Method for 3D waveform mapping of full-parallel structure

Information

  • Patent Grant
  • 10885604
  • Patent Number
    10,885,604
  • Date Filed
    Saturday, June 8, 2019
    5 years ago
  • Date Issued
    Tuesday, January 5, 2021
    3 years ago
Abstract
The present invention provides a method for 3D waveform mapping of full-parallel structure, first, a 3D waveform mapping database is created according to the size of a 3D waveform image, the number of bits of probability value and the ADC's resolution of data acquisition module, then the 3D waveform mapping database is divided into Mt×Ma independent mapping storage areas along the time axis and the amplitude axis, and each independent mapping storage area is assigned a RAM, then RAMs are selected and addresses are calculated based on the sampling values and the structure of created 3D waveform mapping database, finally, parallel mappings are performed simultaneously on the time axis and the amplitude axis according to the selected RAMs and calculated addresses. Thus, the mapping time are shorten, especially in vector mapping mode, several RAMs are used for mapping, so the WCR of DSO is improved.
Description

This application claims priority under the Paris Convention to Chinese Patent Application No. 201810643986.2, filed on Jun. 21, 2018, the entirety of which is hereby incorporated by reference for all purposes as if fully set forth herein.


FIELD OF THE INVENTION

The present invention relates to the field of waveform display, more particularly to a method for 3D waveform mapping of full-parallel structure.


BACKGROUND OF THE INVENTION

Three-dimensional (3D) waveform display is one of the main functions of 3D digital storage oscilloscope (DSO). 3D waveform image displayed on screen can provide not only the time information and the amplitude information of a waveform, but also the occurrences (probability) information of the waveform, which is indicated by different levels of luminance. Usually, 3D waveform display is realized through 3D waveform mapping, which improves the waveform capture rate (WCR) of DSO. WRC is one of the key performance specifications of DSO. The higher the WRC is, the higher the probability that the complex signals such as burst signal and burr signal am captured will be.


As shown in FIG. 1, the overall process of 3D waveform mapping is: under the control of system control module 8, data acquisition module 1 acquires an input signal and sends the sampling values to FIFO memory 2, after FIFO memory 2 is full, 3D waveform mapping module 3 starts to map the sampling values in FIFO memory 2: calculate the address of each sampling value in 3D database 4 according to the mapping relation between the sampling value and the address of 3D database 4, then read out the probability value (initial value is 0) from the storage unit of the calculated address in 3D database 4, add 1 to the probability value, and write the added probability value back to the storage unit of the calculated address in 3D database 4. When all the sampling values in FIFO memory 2 are mapped, the acquisition and mapping of the next frame of waveform starts. The acquisition and mapping is performed repeatedly, until a screen refresh signal update arrives. After the current frame of waveform is mapped, the probability values in 3D database 4 are read out and processed in 3D digital imager 5 to obtain a 3D waveform image. The 3D waveform image is sent to display module 6 and displayed on the screen 7 of a DSO (the screen usual is a LCD). the value in each storage unit of 3D database 4 represents the number that the sampling point of waveform occurs at each point in time and amplitude, i.e. a probability value.


3D waveform mapping has two mapping modes: point mapping and vector mapping. The basic process of vector mapping is similar with that of point mapping. The main difference is the way of generating the mapping address in 3D database. In point mapping mode, a sampling value is mapped into a corresponding address. However in vector mapping mode, a sampling value is mapped into a section of continuous addresses.


The conventional 3D waveform mapping uses serial mapping to process the sampling values. Only one 3D database is used for 3D waveform mapping. Only when the mapping of current sampling value is finished, the mapping of next sampling value can be started. And the mapping of a sampling value needs three processes: reading out, adding and writing back, which will spend at least 5 system clock periods. The processes of the conventional 3D waveform mapping are simple, however, the time consumption is heavy, which greatly limits the improvement of WCR.


The WCR is pertinent to the time consumption of acquisition, mapping and display of waveform. So, we can reduce the time consumption of mapping to increase the acquired frames of waveform in a unit time (usually one second), i.e. WCR.


In order to improve the WCR of DSO, as shown in FIG. 2, parallel 3D waveform mapping has been proposed in related document, which divides the 3D database into M parallel databases. Thus, M sampling values stored in FIFO_0, FIFO_1, FIFO_2, . . . , FIFO_M−1 can be mapped respectively into Parallel Database_0, Parallel Database_1, Parallel Database_2, . . . , Parallel Database_M−1 at a time point, i.e. parallel 3D waveform mapping has been realized at a time point, where A is amplitude, P is probability value, t is time.


