1. Technical Field
This disclosure relates generally to image sensors, and in particular, but not exclusively to complementary metal-oxide semiconductor (“CMOS”) image sensors.
2. Background Art
The various embodiments of the present invention are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which:
Certain embodiments provide techniques for promoting conductivity in a semiconductor substrate for a pixel array. The semiconductor substrate may adjoin an epitaxial layer in which (and/or onto which) is disposed one or more pixel structures of the pixel array. The substrate may, for example, be more heavily doped than the adjoining epitaxial layer.
An isolation region and a dopant well may each be disposed within the epitaxial layer. The isolation region may include a dielectric material such as silicon dioxide and/or any of a variety of other isolating materials for limiting electrical crosstalk. The dopant well may include a region more heavily doped than other regions of the epitaxial layer.
The isolation region may be located in a trench formed in a surface of the epitaxial layer. In certain embodiments, at least a portion of the dopant well may be disposed between the substrate and a portion of the isolation region. For example, a doping process may be performed to form the doping well at least between the substrate and the trench in which the isolation region is, or is to be, disposed. In an embodiment, the trench may be etched or otherwise formed after doping of the dopant well. The dopant well may additionally extend beyond a periphery of the isolation region in a direction parallel to the surface of the epitaxial layer. By way of illustration and not limitation, a portion of the dopant well may surround a portion of the isolation region—e.g. in the surface of the epitaxial layer and/or in some plane within the epitaxial layer.
In certain embodiments, a contact is also disposed within the epitaxial layer—e.g. in the same trench in which the isolation region is disposed. For example, a portion of the isolation region may form a cavity which extends through the isolation region. The cavity may expose or otherwise provide access to the dopant well—e.g. where a contact material may be disposed into the cavity and onto an underlying portion of the dopant well to provide a conductive channel between the dopant well and the surface of the epitaxial layer. The contact may be disposed in the trench—e.g. where the isolation region surrounds the contact within the trench. The contact may also extend in the cavity from the dopant well to the surface of the epitaxial layer, where the contact is available for coupling to a trace or other structure for drawing current from the substrate through the dopant well and the contact.
In an embodiment, a portion of the isolation region may surround a portion of the contact—e.g. in the surface of the epitaxial layer and/or in some plane within the epitaxial layer. Disposition of such a contact within a surrounding isolation region improves utilization of an available area of a pixel array. For example, regions in a pixel array architecture which were previously designed to only provide crosstalk isolation may be adapted to further provide a path for drawing current from a substrate for the pixel array.
Pixel array 205 may include a two-dimensional (“2D”) array of illuminated imaging sensors or pixels (e.g., pixels P1, P2 . . . , Pn). In one embodiment, each pixel is a complementary metal-oxide-semiconductor (“CMOS”) imaging pixel. As illustrated, each pixel may be arranged into a row (e.g., rows R1 to Ry) and a column (e.g., column C1 to Cx) to acquire image data of a person, place, or object, which may then be used to render a 2D image of the person, place, or object.
After each pixel has acquired its image data or image charge, the image data may be readout by readout circuitry 210 and transferred to function logic 215. Readout circuitry 210 may include amplification circuitry, analog-to-digital (“ADC”) conversion circuitry, or otherwise. Function logic 215 may simply store the image data or even manipulate the image data by applying post image effects (e.g., crop, rotate, remove red eye, adjust brightness, adjust contrast, or otherwise). In one embodiment, readout circuitry 210 may readout a row of image data at a time along readout column lines (illustrated) or may readout the image data using a variety of other techniques (not illustrated), such as a serial readout or a full parallel readout of all pixels simultaneously.
Control circuitry 220 may be coupled to pixel array 205 to control operational characteristic of pixel array 205. For example, control circuitry 220 may generate a shutter signal for controlling image acquisition. In one embodiment, the shutter signal is a global shutter signal for simultaneously enabling all pixels within pixel array 205 to simultaneously capture their respective image data during a single acquisition window. In an alternative embodiment, the shutter signal is a rolling shutter signal whereby each row, column, or group of pixels is sequentially enabled during consecutive acquisition windows.
