1. Field of the Invention
The present invention relates to a method for implementation in a semiconductor processing system, and more particularly, a method for increasing the service interval of a gas distribution plate and the like.
2. Description of the Prior Art
Ultra-large-scale integrated (ULSI) circuits may include more than one million electronic devices (e.g., transistors) that are formed on a semiconductor substrate, such as a silicon substrate, and cooperate to perform various functions within the device. Typically, the transistors used in the ULSI circuits are complementary metal-oxide-semiconductor (CMOS) field effect transistors. A CMOS transistor has a gate structure including a polysilicon gate electrode and gate dielectric, and is disposed between a source region and drain regions that are formed in the substrate. Such formation of integrated circuits involves sequentially forming or depositing multiple electrically conductive and insulative layers in or on the substrate. Etching processes may be used to form geometric patterns in the layers or vias for electrical contact between the layers. General etching processes include wet etching, in which one or more chemical reagents are brought into direct contact with the substrate, and dry etching, such as plasma etching.
Various types of plasma etching processes are known in the art, including plasma etching, reactive ion etching and reactive ion beam etching. In many of these plasma processes, a gas is first introduced into a reaction chamber through a gas distribution plate (GDP) and then plasma is generated from the gas. The ions, free radicals and electrons in the plasma react chemically with the layer material on the semiconductor substrate to form residual products which leave the substrate surface and thus, etch the material from the substrate. The gas distributed by the gas distribution plate not only provides the source for the ions, but can also be used to influence the lateral etch rate.
Before the etching process is performed, the substrate is coated with a layer of resist (for example, a photoresist), the resist is patterned, and the pattern is transferred to underlying layers by etching—with the patterned resist layer serving as an etch mask. Many such etching processes leave resist and post-etch residues on the substrate or substrate that must be removed or stripped before the next processing step. The most common techniques which have been used for photoresist stripping are the use of wet solvent developers such as sulfuric acid-hydrogen peroxide solution, and the technique of plasma ashing.
Further, during plasma etching processes, one or more layers of a film stack (e.g., layers of silicon, polysilicon, hafnium dioxide (HfO2), silicon dioxide (SiO2), metal materials, and the like) are typically exposed to etchants comprising at least one halogen-containing gas, such as hydrogen bromide (HBr), chlorine (Cl2), carbon tetrafluoride (CF4), and the like. Such processes cause a halogen-containing residue to build up on the surfaces of the etched features, etch masks, and elsewhere on the substrate. Abatement processes are used for removing volatile halogen-containing residues left from etching processes.
In the aforementioned processes, the gas distribution plate in the reaction chamber can become gradually contaminated. For instance, volatile reaction products and byproducts coated on the gas distribution plate result in obstruction of the gas flow openings of the gas distribution plate. This causes process drift and poor substrate to substrate repeatability. Additionally, volatile substances and byproducts (e.g., metal oxides) coating the gas distribution plate may promote oxygen recombination during ashing processes. As the level of contamination of the gas distribution plate increases, the ash rate correspondingly suffers degradation. This degradation can be up to 40% and is often the limiting factor for the number of substrates which can be processed between cleaning of the gas distribution plate. Thus, as the mean time between cleans (MTBC) diminishes, productivity suffers.
One method for extending the MTBC is to provide cleaning gas through the gas distribution plate during a specific cleaning operation after one or more substrates have been processed. However, performing cleaning operations consumes time in which substrates cannot be processed and costly aggressive gases which also attach chamber components. Thus, the use of cleaning gas limits productivity and process throughput.
Therefore, a need exists for reducing the contamination of gas distribution plates.
Methods for reducing the contamination of a gas distribution plate are provided. In one embodiment, a method for processing a substrate includes transferring the substrate into a chamber, performing a treating process on the substrate, and providing a purge gas into the chamber before or after the treating process to pump out a residue gas relative to the treating process from the chamber. The treating process includes distributing a reactant gas into the chamber through a gas distribution plate.
In yet another embodiment, a semiconductor processing system includes a transfer chamber, at least one processing chamber coupled to the transfer chamber, a load lock chamber coupled to the transfer chamber, a gas distribution plate, and a purge gas provider. The load lock chamber is configured to transfer a substrate between an ambient environment outside the semiconductor processing system and a vacuum environment inside the transfer chamber. The gas distribution plate is used for distributing a reactant gas into the load lock chamber in a treating process. The treating process is performed on the substrate in the load lock chamber after the substrate is processed in the processing chamber. The purge gas provider provides a purge gas into the load lock chamber before or after the treating process to pump out a residue gas relative to the treating process from the load lock chamber.
In comparison with the prior art, the present invention prevents the gas distribution plate from becoming contaminated, thus reducing the need to clean. Therefore, the productivity and process throughput can be improved.
The objective of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment, which is illustrated in the following figures and drawings.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Embodiments of the present invention provide methods for minimizing contamination of a gas distribution plate. In one embodiment, embodiments of the invention are described in the context of a stripping reactor for removing photoresist from etched substrates. However, the invention may be practiced in other vacuum processing chambers, and wherein a process other than stripping is performed, such as an abatement process, an etch process, a chemical vapor deposition process and the like.
