The present description relates generally to vacuum generation in an intake via a throttle plate.
Vehicle systems may include various vacuum consumption devices that are actuated using vacuum. These may include, for example, a brake booster and a purge canister. Vacuum used by these devices may be provided by a dedicated vacuum pump. In other embodiments, one or more aspirators (alternatively referred to as ejectors, venturi pumps, jet pumps, and eductors) may be coupled in the engine system that may harness engine airflow and use it to generate vacuum.
In yet another example embodiment shown by Bergbauer et al. in U.S. Pat. No. 8,261,716, a control bore is located in the wall of the intake such that when the throttle plate is at idle position, vacuum generated at the periphery of the throttle is used for a vacuum consumption device. Therein, the positioning of the throttle plate in an idle position provides a constriction at the throttle plate's periphery. The increasing flow of intake air through the constriction results in a venturi effect that generates a partial vacuum. The control bore is sited so as to utilize the partial vacuum for a vacuum consumption device.
The inventors herein have identified potential issues with the above approach. As an example, the vacuum generation potential of the throttle is limited. For example, a single control bore at one location in the intake, as shown in U.S. Pat. No. 8,261,716, is utilized by the vacuum consumption device even though vacuum may be generated at the entire periphery of the throttle. To use vacuum generated at the entire periphery of the throttle, more control bores may be needed in the intake passage. However, fabricating these control bores may result in significant modifications to the design of the intake passage which can increase related expenses.
In the approaches that use one or more aspirators to generate vacuum, additional expenses may be incurred because of individual parts that form the aspirator including nozzles, mixing and diffusion sections, and check valves. Further, at idle or low load conditions, it may be difficult to control the total air flow rate into the intake manifold since the flow rate is a combination of leakage flow from the throttle and airflow from the aspirator. Typically, an aspirator shut off valve (ASOV) may be included along with the aspirator to control airflow but with added cost. Further, installing aspirators in the intake can lead to constraints on space availability as well as packaging issues.
In one example, the issues described above may be addressed a system comprising a throttle valve have a venturi passage located inside its throttle body, the venturi passage configured to receive intake air directly from an intake passage when the venturi passage is parallel to a direction of incoming intake air flow. In this way, motive air may flow through venturi passages formed between the throttle plate and an exhaust pipe, or through the venturi passage in the throttle plate dependent on a position of the throttle plate.
As one example, edges of the throttle plate are beveled or curved such that constricted passages (e.g., venturi passages) are formed between the edges and an intake pipe. This may occur in a more closed position of the throttle plate. As such, motive flow through the venturi passages adjacent the exhaust pipe may generate vacuum to be supplied to a vacuum consumption device. The throttle plate comprises one or more venturi passages located inside the throttle plate and configured to admit motive air therethrough. As such, motive air may flow through the venturi passage(s) inside the throttle plate and generate vacuum to be supplied to the vacuum consumption device. By doing this, vacuum may be provided to the vacuum consumption device through a plurality of positions of the throttle plate.
It should be understood that the summary above is provided to introduce in simplified form a selection of concepts that are further described in the detailed description. It is not meant to identify key or essential features of the claimed subject matter, the scope of which is defined uniquely by the claims that follow the detailed description. Furthermore, the claimed subject matter is not limited to implementations that solve any disadvantages noted above or in any part of this disclosure.
The following description relates to systems and methods for generating vacuum within an intake passage in an engine, such as the engine system shown in
Referring now to
Combustion chamber 30 (also known as, cylinder 30) of engine 10 may include combustion chamber walls 32 with piston 36 positioned therein. Piston 36 may be coupled to crankshaft 40 so that reciprocating motion of the piston is translated into rotational motion of the crankshaft. Crankshaft 40 may be coupled to at least one drive wheel of a vehicle via an intermediate transmission system (not shown). Further, a starter motor may be coupled to crankshaft 40 via a flywheel (not shown) to enable a starting operation of engine 10.
Combustion chamber 30 may receive intake air from intake manifold 44 via intake passage 42 and may exhaust combustion gases via exhaust passage 48. Intake manifold 44 and exhaust passage 48 can selectively communicate with combustion chamber 30 via respective intake valve 52 and exhaust valve 54. In some embodiments, combustion chamber 30 may include two or more intake valves and/or two or more exhaust valves.