In
Reset transistor T2 may be coupled between a power rail VDD and the floating diffusion node FD to reset the pixel (e.g., discharge or charge the FD and the PD to a preset voltage) under control of a reset signal RST. The floating diffusion node FD may be coupled to control the gate of SF transistor T3. SF transistor T3 may be coupled between the power rail VDD and select transistor T4. SF transistor T3 operates as a source-follower providing a high impedance connection to the floating diffusion FD. Finally, select transistor T4 may selectively couple the output of pixel circuitry 300 to the readout column line under control of a select signal SEL.
In one embodiment, the TX signal, the RST signal, and the SEL signal are generated by control circuitry 320. In an embodiment where pixel array 305 operates with a global shutter, the global shutter signal may be coupled to the gate of each transfer transistor T1 in the entire pixel array 305 to simultaneously commence charge transfer from each pixel's photodiode PD. Alternatively, rolling shutter signals may be applied to groups of transfer transistors T1.
A structure including features such as those discussed herein with respect to pixel array structure 400 may, for example, be included in a periphery of a pixel array for isolation which reduces electrical crosstalk between the pixel array and other circuitry proximate thereto. Alternatively or in addition, such a structure may be included within the interior of a pixel array —e.g. between respective components of different pixels for reducing electrical crosstalk between such pixels. Alternatively or in addition, such a structure may be included between different components in a single pixel of the pixel array—e.g. for reducing electrical crosstalk internal to the single pixel.
Pixel array structure 400 may include a substrate 405 and an epitaxial layer 440 adjoining substrate 405. A dopant well 430 and an isolation region 460 may be disposed within epitaxial layer 440. By way of illustration and not limitation, isolation region 460 may be deposited in a trench 480 which has been etched or otherwise formed in a surface 410 of epitaxial layer 440. Dopant well 430 may be disposed, for example, at least between the trench 480 and substrate 405. Isolation region 460 may further extend from surface 410 of epitaxial layer 440 in a direction toward substrate 405. In an embodiment, at least some portion of dopant well 430 is disposed between isolation region 460 and substrate 405.
In certain embodiments, a portion of dopant well 430 may extend beyond some or all of isolation region 460 in a direction parallel to surface 410, although certain embodiments are not limited in this regard. By way of illustration and not limitation, a portion of dopant well 430 —e.g. one or more interior walls of dopant well 430—may form a hollow or other depression into which some or all of isolation region 460 may be disposed. A portion of dopant well 430 may surround a portion of isolation region 460—e.g. in the surface of epitaxial layer 440 and/or in some plane within epitaxial layer 440.
Image sensing device 400 may also include a contact 470 which is also disposed in epitaxial layer 440. For example, contact 470 may be deposited in the same trench 480 in which isolation region 460 is disposed—where isolation region 460 surrounds contact 470 in trench 480. In an embodiment, within some plane of epitaxial layer 440, a portion of isolation region 460 may surround a portion of contact 470. By way of illustration and not limitation, contact 470 may extend from surface 410 in a direction toward substrate 405. A portion of isolation region 460—e.g. one or more interior sidewalls of isolation region 460—may, for example, form a cavity which extends through isolation region 460 and which provides access to dopant well 430. Contact 470 may be disposed within such a cavity, providing a conductive channel between dopant well 430 and surface 410. Contact channel 470 may be connected to, or available at surface 410 for connection to, a trace or other structure leading to a current sink (not shown), resulting in improved conductivity in substrate 405
In one embodiment, dopant well 430 is a p-type doped well which, for example, prevents direct interface between isolation region 460 and an adjacent n-type doped photodiode (PD) region or other pixel structure (not shown). In such an embodiment, substrate 405 and epitaxial layer 440 may also be p-type doped to respective degrees—e.g. for operation with such an n-type doped PD region. However, it should be appreciated that the conductivity types of all such elements may, in certain embodiments, be swapped—for example, where substrate 405 is n-type doped, epitaxial layer 440 is n-type doped, an adjoining PD region is p-type doped, and dopant well 430 is n-type doped.
In
The fabrication process may, in an embodiment, include creating structures in and/or on a sheet of semiconductor materials which includes an epitaxial layer 510 and an adjoining substrate 520. The substrate 520 may be more heavily doped than the adjoining epitaxial layer 510—e.g. as with substrate 105 and epi layer 140.
