This application claims priority to foreign French patent application No. FR 1361972, filed on Dec. 3, 2013, the disclosure of which is incorporated by reference in its entirety.
The field of the invention is that of microsystems, dubbed MEMS for MicroElectroMechanical Systems and more precisely that of MEMS resonators, exhibiting a movable part that may be subjected to vibrations, for applications such as inertial sensors, pressure sensors, gas or mass sensors. By extension, it is possible to speak of MEMS/NEMS devices for devices that may exhibit some of their dimensions smaller than a micron, or indeed of the order of a nanometre.
Generally, a resonant sensor is characterized by a resonance frequency which depends mainly on the mass of the movable part of the sensor, the geometric parameters of the mechanical parts of the sensor and the physical parameters of the materials forming the various parts of the sensor, as well as the quality factor dependent on the energy losses of the resonant sensor. The dependency of the resonance frequency with the aforementioned physical parameters, thereby makes it possible to carry out a measurement of an exterior perturbation of one of these parameters (for example a variation of mass, an acceleration, a pressure, etc.).
Thus in applications of this type, a resonant mechanical element, that may for example be a clamped/clamped or clamped free nano-beam, is conventionally equipped with at least one electrode for actuation EA making it possible to apply a drive voltage, such as illustrated in
The electrostatic loading generated by the drive voltage may then be written
where S is the facing surface area, g the gap between the drive electrode and the beam, V the actuation voltage comprising a DC component and an AC component such that: V=Vdc+Vac·Cos Ωt. The DC voltage Vdc bends the beam statically whereas the harmonic voltage Vac·Cos Ωt bends it dynamically.
Conventionally the resonator is caused to vibrate at its fundamental bending frequency so as to obtain the maximum of amplitude. By virtue of an inverse electrical transduction, it is then possible to determine the resonance frequency of the device from reading the signal.
In the case for example of a mass sensor that may be the one shown diagrammatically in
In a conventional manner, the amplitude of actuation of the resonator is maintained below a so-called critical amplitude, beyond which the vibration regime becomes nonlinear.
Nonetheless, to improve the performance of a resonator, it is possible to seek to obtain the largest possible amplitude of actuation of the resonator. The amplitude then exceeds a threshold value corresponding to the critical amplitude beyond which the vibration regime becomes non-linear, causing the occurrence of hysteresis phenomena. The occurrence of this non-linear regime is notably described in the article by N. Kacem, S. Hentz, D. Pinto, B. Reig, and V. Nguyen, “Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors,” Nanotechnology, vol. 20, p. 275501, 2009 or in patent application EP 2 365 282.
Under the effect of a very meagre added mass, the response curve of the nano-resonator is shifted towards the low frequencies to give the curve FM. Conventional frequency measurements consist in detecting this shift ΔΩ and in measuring it. However, this shift becomes very small and difficult to distinguish from measurement noise for very small masses.
It is theoretically possible to improve the frequency sensitivity by decreasing the sizes and/or by increasing the signal-to-noise ratio, that is to say by actuating the resonators in a more significant manner. However, under these conditions, the nano-resonators have a very strongly non-linear behaviour, a source of instabilities and of mixing of low and high frequency noise that are liable to degrade the reliability and precision of the measurements by frequency shifting as described in the article by V. Kaajakari, J. K. Koskinen, and T. Mattila, “Phase noise in capacitively coupled micromechanical oscillators,” IEEE transactions on ultrasonics ferroelectrics, and frequency drive, vol. 52, no. 12, pp. 2322-31, December 2005.
Another route for improving the sensitivity of resonant sensors consists in defining alternative detection principles based on the exploitation of non-linear phenomena. Several studies have already been described in the literature, which seek for example to amplify the resonator's response amplitude by means of internal or parametric resonances and notably in the articles by: W. Zhang and K. L. Turner, “Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor,” Sensors and Actuators A: Physical, vol. 122, no. 1, pp. 23-30, July 2005 or by M. I. Younis and F. Alsaleem, “Exploration of New Concepts for Structures Based on Nonlinear Phenomena,” Journal Of Computational And Nonlinear Dynamics, vol. 4(2), 021010, 2009. But these resonances exist only when the resonators have very particular geometries and excitations.