The tube 120 is surrounded by a ferrite core 130, and wires 140 surround at least a portion of the ferrite core 130. RF energy supplied by an RF power supply 150 is inductively coupled to processing gases flowing into and through the tube 120 to generate plasma therein. Plasma species generated in the tube 120 flow through the exit tube 163 as a reactant gas, and enter the gas distribution plenum 160. As shown in
As further shown in
As mentioned above, the gas distribution plate 180 in the stripping chamber 190 may be gradually contaminated by volatile reaction products and byproducts generated in stripping processes. In one embodiment, before the substrate 300 is transferred into the stripping chamber 190, the gas panel 400 provides a purge gas into the stripping chamber 190 through the gas distribution plate 180 while the stripping chamber 190 is empty prior to receiving the substrate 300. Alternatively, or in addition to, the gas panel 400 may provide purge gas into the stripping chamber 190 through ports 410 positioned below the gas distribution plate 180. By pouring a purge gas prior to transferring the substrate into the stripping chamber 190, residue gases generated in the previous stripping process and still present in the stripping chamber 190 are prevented from contacting the gas distribution plate 180 and pumped out of the stripping chamber 190 via the pump exhausts 210. Further, the gas panel 400 may also provide the purge gas while the substrate 300 is being transferred into the stripping chamber 190.
By preventing residual gases from contacting the gas distribution plate 180, byproduct coating corrosive attack or other contamination of the gas distribution plate 180 is greatly reduced. In one embodiment, the purge gas includes, for example, but not limited to, a nitrogen (N2) gas, an inert gas (e.g. argon (Ar) or helium (He)), or combinations of these gases.
The purge gas can be provided into the stripping chamber 190 before the substrate enters up until the stripping process is ready to be performed, for example, until process gases are provided through the remote plasma source 100 and delivered into the stripping chamber 190. The purge gas delivery is turned off while the substrate 300 is processed in the stripping chamber 190. In one embodiment, the purge gas can also be provided into the stripping chamber 190 once the flow of processing gases stop and while the substrate 300 is being transferred out of the stripping chamber 190 after the stripping process. Providing the purge gas after the stripping process not only protects the gas distribution plate 180, but also assists the removal of residue gases generated in the stripping process from the stripping chamber 190. Similarly, the purge gas can be continuously provided until the next substrate is loaded into the stripping chamber 190 and the next stripping process is ready to be performed.
The purge gas is provide at a rate sufficient to allow volatile gases offgassed from the substrate 300 or residual gasses from the stripping process to be pumped out and removed from the stripping chamber 190 while providing a protective purge gas barrier around the gas distribution plate 180. In one embodiment, the gas panel 400 provides the purge gas at a flow rate of at least about 5000 sccm through the gas distribution plate 180.
In another embodiment according to the present invention, the method may be practiced in a load lock chamber for removing volatile residues from a substrate.
In the embodiment depicted in
In one embodiment, at least one of the process chambers coupled to the transfer chamber 800 is an etch chamber. The etch chambers may use a halogen-containing gas to etch the substrates therein. Examples of halogen-containing gas include hydrogen bromide (HBr), chlorine (Cl2), carbon tetrafluoride (CF4), and the like. After etching the substrate, halogen-containing residues may be left on the substrate surface and may be removed by a thermal abatement process in the first chamber 242 of the load lock chamber 600.
During halogen-containing residue removal process, the substrate support pedestal 246 may raise the temperature of the processed substrate, thereby converting the halogen-containing residues to non-volatile compounds that may be pumped out of the first chamber 242 of the load lock chamber 600. During the removal process, one or more process gases may be supplied into the first chamber 242 of the load lock chamber 600 to promote halogen removal. The remote plasma source 252 is utilized to assist in removing the halogen-containing residues from the substrate surfaces by providing reactive species which bind or react with the non-volatile compounds and/or halogen containing residues.
In one embodiment, reactive species are supplied to the first chamber 242 of the load lock chamber 600 through the gas distribution plate 248. As mentioned above, the gas distribution plate 248 in the load lock chamber 600 may be gradually contaminated by volatile reaction products and byproducts generated in the abatement process.
In one embodiment, before the substrate 300 is transferred into the first chamber 242 of the load lock chamber 600, the gas panel 250 provides a purge gas into the first chamber 242 through the gas distribution plate 248. Residue gases generated during the previous abatement process remaining in the load lock chamber 600 may be pumped out with the purge gas. The purge gas also protects the gas distribution plate 248 by providing a purge gas barrier which prevents residual gases from reaching and contaminating the gas distribution plate 248. Further, the gas panel 250 can also provide the purge gas while the substrate 300 is transferred into the first chamber 242 from the transfer chamber 800, and optionally be continually provided until the next substrate is loaded into the first chamber 242 from the transfer chamber 800. In one embodiment, the purge gas includes, for example, but not limited to, a nitrogen (N2) gas, an inert gas (e.g. argon (Ar) or helium (He)), or combinations of these gases.