As shown in view 500a, a trench 530 may be formed in a surface of epitaxial layer 530—e.g. where the trench 530 extends toward substrate 520. The particular location and/or depth of trench 530 may be implementation specific, e.g. depending upon the particular architecture of a desired pixel array. A trench depth may, for example, be around 300 to 400 nm deep (depending on the technology used to form the trench), or may be less than 400 nm. Certain embodiments are not limited with respect to techniques used to form trench 530, which may be formed, for example, according to any of a variety of known etching processes (such as a wet or dry etch process). Such processes may include, for example, etching processes which are used to form conventional deep trench and/or shallow trench structures such as that for the location of STI 160.
As shown in view 500b of
As shown in view 500c, of
As shown in view 500d of
As shown in view 500e of
The etching of cavity 570 may be coordinated, for example, with the etching of one or more other structures (not shown) of the pixel array architecture—e.g. an oxide structure. In an embodiment, the etching of cavity 570 may be deeper than the etching of such other structure(s). For example, another, comparatively shallow silicon dioxide or other dielectric structure (not shown) disposed on epitaxial layer 510 may need to be etched through only to the surface of epitaxial layer 510. In such an embodiment, etching of cavity 570 may be achieved with an etchant which is tolerated by epitaxial layer 510—wherein over-etching through the comparatively shallow oxide dielectric structure may be avoided.
As shown in view 500f of
In one embodiment, DW 540 is a p-type doped well which, for example, prevents direct interface between isolation 550 and an n-type doped photosensitive region 560b or other such pixel structure. In such an embodiment, substrate 520 and epitaxial layer 510 may also be p-type doped to respective degrees—e.g. for operation with an n-type doped photosensitive region 560b. However, it should be appreciated that the conductivity types of all such elements may, in certain embodiments, be swapped—for example, where substrate 520 is n-type doped, epitaxial layer 510 is n-type doped, photosensitive region 560b is p-type doped, and DW 540 is n-type doped.
In a process block 605, photodiode PD is reset. Resetting includes discharging or charging photodiode PD to a predetermined voltage potential, such as VDD. The reset is achieved by asserting both the RST signal to enable reset transistor T2 and asserting the TX signal to enable transfer transistor T1. Enabling T1 and T2 couples photodiode region PD and floating diffusion FD to power rail VDD.
Once reset, the RST signal and the TX signal are de-asserted to commence image acquisition by photodiode region 420 (process block 610). Light incident on the backside of imaging pixel 300 cause charge to accumulate within photodiode PD.
Once the image acquisition window has expired, the accumulated charge within photodiode PD may be transferred via transfer transistor T1 to floating diffusion FD by asserting the TX signal (process block 615). In the case of a global shutter, the global shutter signal is asserted simultaneously, as the TX signal, to all pixels within the pixel array (e.g. pixel array 205) during process block 615. This results in a global transfer of the image data accumulated by each pixel into the pixel's corresponding floating diffusion FD.
Once the image data is transferred, the TX signal is de-asserted to isolate floating diffusion FD from photodiode PD for readout. In a process block 620, the SEL signal is asserted to transfer the stored image data onto the readout column for output—e.g. to the function logic 215 via readout circuitry 210. It should be appreciated that readout may occur on a per row basis via column lines (illustrated), on a per column basis via row lines (not illustrated), on a per pixel basis (not illustrated), or by other logical groupings. Once the image data of all pixels has been readout, process 600 may return to process block 605 to prepare for the next image.
In one embodiment, other circuitry may include a storage capacitor coupled to the floating diffusion FD to temporarily store the image charge so that post image acquisition processing may be executed within each pixel prior to readout in process block 620. Additionally or alternatively, such other circuitry may include gain circuitry, ADC circuitry, or otherwise.
Techniques and architectures for providing conductivity in a pixel array are described herein. In the above description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of certain embodiments. It will be apparent, however, to one skilled in the art that certain embodiments can be practiced without these specific details. In other instances, structures and devices are shown in block diagram form in order to avoid obscuring the description.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
Some portions of the detailed description herein are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the computing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the discussion herein, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
Certain embodiments also relate to apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs) such as dynamic RAM (DRAM), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, and coupled to a computer system bus.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description herein. In addition, certain embodiments are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of such embodiments as described herein.
Besides what is described herein, various modifications may be made to the disclosed embodiments and implementations thereof without departing from their scope. Therefore, the illustrations and examples herein should be construed in an illustrative, and not a restrictive sense. The scope of the invention should be measured solely by reference to the claims that follow.