The above mentioned parallel 3D waveform mapping has reduced the time consumption of mapping a frame of waveform K times in point mapping mode. However, in vector mapping mode, when mapping a complex signal which has an amplitude difference of 2N (N is the resolution of ADC) at two consecutive time points, a mapping of 2N sampling values is needed at a time point, which leads to a sharp time increase in the vector mapping for one frame of waveform. Thus, under the same screen refresh period, the acquired and mapped frames of waveform reduce sharply, which leads to little effect on 3D waveform display.


SUMMARY OF THE INVENTION

The present invention aims to overcome the deficiencies of the prior art and provides a method for 3D waveform mapping of full-parallel structure to shorten the mapping time, especially in vector mapping mode, so as to improve the WCR of DSO.


To achieve these objectives, in accordance with the present invention, a method for 3D waveform mapping of full-parallel structure is provided, comprising:


(1). creating a 3D waveform mapping database, where the size of the 3D waveform mapping database is L×2N×B/8 (byte), L and 2N are respectively the length and the width of a 3D waveform image, B is the number of bits of probability value, N is the ADC's (Analog-to-Digital Converter's) resolution of a data acquisition module;


(2). dividing the 3D waveform mapping database into, vertical mapping storage areas along the time axis and Ma horizontal mapping storage areas along the amplitude axis, thus Mt×Ma independent mapping storage areas am obtained, where an independent mapping storage area is represented by Sij, i is the serial number of the independent mapping storage area on the time axis, i=0, 1, . . . , Mt−1, j is the serial number of the independent mapping storage area on the amplitude axis, j=0, 1, . . . , Ma−1;


assigning a random access memory (RAM) for each independent mapping storage area, where the size of the RAM is Wdata×Taddr, Wdata is the bit width of data of the RAM, and Wdata=B, Taddr is the address length of the RAM, and Taddr=(L×2N)/(Mt×Ma), the RAM for independent mapping storage area Sij is represented by Rij;


(3). 3D waveform mapping based on full-parallel structure: performing step 3.1) or step 3.2)


3.1). point mapping:


3.1.1). initializing serial number k of read to 0;


3.1.2). parallel reading out Mt sampling values from a FIFO memory in which the sampling values acquired by the data acquisition module are stored, then selecting a RAM Rij for each sampling value Ykl, l=0, 1, . . . , Mt−1, according to the following equations:

i=l,j=└Ykl/Ma┘;


where l is the serial number of sampling value Ykl, └ ┘ is the operator of downward rounding;


3.1.3). calculating a physical address Akl for each sampling value Ykl, l=0, 1, . . . , Mt−1 according to the following equation:







A
kl

=


[




2
N


M
a


×

(

k
+
1

)


-
1

]

-

(


Y
kl






%






M
a


)






where % is the operator of Mod;


3.1.4). parallel updating the probability values of the storage units for the Mt sampling values: for each sampling value Ykl, reading out a probability value (initial value is 0) from a storage unit according to physical address Akl in RAM Rij, and adding 1 to the probability value, then writing the added probability value back to the storage unit;


3.1.5).setting serial number k of read to k+1, and returning to step 3.1.2, until L sampling values have been mapped;


3.1.6). returning to step 3.1.1, until a screen refresh signal arrives;


3.2). vector mapping:


3.2.1). initializing serial number k of read to 0;


3.2.2). when in normal sampling mode, parallel reading out Mt sampling values from a FIFO memory in which the sampling values acquired by the data acquisition module are stored, then selecting Mt pairs of maximum values and minimum values Ykl,max, Ykl,min, l=0, 1, . . . , Mt−1, according to the following rules:








{





Y

kl
,
max


=


Y

kl
,
min


=

Y
kl








if





l

=

k
=
0


;











Y

kl
,
max


=

max


(


Y


(

k
-
1

)



(


M
t

-
1

)



,

Y
kl


)



,







Y

kl
,
min


=

min


(


Y


(

k
-
1

)



(


M
t

-
1

)



,

Y
kl


)











if





l

=
0

,


k

1

;












Y

kl
,
max


=

max


(


Y

k


(

l
-
1

)



,

Y
kl


)



,







Y

kl
,
min


=

min


(


Y

k


(

l
-
1

)