The purge gas can be provided into the first chamber 242 before and until the removal process is ready to be performed, for example, until the plasma has been generated. The purge gas may be turned off while the substrate 300 is processed in the first chamber 242. In one embodiment, the purge gas can be provided into the first chamber 242 while the substrates 300 is transferred out from the load lock chamber 600 after the abatement process. Providing the purge gas after the abatement process can remove any residue gases still present in the first chamber 242 after the abatement process performed on the substrate is complete. Similarly, the purge gas can be continuously provided until the next removal process is ready to be performed.
The purge gas is provide at a rate sufficient to allow gases offgassed from the substrate 300 or residual gases left over from the abatement process to be pumped out and removed from the load lock chamber 600 while protecting the gas distribution plate 248 from contamination. In one embodiment, the gas panel 250 provides the purge gas at a flow rate about 5000 sccm. Furthermore, as shown in
Although the first chamber 242 of the load lock chamber 600 has been described as configured to perform an abatement process, it is contemplated that the method of providing purged gas through gas distribution plate during non-processing periods may be applied equally effectively to gas distribution plates utilized for stripping processes, etch processes, CVD processes and the like.
As shown in
It is contemplated that in any of the methods described above with reference to
As described above, the present invention provides methods and systems for preventing a gas distribution plate from being contaminated. In comparison with the prior art, the present invention prevents the gas distribution plate from becoming contaminated, thus reducing the need to clean. Further, because the purging process is performed during the substrate transfer durations and the duration of waiting for the treating processes to be ready, the overall process cycle time is not increased.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. Provisional Application Ser. No. 61/448,029, filed Mar. 1, 2011 which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4952299 | Chrisos et al. | Aug 1990 | A |
5071714 | Rodbell et al. | Dec 1991 | A |
5188979 | Filipiak | Feb 1993 | A |
5217501 | Fuse et al. | Jun 1993 | A |
5337207 | Jones et al. | Aug 1994 | A |
5356833 | Maniar et al. | Oct 1994 | A |
5545289 | Chen et al. | Aug 1996 | A |
5571367 | Nakajima et al. | Nov 1996 | A |
5641702 | Imai et al. | Jun 1997 | A |
5840200 | Nakagawa et al. | Nov 1998 | A |
6000227 | Kroeker | Dec 1999 | A |
6136211 | Qian et al. | Oct 2000 | A |
6148072 | Huang | Nov 2000 | A |
6204141 | Lou | Mar 2001 | B1 |
6228563 | Starov et al. | May 2001 | B1 |
6228739 | Ha et al. | May 2001 | B1 |
6267074 | Okumura | Jul 2001 | B1 |
6270568 | Droopad et al. | Aug 2001 | B1 |
6270582 | Rivkin et al. | Aug 2001 | B1 |
6297095 | Muralidhar et al. | Oct 2001 | B1 |
6300202 | Hobbs et al. | Oct 2001 | B1 |
6300212 | Inoue et al. | Oct 2001 | B1 |
6319730 | Ramdani et al. | Nov 2001 | B1 |
6326261 | Tsang et al. | Dec 2001 | B1 |
6335207 | Joo et al. | Jan 2002 | B1 |
6348386 | Gilmer | Feb 2002 | B1 |
6358859 | Lo et al. | Mar 2002 | B1 |
6414280 | Nishitani et al. | Jul 2002 | B1 |
6440864 | Kropewnicki et al. | Aug 2002 | B1 |
6458253 | Ando et al. | Oct 2002 | B2 |
6479801 | Shigeoka et al. | Nov 2002 | B1 |
6485988 | Ma et al. | Nov 2002 | B2 |
6514378 | Ni et al. | Feb 2003 | B1 |
6528427 | Chebi et al. | Mar 2003 | B2 |
6592771 | Yamanaka et al. | Jul 2003 | B1 |
6635185 | Demmin et al. | Oct 2003 | B2 |
6890861 | Bosch | May 2005 | B1 |
7695232 | Moore et al. | Apr 2010 | B2 |
7846845 | Bahng et al. | Dec 2010 | B2 |
20010055852 | Moise et al. | Dec 2001 | A1 |
20020074312 | Ou-Yang et al. | Jun 2002 | A1 |
20030045131 | Verbeke et al. | Mar 2003 | A1 |
20030170986 | Nallan et al. | Sep 2003 | A1 |
20040002223 | Nallan et al. | Jan 2004 | A1 |
20040007561 | Nallan et al. | Jan 2004 | A1 |
20040043544 | Asai et al. | Mar 2004 | A1 |
20040203251 | Kawaguchi et al. | Oct 2004 | A1 |
20050208714 | Yamazaki et al. | Sep 2005 | A1 |
20070240631 | Nijhawan et al. | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
5-326477 | Dec 1993 | JP |
WO-0151072 | Jul 2001 | WO |
WO-0197257 | Dec 2001 | WO |
Entry |
---|
Songlin Xu and Li Diao, “Study of tungsten oxidation in H2/H2/N2 downstream plasma”, J. Vac. Sci. Technol. A 26(3), May/Jun. 2008. |
Number | Date | Country | |
---|---|---|---|
20120222752 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
61448029 | Mar 2011 | US |