In this example, intake valve 52 and exhaust valves 54 may be controlled by cam actuation via respective cam actuation systems 51 and 53. Cam actuation systems 51 and 53 may each include one or more cams and may utilize one or more of cam profile switching (CPS), variable cam timing (VCT), variable valve timing (VVT) and/or variable valve lift (VVL) systems that may be operated by controller 12 to vary valve operation. The position of intake valve 52 and exhaust valve 54 may be determined by position sensors 55 and 57, respectively. In alternative embodiments, intake valve 52 and/or exhaust valve 54 may be controlled by electric valve actuation. For example, cylinder 30 may alternatively include an intake valve controlled via electric valve actuation and an exhaust valve controlled via cam actuation including CPS and/or VCT systems.
Fuel injector 66 is shown coupled directly to combustion chamber 30 for injecting fuel directly therein in proportion to the pulse width of signal FPW received from controller 12 via electronic driver 96. In this manner, fuel injector 66 provides what is known as direct injection of fuel into combustion chamber 30. The fuel injector may be mounted in the side of the combustion chamber or in the top of the combustion chamber, for example. Fuel may be delivered to fuel injector 66 by a fuel system (not shown) including a fuel tank, a fuel pump, and a fuel rail. In some embodiments, combustion chamber 30 may alternatively or additionally include a fuel injector arranged in intake manifold 44 in a configuration that provides what is known as port injection of fuel into the intake port upstream of combustion chamber 30.
Ignition system 88 can provide an ignition spark to combustion chamber 30 via spark plug 92 in response to spark advance signal SA from controller 12, under select operating modes. Though spark ignition components are shown, in some embodiments, combustion chamber 30 or one or more other combustion chambers of engine 10 may be operated in a compression ignition mode, with or without an ignition spark.
Engine 10 may further include a compression device such as a turbocharger or supercharger including at least a compressor 162 arranged along intake passage 42. For a turbocharger, compressor 162 may be at least partially driven by a turbine 164 (e.g., via a shaft) arranged along exhaust passage 48. Compressor 162 draws air from intake passage 42 to supply boost chamber 46. Exhaust gases spin turbine 164 which is coupled to compressor 162 via shaft 161. For a supercharger, compressor 162 may be at least partially driven by the engine and/or an electric machine, and may not include a turbine. Thus, the amount of compression provided to one or more cylinders of the engine via a turbocharger or supercharger may be varied by controller 12.
A wastegate 168 may be coupled across turbine 164 in a turbocharger. Specifically, wastegate 168 may be included in a bypass 166 coupled between an inlet and outlet of the exhaust turbine 164. By adjusting a position of wastegate 168, an amount of boost provided by the turbine may be controlled.
Intake manifold 44 is shown communicating with throttle 62 having a throttle plate 64. In this particular example, the position of throttle plate 64 may be varied by controller 12 via a signal provided to an electric motor or actuator (not shown in
Engine 10 is coupled to vacuum consumption device 140 which may include, as non-limiting examples, one of a brake booster, a fuel vapor canister, and a vacuum-actuated valve (such as a vacuum-actuated wastegate and/or EGR valve). Vacuum consumption device 140 may receive vacuum from a plurality of vacuum sources. One source may be vacuum pump 77 that may be selectively operated via a control signal from controller 12 to supply vacuum to vacuum consumption device 140. Check valve 69 allows air to flow to vacuum pump 77 from vacuum consumption device 140 and limits airflow to vacuum consumption device 140 from vacuum pump 77. Another source of vacuum may be throttle plate 64 which is positioned within boost chamber 46. Throttle plate 64 has multiple perforations at its periphery, in one example.
As shown in
Exhaust gas sensor 126 is shown coupled to exhaust passage 48 upstream of emission control device 70. Sensor 126 may be any suitable sensor for providing an indication of exhaust gas air/fuel ratio such as a linear oxygen sensor or UEGO (universal or wide-range exhaust gas oxygen), a two-state oxygen sensor or EGO, a HEGO (heated EGO), a NOx, HC, or CO sensor. Emission control device 70 is shown arranged along exhaust passage 48 downstream of exhaust gas sensor 126. Device 70 may be a three way catalyst (TWC), NOx trap, various other emission control devices, or combinations thereof.