,

Y
kl


)











if





l


1

;









where l is the serial number of sampling value Ykl, Y(k−1)(Mt−1) is the (Mt−1)th sampling value in (k−1)th read, Yk(l−1) is the (l−1)th sampling value in kth read:


when in extraction mode, parallel reading out Mt groups of sampling values from a FIFO memory in which the sampling values acquired by the data acquisition module are stored, where each group of sampling values has Mext sampling values, Mext is the extracting multiple; selecting a maximum value and a minimum value from each group of sampling values, where the maximum value and the minimum value are respectively represented by Ykl,max, Ykl,min, l is the serial number of group, l=0, 1, . . . , Mt−1; and then adjusting Mt pairs of maximum values and minimum values Ykl,max, Ykl,min, l=0, 1, . . . , Mt−1, according to the following rules:


for maximum value Yk(l+1),max, l=0, 1, . . . , Mt−2, if Yk(l+1),max<Ykl,min, then letting Yk(l+1),max=Ykl,min, otherwise keeping it unchanged;


for minimum value Yk(l+1),min, l=0, 1, . . . Mt−2, if Yk(l+1),min>Ykl,max, then letting Yk(l+1),min=Ykl,max, otherwise keeping it unchanged;


3.2.3). selecting a RAM Rth for each maximum value Ykl,max, a RAM Rig for each minimum value Ykl,min, l=0, 1, . . . , Mt−1, according to the following equations:

i=l,h=└(2N−1−Ykl,max)/Ma┘,g=└(2N−1−Ykl,min)Ma


then selecting RAMs between RAM Rth and RAM Rig for each pair of maximum values and minimum values Ykl,max, Ykl,min;


3.2.4). calculating a physical address Akl,max for each maximum value Ykl,max and a physical address Akl,min for each minimum value Ykl,min, l=0, 1, . . . , Mt−1, according to the following equations:








A

kl
,
max


=


[




2
N


M
a


×

(

k
+
1

)


-
1

]

-

(


Y

kl
,
max







%






M
a


)



,






A

kl
,
min


=


[




2
N


M
a


×

(

k
+
1

)


-
1

]

-

(


Y

kl
,
min







%






M
a


)







3.2.5). parallel updating the probability values of the storage units for the Mt pairs of maximum values and minimum values: for each pair of maximum value and minimum value Ykl,max, Ykl,min, reading out probability values (initial values are 0) from storage units according to physical address scope [Akl,max, (2N/Ma)×(k+1)−1] in RAM Rih, physical address scope [(2N/Ma)×k, Akl,min] in RAM Rig and physical address scope [(2N/Ma)×k, (2N/Ma)×(k+1)−1] in each RAM between RAM Rih and RAM Rig, and adding 1 to each of the probability values, writing the added probability values back to their respective storage units;


3.2.6). setting serial number k of read to k+1, and returning to step 3.2.2, until L pairs of maximum values and minimum values have been mapped;


3.2.7). returning to step 3.2.1, until a screen refresh signal arrives.


The objectives of the present invention are realized as follows:


In the present invention i.e. a method for 3D waveform mapping of full-parallel structure, first, a 3D waveform mapping database is created according to the size of a 3D waveform image, the number of bits of probability value and the ADC's resolution of data acquisition module, then the 3D waveform mapping database is divided into Mt×Ma independent mapping storage areas along the time axis and the amplitude axis, and each independent mapping storage area is assigned a RAM, then RAMs am selected and addresses am calculated based on the sampling values and the structure of created 3D waveform mapping database, finally, parallel mappings are performed simultaneously on the time axis and the amplitude axis according to the selected RAMs and calculated addresses. Thus, the mapping time are shorten, especially in vector mapping mode, several RAMs am used for mapping, so the WCR of DSO is improved.





BRIEF DESCRIPTION OF THE DRAWING

The above and other objectives, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a diagram of a 3D digital storage oscilloscope in prior art;



FIG. 2 is a diagram of a parallel 3D waveform mapping in prior art;



FIG. 3 is a flow diagram of a method for 3D waveform mapping of full-parallel structure in accordance with the present invention;



FIG. 4 is a diagram of a typical 3D waveform image;



FIG. 5 is a diagram of a 3D waveform mapping database in accordance with the present invention;



FIG. 6 is a diagram of the layout of RAMs in accordance with the present invention;



FIG. 7 is a diagram of curves of relations between the luminance value and the reformulated probability value at different luminance grades in accordance with the present invention;





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. It should be noted that the similar modules are designated by similar reference numerals although they am illustrated in different drawings. Also, in the following description, a detailed description of known functions and configurations incorporated herein will be omitted when it may obscure the subject matter of the present invention.