An alternative also disclosed within the field consists in using the jumps in amplitude in the neighbourhood of singular operating points and is illustrated by virtue of
The trend of this response curve is characteristic of a non-linear behaviour and, at the chosen excitation frequency Ωop, it possesses two stable operating points A1 and A2.
In this configuration, when a mass is added to the resonator, the response curve is shifted towards the curve FM. Given that this new response curve with added mass possesses only a single operating point B at the frequency Ωop, an abrupt jump in amplitude from A1 to B occurs, as described in the article by V. Kumar, S. Member, Y. Yang, S. Member, G. T. Chiu, and J. F. Rhoads, “Modeling, Analysis, and Experimental Validation of a Bifurcation-Based Microsensor,” Journal of Microelectromechanical Systems, vol. 21, no. 3, pp. 549-558, 2012.
In contradistinction to frequency detection based on ΔΩ, this jump is all the larger as the extra mass is small, thereby rendering this technique particularly beneficial. Moreover, the detection threshold in terms of mass can be tailored with the value of the frequency Ωop. It is thus possible to quantify the mass deposited by virtue of the amplitude of the jump in amplitude, but also simply to detect the presence or otherwise of the mass, and to count the number of particles which have deposited.
Nonetheless, once mass detection has been effected, the particle-free nano-beam must be able to regain its initial state, that is to say regain the state A1. In the converse case, if instead of dropping back to its operating point A1, the nano-beam jumps from its state B to the state A2, it becomes, in this case, difficult to again detect an appreciable amplitude variation. A reinitialization phase becomes necessary in order to carry out new sensitive measurements.
In this context and to solve the aforementioned problem, the subject of the present invention is a method for detecting a perturbation by hysteretic cycle comprising at least one electromechanical resonator with nonlinear behaviour and means for actuation and for detection of the reception signal via a transducer so as to analyse the response signal.
More precisely the subject of the present invention is a method for detecting a perturbation with respect to an initial state, of a device comprising at least one resonant mechanical element exhibiting a physical parameter sensitive to a perturbation such that the said perturbation modifies the resonance frequency of the said resonant mechanical element, the said method comprising:
characterized in that, the said function f0 (Ω) exhibiting a so-called bifurcation frequency Ωlim, corresponding to a change of increase and of decrease of the frequency as a function of amplitude and possessing at least one unstable frequency band BINS in which there exist at least two stable amplitudes for one and the same frequency, and at least one stable frequency band BS in which a single stable amplitude corresponds to a single frequency, the excitation step is carried out:
According to a variant of the invention, the said vibration frequency varies around a central frequency Ωop according to the law: Ω(t)=Ωop+δΩ Cos (επt+φ) with ε the frequency scan rate, φ having a value lying between 0 and 2π.
The vibration frequency can of course vary according to any type of law, such as for example a square law, that can be described in the form of an infinite series:
According to a variant of the invention, the maximum frequency Ωmax is such that the factor in absolute value |Ωlim−Ωmax)| lies between 0. Ωop and 10−1·Ωop and advantageously between 10−9·Ωop and 10−1·Ωop.
According to a variant of the invention, the method comprises a processing step making it possible to temporally adjust the said central frequency Ωop in such a way that the said central frequency belongs to the frequency band defined by Ωmin and Ωmax with one of the said minimum or maximum frequencies being situated in the stable frequency band of the said initial function, the other maximum or minimum frequency being situated in the unstable frequency band.
According to a variant of the invention, the physical parameter is the mass, the frequencies Ωmin and Ωmax determining the thresholds of the largest mass and of the smallest mass to be detected.
According to a variant of the invention, the frequency scan rate c of a cycle lies between about 1 Hz and 100 kHz or with a ratio επ/Ωop such that 0<επ/Ωop<10−1.
The subject of the invention is also a device for detecting a perturbation with respect to an initial state comprising:
characterized in that:
According to a variant of the invention, the said excitation source comprises piezoelectric or thermoelastic or magnetic or electrostatic or optical means.