An exhaust gas recirculation (EGR) system may be used to route a desired portion of exhaust gas from exhaust passage 48 to intake manifold 44 through conduit 152 via EGR valve 158. Alternatively, a portion of combustion gases may be retained in the combustion chambers, as internal EGR, by controlling the timing of exhaust and intake valves.
Controller 12 is shown in
The controller 12 receives signals from the various sensors of
As described above,
A central axis 295 of the intake conduit 95 is shown. A direction of incoming intake air (fresh intake air arrow) is parallel to the central axis 295. The throttle plate 64 may pivot about the central axis 295. In this way, a venturi passage 250 inside the throttle plate 64 may become parallel to the central axis 295 or perpendicular to the central axis 295, as shown.
Throttle plate 64 is shown positioned within boost chamber 46 of an intake as fresh intake air 82 flows through intake conduit 95. Vacuum consumption device 140 is fluidly coupled via conduit 198 to a hollow shaft (not shown), which in turn is connected to opening 68 of throttle plate 64. The hollow shaft may be mounted on bearings coupled to an inner or outer surface of intake conduit 95. Throttle plate 64 may be partially hollow and includes first and second openings 230 and 240 at its periphery, opposite one another and approximately 90° away from opening 68. That is, the first and second openings 230 and 240 may be arranged along a circumference of the throttle plate 64. In one example, the first and second openings 230 and 240 may have a width that is less than the width of the throttle plate 64 along the z-axis. In an alternate example, where the throttle is shaped such that it narrows when going from the center of the throttle towards the edge (that is, a width of the throttle plate at the center is wider than a width of the throttle plate at the edge), the first and second openings 230 and 240 may have a width based on the width of the throttle at the edge. Further, the first and second openings 230 and 240 may be substantially identical in shape and size. Alternatively, the first and second openings 230 and 240 may be different in shape and/or size. For example, both the first and second openings 230 and 240 are oblong. However, it will be appreciated that one of the openings may be oblong and the other rectangular without departing from the scope of the present disclosure.
In the given example, the first and second openings 230 and 240 are located at two diametrically opposite locations along the edge of the throttle plate 64. Specifically, in the example shown, the second opening 240 is located at a first location at a top edge 242 and the first opening 230 is located at a second location, diametrically opposite the first location, at a bottom edge 232 of throttle plate 64. In the depicted example, each of the first and second openings 230 and 240 is a single opening. Alternatively, the first and second openings 230 and 240 may be a plurality of smaller openings (e.g., a cluster of perforations). Additionally, the edge surface of throttle plate 64 may be designed to create a low static pressure when throttle plate 64 is in a partially closed, mostly closed, or fully closed position by forming constricted passages between the edge and the intake conduit 95.
The venturi passage 250 is located within a hollow region 65 of the throttle plate 64 between the first and second openings 230 and 240. Specifically, a first venturi end 252 is directly coupled to the first opening 230 and a second venturi end 254 is directly coupled to the second opening 240. A venturi throat 256 is located between the first venturi end 252 and the second venturi end 254. The first venturi end 252 and second venturi end 254 are shaped such that they both narrow (constrict) toward the venturi throat 256. As such, the venturi throat 256 is a narrowest portion of the venturi passage 250. A connecting passage 258 is fluidly coupled to the venturi throat 256 and the conduit 198.
When engine load decreases and/or when an accelerator pedal moves to a more inclined position, throttle plate 64 may be adjusted by the controller to a more closed position within boost chamber 46. With throttle plate 64 situated in a more closed position, constricted passages may be created between an interior surface of intake conduit 95 and the periphery (edge) of throttle plate 64. In the example of
Turning now to
Throttle plate 64 is positioned in the examples of
A position of throttle plate 64 may be adjusted by motor 81 that is connected to throttle plate 64 via shaft 76. Shaft 76 may not be hollow. Throttle plate 64 may be mounted on hollow shaft 74 and shaft 76 such that shafts 74 and 76 are perpendicular to the edge of the throttle plate 64. Further, throttle plate 64 may be joined to shaft 76 and hollow shaft 74 at its edge via one or more of various joining methods including welding, adhesion, and fastening. Other joining methods not listed herein may also be used. Throttle plate 64 may in turn be fitted within a throttle body (not shown). Each of the shafts, 74 and 76, may be mounted on respective bearings 254 and 258 which may be bolted to their respective housings 255 and 257. Thus, as throttle plate 64 is rotated to different throttle angles within intake conduit 95, shafts 74 and 76 may spin supported by respective bearings 254 and 258. Motor 81 may be powered by a system battery and may receive operating commands from controller 12 to adjust the position of throttle plate 64 via shaft 76 based on engine conditions. In one example, the controller 12 signal the motor 81 to rotate the throttle plate 64 to a more open position in response to an engine load decreasing. By varying a position of shaft 76, motor 81 may adjust an opening and closing of throttle plate 64.