Embodiment


FIG. 3 is a flow diagram of a method for 3D waveform mapping of full-parallel structure in accordance with the present invention.


In one embodiment, As shown in FIG. 3, a method for 3D waveform mapping of full-parallel structure comprises the following steps:


Step S1: creating a 3D waveform mapping database, where the size of the 3D waveform mapping database is L×2N×B/8 (byte), L and 2N are respectively the length and the width of a 3D waveform image, B is the number of bits of probability value, N is the ADC's resolution of a data acquisition module.


As shown in FIG. 4, a typical 3D waveform image has L sampling points along the time axis t. The amplitude of each sampling point, i.e. sampling value is between 0 and 2N, N is the ADC's resolution of a data acquisition module which acquired the sampling values, thus the length and the width of the 3D waveform image are L and 2N respectively. A dot on 3D waveform image is the number of occurrences, i.e. probability value P of the corresponding amplitude's sampling point at corresponding time. The maximum value of probability value P is 2B−1, B is the number of bits of probability value P. then the size of the 3D waveform mapping database is L×2N×B/8 (byte).


Step S2: as shown in FIG. 5, dividing the 3D waveform mapping database into Mt vertical mapping storage areas along the time axis and Ma horizontal mapping storage areas along the amplitude axis, thus Mt×Ma independent mapping storage areas are obtained, where an independent mapping storage area is represented by Sij, i is the serial number of the independent mapping storage area on the time axis, i=0, 1, . . . , Mt−1, j is the serial number of the independent mapping storage area on the amplitude axis, j=0, 1, . . . , Ma−1.


As shown in FIG. 6, assigning a random access memory (RAM) for each independent mapping storage area, where the size of the RAM is Wdata×Taddr, Wdata is the bit width of data of the RAM, and Wdata=B, Taddr is the address length of the RAM, and Taddr=(L×2N)/(Mt×Ma), the RAM for independent mapping storage area Sij is represented by Rij. Thus, Mt sampling value can be mapped simultaneously on the time axis, Ma probability values can be read and written simultaneously on the amplitude axis.


In one embodiment, Mt=8, Ma=4, L=1024, N=8, thus the 3D waveform mapping database is divided into 32 independent mapping storage areas. L=1024, N=8, thus, the address length of the RAM Taddr=(L×2N)/(Mt×Ma)=8192. The bit width of data of the RAM Wdata=B=8, the size of the RAM is 8192×8 (bit).


Step S3: 3D waveform mapping based on full-parallel structure: performing step S3.1 or step S3.2


The 3D waveform display of DSO has two modes: point display and vector display, correspondingly, the waveform mapping has two modes: point mapping and vector mapping. point mapping and vector mapping in present invention am respectively described in details as below.


Step S3.1: point mapping:


Step S3.1.1: initializing serial number k of read to 0;


Step S3.1.2: parallel reading out Mt sampling values from a FIFO memory in which the sampling values acquired by the data acquisition module are stored, then selecting a RAM Rij for each sampling value Ykl, l=0, 1, . . . , Mt−1, according to the following equations:

i=l,j=└Ykl/Ma┘;


where l is the serial number of sampling value Ykl, └ ┘ is the operator of downward rounding.


Step S3.1.3: calculating a physical address Akl for each sampling value Ykl, l=0, 1, . . . , Mt−1 according to the following equation:







A
kl

=


[




2
N


M
a


×

(

k
+
1

)


-
1

]

-

(


Y
kl






%






M
a


)






where % is the operator of Mod.


In one embodiment, the sampling values of the kth read is Ykl the RAM for sampling value Ykl is Rij, where the i=l, j=└Ykl/4┘, k=0, 1, 2, . . . 127, l=0, 1, 2, . . . , 7, the physical address for sampling value Ykl is [28/4×(k+1)−1]−(Ykl% 4).


Step S3.1.4: parallel updating the probability values of the storage units for the Mt sampling values: for each sampling value Ykl, reading out a probability value (initial value is 0) from a storage unit according to physical address Akl in RAM Rij, and adding 1 to the probability value, then writing the added probability value back to the storage unit.


