrated in
In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
In the
The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 44, an input device 48, and a microphone 46. The housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding, and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including but not limited to plastic, metal, glass, rubber, and ceramic, or a combination thereof. In one embodiment the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
The display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein. In other embodiments, the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art. However, for purposes of describing the present embodiment, the display 30 includes an interferometric modulator display, as described herein.
The components of one embodiment of exemplary display device 40 are schematically illustrated in
The network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one ore more devices over a network. In one embodiment the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21. The antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including IEEE 802.11(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals that are used to communicate within a wireless cell phone network. The transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
In an alternative embodiment, the transceiver 47 can be replaced by a receiver. In yet another alternative embodiment, network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. For example, the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
Processor 21 generally controls the overall operation of the exemplary display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
In one embodiment, the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40. Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 44, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
The driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as a LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
Typically, the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
In one embodiment, the driver controller 29, array driver 22, and display array 30 are appropriate for any of the types of displays described herein. For example, in one embodiment, driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller). In another embodiment, array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display). In one embodiment, a driver controller 29 is integrated with the array driver 22. Such an embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays. In yet another embodiment, display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).
The input device 48 allows a user to control the operation of the exemplary display device 40. In one embodiment, input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, a pressure- or heat-sensitive membrane. In one embodiment, the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40.
Power supply 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery. In another embodiment, power supply 50 is a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell, and solar-cell paint. In another embodiment, power supply 50 is configured to receive power from a wall outlet.
In some implementations control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some cases control programmability resides in the array driver 22. Those of skill in the art will recognize that the above-described optimization may be implemented in any number of hardware and/or software components and in various configurations.
The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example,
The moving parts of a MEMS device, such as an interferometric modulator array, preferably have a protected space in which to move. Packaging techniques for a MEMS device will be described in more detail below. A schematic of a basic package structure for a MEMS device, such as an interferometric modulator array, is illustrated in
The substrate 72 and the backplane 74 are joined by a seal 78 to form the package structure 70, such that the interferometric modulator array 76 is encapsulated by the substrate 72, backplane 74, and the seal 78. This forms a cavity 79 between the backplane 74 and the substrate 72. The seal 78 may be a non-hermetic seal, such as a conventional epoxy-based adhesive. In other embodiments, the seal 78 may be a polyisobutylene (sometimes called butyl rubber, and other times PIB), o-rings, polyurethane, thin film metal weld, liquid spin-on glass, solder, polymers, or plastics, among other types of seals that may have a range of permeability of water vapor of about 0.2-4.7 g mm/m2 kPa day. In still other embodiments, the seal 78 may be a hermetic seal and may comprise, for example, metals, welds, and glass frits. Methods of hermetic sealing comprise, for example, metal or solder thin film or preforms, laser or resistive welding techniques, and anodic bonding techniques, wherein the resulting package structure may or may not require a desiccant to achieve the desired internal package requirements.
The seal 78 may be implemented as a closed seal (continuous) or an open seal (non-continuous), and may be applied or formed on the substrate 72, backplane 74, or both the substrate and backplane 74 in a method of packaging the interferometric modulator array 76. The seal 78 may be applied through simple in-line manufacturing processes and may have advantages for lower temperature processes, whereas the techniques of welding and soldering may require very high temperature processes that can damage the package structure 20, are relatively expensive. In some cases, localized heating methods can be used to reduce the process temperatures and yield a viable process solution.
In some embodiments, the package structure 70 includes a getter such as a desiccant 80 configured to reduce moisture within the cavity 79. The skilled artisan will appreciate that a desiccant may not be necessary for a hermetically sealed package, but may be desirable to control moisture resident within the package. In one embodiment, the desiccant 80 is positioned between the interferometric modulator array 76 and the backplane 74. Desiccants may be used for packages that have either hermetic or non-hermetic seals. In packages having a hermetic seal, desiccants are typically used to control moisture resident within the interior of the package. In packages having a non-hermetic seal, a desiccant may be used to control moisture moving into the package from the environment. Generally, any substance that can trap moisture while not interfering with the optical properties of the interferometric modulator array may be used as the desiccant 80. Suitable getter and desiccant materials include, but are not limited to, zeolites, molecular sieves, surface adsorbents, bulk adsorbents, and chemical reactants.
The desiccant 80 may be in different forms, shapes, and sizes. In addition to being in solid form, the desiccant 80 may alternatively be in powder form. These powders may be inserted directly into the package or they may be mixed with an adhesive for application. In an alternative embodiment, the desiccant 80 may be formed into different shapes, such as cylinders, rings, or sheets, before being applied inside the package.
The skilled artisan will understand that the desiccant 80 can be applied in different ways. In one embodiment, the desiccant 80 is deposited as part of the interferometric modulator array 76. In another embodiment, the desiccant 80 is applied inside the package 70 as a spray or a dip coat.
The substrate 72 may be a semi-transparent or transparent substance capable of having thin film, MEMS devices built upon it. Such transparent substances include, but are not limited to, glass, plastic, and transparent polymers. The interferometric modulator array 76 may comprise membrane modulators or modulators of the separable type. The skilled artisan will appreciate that the backplane 74 may be formed of any suitable material, such as glass, metal, foil, polymer, plastic, ceramic, or semiconductor materials (e.g., silicon).