Thus, in one example, throttle plate 64 may be adjusted by motor 81 to a more closed position in response to an increase in vacuum demand at the vacuum consumption device 140. As intake air 82 flows by openings 230 and 240 of throttle plate edges 242 and 232, vacuum may be generated in the respective venturi passages formed between the edges and interior surfaces of the intake conduit 95. This vacuum may be applied to vacuum consumption device 140 by flowing air from vacuum consumption device 140 through conduit 198, via hollow shaft 74 past opening 68 and into hollow region 65 enclosed within throttle plate 64. Air drawn from vacuum consumption device 140 may then be streamed through openings 230 and 240 of hollow throttle plate 64 into intake airflow, e.g. intake air 82, towards the intake valve of cylinder 30.
When driver demand increases, throttle plate 64 may be adjusted by the controller to a more open position within boost chamber 46. With throttle plate 64 situated in a more open position, venturi passage 250 may be positioned to directly receive intake air 82 from the boost chamber 46. In this way, venturi passage 250 is parallel to the x-axis in embodiment 500, while being parallel to the y-axis in embodiment 200 of
Turning now to
Turning now to
As shown, the first annular venturi passage 610 is radially interior to the second annular venturi passage 620. In this way, a diameter of the first annular venturi passage 610 is smaller than a diameter of the second annular venturi passage 620. Intake gas does not flow through a portion 602 of the throttle plate 600. Thus, intake gas may deflect off the portion 602 and remain in an intake passage (e.g., boost chamber 46 of
Turning now to
When vacuum consumption device 140 demands vacuum, and engine conditions permit, throttle plate 600 may be adjusted by the controller to a more closed position within intake passage 646 (e.g., boost chamber 46 of
In one example, more vacuum is generated in the fully closed position than in any other positions of the throttle plate 600. In this way, intake air 682 enters the first 610 and second 620 annular venturi passages via the first annular opening 612 and second annular opening 622, respectively. At first and second venturi throats 616 and 626 of the first 610 and second 620 annular venturi passages (e.g., constriction of the venturi passages along the vertical axis 690), respectively, vacuum 684 is generated and supplied to connecting passage 630, which is fluidly coupled to the vacuum consumption device 140. Additionally, the connecting passage 630 fluidly connects the first 610 and second 620 annular venturi passages such that vacuum generated in the first annular venturi passage 610 may be provided to the second annular venturi passage 620 and vice-versa. When the vacuum 684 is applied to the vacuum consumption device 140, air 686 is drawn from the vacuum consumption device 140 via connecting passage 630, and then into the first 610 and/or second 620 annular venturi passages where the air 86 may mix with intake air 82. The mixture then flows out the first 610 and second 620 annular venturi passages via first venturi outlet 614 and second venturi outlet 624, respectively, exiting the throttle plate 600 and flowing to the engine downstream of the throttle plate 600. As an example, when driver demand is low and a brake pedal is likely depressed, thereby likely including a condition where brake booster vacuum is being consumed (e.g., engine idle in a driving gear), the throttle plate 600 may be in a fully closed position or more closed position and provide vacuum to the brake booster
Turning now to
At 702, engine operating conditions may be determined. Engine operating conditions may include engine speed, torque demand, combustion air-fuel ratio, boost pressure, manifold absolute pressure, mass airflow, engine temperature, etc. Once engine operating conditions are estimated, at 704, an initial throttle position may be determined and set based on these engine operating conditions. For example, as the operator torque demand increases, the throttle may be moved to a more open position to increase intake airflow. As another example, if combustion air-fuel ratio is determined to be leaner than a desired stoichiometric value, the throttle may be set to a more closed position to reduce intake airflow. In yet another example, if engine idling conditions are met, the throttle may be moved to a fully closed position. Alternatively, if high engine load conditions are met, the throttle may be moved to a fully open position.