Step S3.1.5: setting serial number k of read to k+1, and returning to step S3.1.5, until L sampling values have been mapped.


Step S3.1.6: returning to step S3.1.1, until a screen refresh signal arrives.


Step S3.2: vector mapping:


Step S3.2.1: initializing serial number k of read to 0;


Step S3.2.2: when in normal sampling mode, parallel reading out Mt sampling values from a FIFO memory in which the sampling values acquired by the data acquisition module are stored, then selecting Mt pairs of maximum values and minimum values Ykl,max, Ykl,min, l=0, 1, . . . , Mt−1, according to the following rules:








{





Y

kl
,
max


=


Y

kl
,
min


=

Y
kl








if





l

=

k
=
0


;











Y

kl
,
max


=

max


(


Y


(

k
-
1

)



(


M
t

-
1

)



,

Y
kl


)



,







Y

kl
,
min


=

min


(


Y


(

k
-
1

)



(


M
t

-
1

)



,

Y
kl


)











if





l

=
0

,


k

1

;












Y

kl
,
max


=

max


(


Y

k


(

l
-
1

)



,

Y
kl


)



,







Y

kl
,
min


=

min


(


Y

k


(

l
-
1

)



,

Y
kl


)











if





l


1

;









where l is the serial number of sampling value Ykl, Y(k−1)(Mt−1) is the (Mt−1)th sampling value in (k−1)th read, Yk(l−1) is the (l−1)th sampling value in kth read.


when in extraction mode, parallel reading out Mt groups of sampling values from a FIFO memory in which the sampling values acquired by the data acquisition module are stored, where each group of sampling values has Mext sampling values, Mext is the extracting multiple; selecting a maxim value and a minimum value from each group of sampling values, where the maximum value and the minimum value are respectively represented by Ykl,max, Ykl,min, l is the serial number of group, l=0, 1, . . . , Mt−1; and then adjusting Mt pairs of maximum values and minimum values Ykl,max, Ykl,min=0, 1, . . . , Mt−1, according to the following rules:


for maximum value Yk(k+1),max, l=0, 1, . . . , Mt−2, if Yk(l+1),max<Ykl,min, then letting Yk(l+1),max=Ykl,min, otherwise keeping it unchanged;


for minimum value Yk(l+1),min, l=0, 1, . . . , Mt−2, if Yk(l+1),min>Ykl,max, then letting Yk(l+1),min=Ykl,max, otherwise keeping it unchanged.


In one embodiment, the extracting multiple Mext is 16, groups of sampling values Mt is 8.


Step S3.2.3: selecting a RAM Rth for each maximum value Ykl,max, a RAM Rig for each minimum value Ykl,min, l=0, 1, . . . , Mt−1, according to the following equations:

i=l,h=└(2N−1−Ykl,max)/Ma┘,g=└(2N−1−Ykl,min)/Ma


then selecting RAMs between RAM Rih and RAM Rig for each pair of maximum values and minimum values Ykl,max, Ykl,min. The RAMs between RAM Rih and RAM Rig can be denoted by Rif, f=(h+1), (h+1), . . . , (g−1).


In one embodiment, i=l, h=└(28−1−Ykl,max)/4┘, g=└(28−1−Ykl,min)/4┘.


Step S3.2.4: calculating a physical address Akl,max for each maximum value Ykl,max and a physical address Akl,min for each minimum value Ykl,min, l=0, 1, . . . , Mt−1, according to the following equations:








A

kl
,
max


=


[




2
N


M
a


×

(

k
+
1

)


-
1

]

-

(


Y

kl
,
max







%






M
a


)



,






A

kl
,
min


=


[




2
N


M
a


×

(

k
+
1

)


-
1

]

-


(


Y

kl
,
min







%






M
a


)

.







In one embodiment,








A

kl
,
max


=


[




2
8

4

×

(

k
+
1

)


-
1

]

-

(


Y

kl
,
max







%





4

)



,






A

kl
,
min


=


[




2
8

4

×

(

k
+
1

)


-
1

]

-


(


Y

kl
,
min







%





4

)

.







Step S3.2.5: parallel updating the probability values of the storage units for the Mt pairs of maximum values and minimum values: for each pair of maximum value and minimum value Ykl,max, Ykl,min, reading out probability values (initial values are 0) from storage units according to physical address scope [Akl,max, (2N/Ma)×(k+1)−1] in RAM Rih, physical address scope [(2N/Ma)×k, Akl,min] in RAM Rig and physical address scope [(2N/Ma)×k, (2N/Ma)×(k+1)−1] in each RAM between RAM Rih and RAM Rig, and adding 1 to each of the probability values, writing the added probability values back to their respective storage units.