The packaging process may be accomplished in a vacuum, pressure between a vacuum up to and including ambient pressure, normal atmospheric pressure conditions, or pressure higher than ambient pressure. The packaging process may also be accomplished in an environment of varied and controlled high or low pressure during the sealing process. There may be advantages to packaging the interferometric modulator array 76 in a completely dry environment, but it is not necessary. Similarly, the packaging environment may be of an inert gas at ambient conditions. Packaging at ambient conditions allows for a lower cost process and more potential for versatility in equipment choice because the device may be transported through ambient conditions without affecting the operation of the device.
Generally, it is desirable to minimize the permeation of water vapor into the package structure 70, and thus control the environment in the cavity 79 of the package structure 70 and hermetically seal it to ensure that the environment remains constant. When the humidity or water vapor level within the package exceeds a level beyond which surface tension from the water vapor becomes higher than the restoration force of a movable element (not shown) in the interferometric modulator array 76, the movable element may become permanently adhered to the surface. There is thus a need to reduce the moisture level within the package.
MEMS devices, such as interferometric modulator displays, have a lifetime based at least in part on the amount of moisture to which the device is exposed. Thus, the lifetime of an interferometric modulator display may be determined based at least in part on the level of moisture control provided by the desiccant within a package structure and the water vapor permeability of the seal between the backplane and the substrate. The lifetime of a display device can be defined as the time at which the desiccant is saturated with water. The water saturating the desiccant includes the water vapor that naturally enters the package structure through the seal and is absorbed into the desiccant. The value can be designed to be very low, such as on the order of 0.0001 grams per day, such that the lifetime is on the order of about 10 years or more. The seal material may be selected according to its water vapor permeability properties depending on the expected lifetime of the interferometric modulator display. For example, an interferometric modulator display intended for use in inexpensive and/or disposable devices, such as children's toys and disposable cameras, may comprise a seal with a higher water vapor permeability rate than a device intended to have a longer lifetime.
As will be appreciated by those skilled in the art, the secondary seal 82 may be formed or applied to the package structure through a plurality of methods, such as application in a liquid or semi-liquid state and curing through exposure to air, elevated temperatures, UV light, and/or placement. Exemplary methods of forming and placing a secondary seal are discussed in more detail hereinafter in reference to
In certain embodiments, the combined water vapor permeability of the secondary seal 82 and the primary seal 78 accords with a desired total water vapor permeability for the package structure 70. In some embodiments, a material with a higher water vapor permeability coefficient and lower effective lifetime than the primary seal may be used for the secondary seal 82. The addition of the secondary seal 82 provides for relaxed constraints on the properties of the primary seal 78, thereby reducing testing procedures and costs in optimization of the primary seal 78. The package structure for interferometric modulator displays intended for short use, for example, such as in inexpensive and/or disposable devices, can be modified to reduce material reliability constraints. Relaxed constraints on the properties of the package structure seal can reduce costs for the package structure, thereby making the implementation of interferometric modulator displays in short use devices cost effective.
As discussed above, the secondary seal 82 may be formed, applied, or placed using a plurality of methods known in the art.
In certain embodiments, contacting the primary seal, substrate, and backplane in step 906 functions primarily to align and/or affix the backplane with the substrate, wherein, for example, the primary seal comprises an adhesive. The secondary seal formed from the solder preform may then function as the major environmental seal for the device package, wherein the primary seal provides minor sealant attributes to the device package.
During attachment of the flexible circuit 1006 and ACF 1008 to the substrate 72, the ACF adhesive is in a solid state (or semi-solid state) and may be applied in a tape form. In one embodiment, the ACF melts with the application of an elevated temperature and subsequently solidifies when cooled to room temperature. Accordingly, the final position of the ACF can be manipulated by applying pressure to the flexible circuit 1006 to force a quantity or portion of the ACF 1008 to contact the backplane 74, thereby forming a secondary seal in contact with the backplane 74 and the substrate 72. In some embodiments, the ACF 1008 is also in contact with the primary seal. The secondarily sealed interferometric modulator device package structure of
One embodiment of a method 1100 of sealing an interferometric modulator array package structure with a secondary seal is illustrated in the flow diagram of
In another embodiment, the ACF may comprise a sealing region wherein a portion of the ACF is specifically tailored for sealing. For example, the material at the sealing region of the ACF may comprise both a resin and conductive particles, wherein the resin is configured with a hydrophobic property or highly water impermeable barrier for implementation as a secondary seal.
As will be appreciated by those skilled in the art, the above described and illustrated methods and apparatus are exemplary in nature and other embodiments are within the scope of the invention. For example, the secondary seal may have a plurality of forms and configurations, and may comprise a plurality of materials. In addition, the methods of formation of the secondary seal may include more or fewer steps, and may, for example take place before, during, or after encapsulation of a MEMS device within a packaging structure.
The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.
This application claims priority to U.S. Provisional Patent Application No. 60/613,527 entitled “METHOD AND SYSTEM FOR PROVIDING MEMS DEVICE PACKAGE WITH SECONDARY SEAL” and filed on Sep. 27, 2004. The disclosure of the above-described application is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60613527 | Sep 2004 | US |