At 706, routine 700 may determine if vacuum is desired by a vacuum consumption device coupled to the throttle. In one example, vacuum may be demanded when the vacuum consumption device is actuated. In another example, if the vacuum consumption device includes a vacuum reservoir, it may be determined if the vacuum requirement of the device exceeds the vacuum available in the reservoir. If it is determined that vacuum is not desired, at 712, the initial throttle position may be maintained and the routine ends. The throttle position may then continue to be adjusted based on engine operating conditions only, and not based on vacuum requirement of the vacuum consumption device.
On the other hand, if it is determined that the vacuum consumption device desires vacuum assistance, at 708, routine 700 may assess whether engine conditions allow a change in throttle position. In particular, it may be determined if the engine conditions permit a change in the throttle position towards a more closed position where intake airflow to the engine is reduced. As such, there may be engine conditions where changes in throttle position may be tolerated without affecting engine performance. In addition, there may be conditions where the throttle position is limited or constrained. For example, if the vehicle is accelerating on a highway and engine speed is higher than a threshold, the throttle may be positioned in a mostly open or fully open position to allow higher airflow. In this situation, the throttle position may not be moved to a more closed position for generating vacuum as it would adversely affect engine torque output and performance. Thus, if it determined that the position of the throttle cannot be adjusted, at 710, the controller maintains the throttle at its initial position and the routine ends. The throttle position may then continue to be adjusted based on engine operating conditions only, and not based on the vacuum requirement of the vacuum consumption device. However, if it is assessed that engine conditions permit a change in throttle position, and more specifically the conditions permit a decrease in throttle position, at 714, the throttle may be moved towards a more closed position than the initial position. The adjustment to the position of the throttle may depend on the level of vacuum desired by the vacuum consumption device. For example, if a higher level of vacuum is desired, the throttle may be moved further towards a fully closed position (e.g., the throttle may be fully closed). On the other hand, if a lower level of vacuum is desired, the controller may adjust the throttle to a slightly closed or partially closed position. Thus, as the level of desired vacuum from the vacuum consumption device increases, the throttle may be moved towards a more closed position. In one example, if it is determined at 708 that the throttle is already in a closed position during engine idling, the throttle position may be retained, at 714, without further adjustments.
In some examples, the throttle plate may be moved to a more closed or a more open position in response to the demand for vacuum. When in the more open position, intake air flows through a venturi passage of the throttle plate where vacuum is generated and provided to the vacuum consumption device. When in the more closed position, intake air flow through venturi passages between edges of the throttle plate and the intake conduit, where vacuum is generated and provided to the vacuum consumption device.
Next, at 716, vacuum may be generated at the throttle plate as intake air flows through venturi passages of the throttle plate. As elaborated previously, a venturi effect may be created by the flow of intake air through a constriction of a venturi passage in the throttle plate. At 718, the generated vacuum may be applied to the vacuum consumption device to enable the device to be actuated or operated. For example, where the vacuum consumption device is a brake booster, the generated vacuum may be applied to enable wheel braking. As another example, where the vacuum consumption device is a fuel vapor canister, the generated vacuum may be applied to enable canister purging to the engine intake. As yet another example, where the vacuum consumption device is a vacuum actuated valve, the generated vacuum may be applied to enable valve actuation. As vacuum is applied to the vacuum consumption device, air is received from the vacuum consumption device at the throttle plate. As described earlier, air may flow from the vacuum consumption device, through a conduit coupled to a hollow shaft of the throttle plate and out through a venturi outlet of the venturi passage of the throttle plate. Thus, the air from the vacuum consumption device is received at the throttle, facilitating air flow control.
At 720, one or both of fuel injection amount and injection timing may be adjusted based on the throttle position, and existing airflow, to maintain engine torque. Existing airflow may be a combination of fresh intake air that flows past the perforated edge of the throttle and air flowing from the vacuum consumption device through the throttle plate into the intake. In one example, the fuel injection amount and/or timing may be adjusted to maintain a cylinder air-fuel ratio at or close to a desired ratio, such as stoichiometry. In another example, fuel injection amount and/or timing may be modified to maintain engine combustion for torque. In yet another example, one or both of fuel injection timing and fuel injection amount may be varied to maintain each of engine torque and a stoichiometric air fuel ratio.