In one embodiment, the physical address scope in RAM Rih is [Akl,max, (28/4)×(k+1)−1], the physical address scope in RAM is Rig, [(28/4)×k, Akl,min], the physical address scopein each RAM between RAM Rih and RAM Rig is [(28/4)×k, (28/4)×(k+1)−1].


Step S3.2.6: setting serial number k of read to k+1, and returning to step S3.2.2, until L pairs of maximum values and minimum values have been mapped.


Step S3.2.7: returning to step S3.2.1, until a screen refresh signal arrives.


Step S4: reading out each probability value from each RAM, and reformulating it in term of percentage, then converting it into a luminance value H according to the following equations:








{




H
=


c
×
P

+
b







c
=



-
2.1515

×

Lu
2


+

2.1515
×
Lu

-
0.0167







b
=


1.0758
×

Lu
2


-

0.0991
×
L

+
0.02










where P is the reformulated probability value, b, c am intermediate values, Lu is a luminance grade which is set by user.


In one embodiment, as shown in FIG. 7, the relations between the luminance value and the reformulated probability value at different luminance grades am liner with different slopes and different start points. the luminance grade Lu of 50% has the maximum slope, which makes the luminance of waveform adjusted at all luminance grades.


While illustrative embodiments of the invention have been described above, it is, of course, understand that various modifications will be apparent to those of ordinary skill in the art. Such modifications am within the spirit and scope of the invention, which is limited and defined only by the appended claims.

Claims
  • 1. A method for 3D waveform mapping of full-parallel structure, comprising: (1). creating a 3D waveform mapping database, where the size of the 3D waveform mapping database is L×2N×B/8 (byte), L and 2N are respectively the length and the width of a 3D waveform image, B is the number of bits of probability value, N is the ADC's (Analog-to-Digital Converter's) resolution of a data acquisition module;(2). dividing the 3D waveform mapping database into Mt vertical mapping storage areas along the time axis and Ma horizontal mapping storage areas along the amplitude axis, thus Mt×Ma independent mapping storage areas are obtained, where an independent mapping storage area is represented by Sij, i is the serial number of the independent mapping storage area on the time axis, i=0, 1, . . . , Mt−1, j is the serial number of the independent mapping storage area on the amplitude axis, j=0, 1, . . . , Ma−1;assigning a random access memory (RAM) for each independent mapping storage area, where the size of the RAM is Wdata×Taddr, Wdata is the bit width of data of the RAM, and Wdata=B, Taddr is the address length of the RAM, and Taddr=(L×2N)/(Mt×Ma), the RAM for independent mapping storage area Sij is represented by Rij;(3). 3D waveform mapping based on full-parallel structure: performing step 3.1) or step 3.2)3.1). point mapping:3.1.1). initializing serial number k of read to 0;3.1.2). parallel reading out Mt sampling values from a FIFO memory in which the sampling values acquired by the data acquisition module are stored, then selecting a RAM Rij for each sampling value Ykl, l=0, 1, . . . , Mt−1, according to the following equations: i=l,j=└Ykl/Ma┘;where l is the serial number of sampling value Ykl, └ ┘ is the operator of downward rounding;3.1.3). calculating a physical address Akl for each sampling value Ykl, l=0, 1, . . . , Mt−1 according to the following equation:
  • 2. A method for 3D waveform mapping of full-parallel structure of claim 1, further comprising: (4). reading out each probability value from each RAM, and reformulating it in term of percentage, then converting it into a luminance value H according to the following equations:
Priority Claims (1)
Number Date Country Kind
2018 1 0643986 Jun 2018 CN national
US Referenced Citations (3)
Number Name Date Kind
8648887 Tian et al. Feb 2014 B2
20090309879 Gorbics Dec 2009 A1
20180149676 Yang et al. May 2018 A1
Non-Patent Literature Citations (1)
Entry
Yang, Kuojun, et al. “A seamless acquisition digital storage oscilloscope with three-dimensional waveform display” Review of Scientific Instruments 85.4 (2014): 045102 (Year: 2014).
Related Publications (1)
Number Date Country
20190392551 A1 Dec 2019 US