In one example, during engine idling conditions, as the throttle is adjusted to a fully closed position, airflow via the throttle is reduced while airflow from the vacuum consumption device into the intake manifold is increased. Based on the total airflow being smaller, a fuel injection amount may be decreased to maintain air-fuel ratio. The fuel injection amount may be reduced by decreasing a pulse width of the fuel injection. Further, fuel injection timing may be advanced or retarded based on engine torque requirement.
At 722, one or more engine operating parameters may be varied in response to the adjustment of throttle position and the flowing of air from the vacuum consumption device.
Engine operating parameters may be modified to maintain engine torque output. For example, boost pressure may be increased at 724 as the throttle plate is moved to a more closed position at 714. To increase boost pressure, a wastegate coupled across an exhaust turbine may be adjusted to a less open position to allow a larger quantity of exhaust gases to flow past the exhaust turbine. By increasing boost pressure in the boost chamber within the intake, a drop in engine torque resulting from the throttle closing can be compensated for.
Engine torque output may also be maintained by decreasing a rate of exhaust gas recirculation (EGR) at 726. As the throttle is moved to a more closed position, an EGR valve in an EGR passage coupling the engine exhaust to the engine intake may be adjusted to a more closed position to allow a smaller proportion of exhaust gases to be recirculated into the intake. Thus, by reducing the flow of exhaust residuals into the intake, engine dilution is reduced, and the aircharge within engine cylinders may comprise a larger proportion of fresh intake air allowing the engine to maintain its torque output.
At 728, valve timing may be adjusted to retain engine torque levels. In one example, the intake valve may be held open for a longer duration to allow more fresh air into the cylinder. In another example, exhaust valve timing may be modified to reduce the proportion of internal EGR within the cylinder. Further still, each of intake and exhaust valve timing may be adjusted to vary an amount of valve overlap. For example, valve overlap may be reduced to improve engine torque output.
It will be appreciated that the controller may select one or more of the various engine operating parameters described above to maintain torque based on existing operating conditions. For example, during a first condition, where the vehicle is operating under steady state driving conditions when the throttle position is modified to generate vacuum, the controller may only increase boost pressure but not reduce EGR to maintain engine torque output. During a second condition, as the throttle is closed, boost pressure may be maintained while EGR dilution is reduced. In another example, during a third condition, each of internal and external EGR reduction may be used. For example, an exhaust valve may be closed relatively early to reduce internal EGR within the cylinder and an opening of the EGR valve for external EGR may be decreased simultaneously to reduce external EGR into the intake. During a fourth condition, as the throttle position is closed, the controller may reduce EGR while also increasing boost pressure. Still other combinations may be possible.
Next at 730, routine 700 may confirm that sufficient vacuum has been generated to meet the demand of the vacuum consumption device. If it is determined that the demand has not been met, at 734, the throttle position set at 714 may be maintained and vacuum may continue to be generated for a longer duration. In another example, if the throttle is not fully closed at 714, the throttle may be moved to a fully closed position to generate more vacuum, if engine operating conditions allow this adjustment. Routine 700 may then return to 730 to determine if vacuum demand has been met.
If it is determined that sufficient vacuum has been generated for the vacuum consumption device, at 732, the throttle may be adjusted back to its initial position. Alternatively, the throttle may be moved to a position based only on the existing engine operating conditions.
In this way, the throttle valve may be actuated independent of the vacuum demand from the vacuum consumption device, while still providing vacuum to the vacuum consumption device. Additionally or alternatively, the throttle valve may be moved to positions that provide more vacuum to the vacuum consumption device in response to vacuum demand from the vacuum consumption device. In this way, the functions of an aspirator may be combined with those of a throttle enabling a reduction in packaging space. The technical effect of removing the need for a separate aspirator is to decrease packaging constraints and reduce costs. The throttle described above provides vacuum to the vacuum consumption device through a plurality of rotational positions. This may be achieved by a venturi passage located inside the throttle plate configured to receive intake air and generate vacuum. The throttle plate may apply the vacuum to the vacuum consumption device to replenish its vacuum.
A system comprising a throttle valve having a venturi passage located inside its throttle body, the venturi passage configured to receive intake air directly from an intake passage when the venturi passage is parallel to a direction of incoming intake air flow. A first example of the system further comprising where the throttle valve is beveled at top and bottom edges, the edges forming venturi passages outside the throttle body between the throttle body and an intake conduit. A second example of the system, optionally including the first example, further includes where the top and bottom edges comprise openings located at extreme ends of the venturi passage inside the throttle body. A third example of the system, optionally the first and/or second examples, further includes where the venturi passages between the throttle body and the intake conduit are formed when the throttle body is in a more closed position, and where the venturi passage inside the throttle body is parallel to the direction of incoming intake air flow when the throttle body is in a more open position, and where the more closed position allows less intake air to flow to an engine than the more open position. A fourth example of the system, optionally including one or more of the first through third examples, further includes where the venturi passage is a first annular venturi passage located interior to a second annular venturi passage, the first annular venturi passage located on a geometric center of the throttle body and the second annular venturi passage located between an edge of the throttle body and the first annular venturi passage. A fifth example of the system, optionally including one or more of the first through fourth examples, further includes where the first annular venturi passage is fluidly coupled to the second annular venturi passage via a connecting passage located along a vertical axis. A sixth example of the system, optionally including one or more of the first through fifth examples, further includes where the first and second annular venturi passages are concentric about the direction of incoming intake air flow. A seventh example of the system, optionally including one or more of the first through sixth examples, further includes where the first and second annular venturi passages are parallel to the direction of incoming intake air flow when the throttle body is in a closed position. An eighth example of the system, optionally including one or more of the first through seventh examples, further includes where the closed position includes edges of the throttle body being pressed against interior surfaces of an intake conduit preventing intake air from flowing therethrough.
A system comprising an engine including an intake, a throttle plate mounted on a hollow shaft positioned in the intake, the throttle plate having a first opening located on its circumference and a second opening located on its circumference diametrically opposite the first opening, and a venturi passage located inside the throttle plate between the first and second openings, and a controller with computer-readable instructions stored in non-transitory memory for in response to engine operations, adjusting a position of the throttle plate to adjust intake air flow while generating vacuum through the adjusting of the throttle plate as intake air flows through the venturi passage or through constricted passages formed between the intake and the first and second openings. A first example of the system further includes where a vacuum consumption device, wherein the hollow shaft of the throttle plate is fluidly coupled to the vacuum consumption device and a throat of the venturi passage in the throttle plate. A second example of the system, optionally including the first example, further includes where the vacuum consumption device is one of a brake booster, a fuel vapor canister, and a vacuum actuated valve. A third example of the system, optionally including the first and second examples, further includes where the first opening faces an upstream direction and the second opening faces a downstream direction relative to a direction of incoming intake air flow when the throttle plate is in a more open position, and where intake air enters the venturi passage via the first opening and exits the venturi passage via the second opening. A fourth example of the system, optionally including one or more of the first through third examples, further includes where the first opening and second opening face an interior surface of an intake conduit of the intake when the throttle plate is in a more closed position, and where intake air flows through constricted passages located between the intake conduit and the first and second openings. A fifth example of the system, optionally including one or more of the first through fourth examples, further includes where the venturi passage narrows between the first and second openings toward a venturi throat such that the venturi throat is a narrowest portion of the venturi passage. A sixth examples of the system, optionally including one or more of the first through fifth examples, further includes where a shaft fluidly coupled to the venturi throat such that a vacuum generated at the venturi throat is provided to a vacuum consumption device through the shaft.
A system comprising a throttle body located along an intake conduit configured to receive intake air via a first venturi passage or a second venturi passage located inside the throttle body, and where edges of the throttle body are sealed with interior surfaces of the intake conduit in a closed position. A first example of the system further includes where the first venturi passage and second venturi passage are annular, and where the first venturi passage is located along a geometric center of the throttle body and is interior to the second venturi passage. A second example of the system, optionally including the first example, further includes where intake air only flows by the throttle body by flowing through the first and second venturi passages when the throttle body is in the closed position, and where intake air flows through an opening formed between the intake conduit and throttle body when the throttle body is in an open position. A third example of the system, optionally including the first and/or second examples, further includes where the first venturi passage and the second venturi passage are fluidly coupled via a connecting passage, the connecting passage being further coupled to a vacuum consumption device.
An alternate embodiment includes a method comprising adjusting a position of a throttle plate comprising two openings with a venturi passage located therebetween and generating vacuum via intake airflow passing through the venturi passage in the throttle plate. The throttle plate may apply the generated vacuum to a vacuum consumption device fluidly coupled to the throttle plate via a hollow shaft, the vacuum consumption device including a brake booster. In one example, rotation of the throttle plate may create two constricted passages between an intake conduit and top and bottom edges of the throttle plate when the throttle plate is in a more closed position. The more closed position including flowing less intake air to an engine. The two openings include a first opening and a second opening, the first opening located at the bottom edge and the second opening located at the top edge, and where the first and second openings are fluidly coupled to a most constricted portion of the constricted passages, respectively. Adjusting the throttle body includes adjusting includes rotating the throttle plate to a more open position and flowing intake air through the venturi passage inside the throttle plate, the more open position includes flowing more intake air to an engine, and where the adjusting further includes rotating the throttle plate to a more closed position and flowing intake air through two constricting passages located diametrically opposite one another between the throttle plate and the intake conduit. The more open position further includes generating vacuum inside the throttle plate and where the more closed position further includes generating vacuum outside the throttle plate. Passing intake airflow through the venturi passage of the throttle plate includes flowing more air through the venturi passage of the throttle plate when the throttle plate is in a more open position. The method includes flowing more intake air through an intake passage when the throttle plate is moved to a more open position, and where adjusting the position of the throttle plate includes flowing less intake air through the intake passage when the throttle plate is moved to a more closed position.
Another alternate embodiment includes a method, comprising connecting a vacuum consumption device to a venturi throat of a venturi passage located inside a throttle plate positioned in an intake passage, a circumference of the throttle plate configured with first and second openings located at opposite ends of the venturi passage, flowing intake air through the venturi passage of the throttle plate when the throttle plate is in a more open position, and flowing intake air through constricting passages located adjacent to the first and second openings when the throttle plate is in a more closed position. The method further comprising generating a vacuum in one or more of the venturi throat and constricting passages and flowing the vacuum to the vacuum consumption device. The method further includes where flowing vacuum to the vacuum consumption device further includes flowing air from the vacuum consumption device to the venturi passage inside the throttle plate, and where the air from the vacuum consumption device exits the venturi passage and enters the intake passage. The venturi passage of the throttle plate is parallel to the intake passage when the throttle plate is in a fully open position, and where the venturi passage of the throttle plate is perpendicular to the intake passage when the throttle plate is in a fully closed position.
Note that the example control and estimation routines included herein can be used with various engine and/or vehicle system configurations. The control methods and routines disclosed herein may be stored as executable instructions in non-transitory memory and may be carried out by the control system including the controller in combination with the various sensors, actuators, and other engine hardware. The specific routines described herein may represent one or more of any number of processing strategies such as event-driven, interrupt-driven, multi-tasking, multi-threading, and the like. As such, various actions, operations, and/or functions illustrated may be performed in the sequence illustrated, in parallel, or in some cases omitted. Likewise, the order of processing is not necessarily required to achieve the features and advantages of the example embodiments described herein, but is provided for ease of illustration and description. One or more of the illustrated actions, operations and/or functions may be repeatedly performed depending on the particular strategy being used. Further, the described actions, operations and/or functions may graphically represent code to be programmed into non-transitory memory of the computer readable storage medium in the engine control system, where the described actions are carried out by executing the instructions in a system including the various engine hardware components in combination with the electronic controller.
It will be appreciated that the configurations and routines disclosed herein are exemplary in nature, and that these specific embodiments are not to be considered in a limiting sense, because numerous variations are possible. For example, the above technology can be applied to V-6, I-4, I-6, V-12, opposed 4, and other engine types. The subject matter of the present disclosure includes all novel and non-obvious combinations and sub-combinations of the various systems and configurations, and other features, functions, and/or properties disclosed herein.
The following claims particularly point out certain combinations and sub-combinations regarded as novel and non-obvious. These claims may refer to “an” element or “a first” element or the equivalent thereof. Such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements. Other combinations and sub-combinations of the disclosed features, functions, elements, and/or properties may be claimed through amendment of the present claims or through presentation of new claims in this or a related application. Such claims, whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the present disclosure.