According to a variant of the invention, the said detection means comprise at least one transducer of piezoresistive or capacitive or piezoelectric or optical or magnetic type.
According to a variant of the invention, the resonant mechanical element is a resonator of beam type, the excitation source comprising an actuation electrode facing the said resonator.
According to a variant of the invention, the resonator is a resonator of beam type of nanometric dimensions, the drive electrode making it possible to apply voltages of the order of a few Volts, the gap between the said drive electrode and the said resonator being of the order of a few hundred nm, and for example between 10 nm and 1 μm.
The subject of the invention is further a mass sensor comprising a device according to the invention.
The subject of the invention is also a gas or particle detector comprising a device according to the invention, allowing the quantification of the concentration of the species present, which get absorbed in a chemical functionalization layer.
The subject of the invention is also a mass spectrometer comprising a device according to the invention making it possible to measure the mass of each of the particles sitting on the said device.
The invention will be better understood and other advantages will become apparent on reading the nonlimiting description which follows and by virtue of the appended figures among which:
According to the present invention, the device comprises at least one resonant mechanical element, also dubbed a resonator, and an excitation source capable of bringing the said resonator into its non-linear operating domain by actuation with an appropriate amplitude, doing so whatever the dimensions and the transduction principle thereof.
This may for example be a device with piezoelectric, thermoelastic, magnetic, electrostatic or else optical actuation, and with piezoresistive, capacitive, piezoelectric, optical or magnetic detection, according to the known art.
Advantageously, the resonator can be a resonator of silicon beam type, of nanometric dimensions, for example a few μm long, a few 100 nm thick and wide, resonating at frequencies of the order of some ten MHz.
Advantageously the resonator can be a resonator whose non-linearity coefficient is able to be controlled so as to render it softening: the curve plotting the resonance frequency dependent amplitude being oriented towards the low frequencies with respect to a straight line perpendicular to the abscissa axis, or stiffening: the curve plotting the resonance frequency dependent amplitude being oriented towards the high frequencies with respect to a straight line perpendicular to the abscissa axis. To do this, it is notably possible to use an electrostatic electrode in proximity as described in the reference of Kacem et al, “Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors,” Nanotechnology, vol. 20, p. 275501, 2009 or in patent application EP 2 365 282, for example with a gap of the order of 100 nm. The voltages used can reach a few Volts, AC or DC.
These are tailored as a function of the device, for example so as to obtain a vibration amplitude between 1 time the critical amplitude and 10 times the latter, as described in the article by N. Kacem, S. Hentz, D. Pinto, B. Reig and V. Nguyen, “Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors,” Nanotechnology, vol. 20, p. 275501, 2009.
The present invention is described hereinafter within the framework of a perturbation corresponding to a detection of mass, typically of particles, but can be applied more widely to any detection of perturbation engendering a variation of resonance frequency of the vibrating element excited according to the means which are described in the present invention, and which is illustrated hereinafter within the framework of a softening resonator.
Thus, referring to
To alleviate this problem, the present invention proposes a device comprising actuation means integrating a measurement reinitialization phase making it possible not to regain the set position corresponding to the state A2, and allowing or forcing a return to the state A1 in all typical cases.
The means of actuation of the present invention are such that they make it possible to carry out the frequency scan cycle illustrated in
During the detection of a first mass variation, by varying the frequency, the cycles described in
More precisely, with the detection of a particle:
In the first case, illustrated in
In the second case, illustrated by
In the case of a desorption of the molecule detected at the level of the resonator (for example for a gas particle with low binding energy), corresponding to the return to an initial state, it is desired to be able to reposition the situation in a state situated between the points A1 and A2 belonging to curve F0.
During the desorption of the particle, by varying the frequency, the cycles described in
In the first case, illustrated in
In the second case, illustrated by
In the case where the mass sensor does not desorb, the detected particles remaining present, it is possible advantageously to continue the interrogation process according to the present invention. Indeed,
Advantageously, the actuation frequency varying in the frequency range [Ωmin; Ωmax] can vary periodically around a predetermined central frequency Ωop, the frequencies Ωmin and Ωmax being adjusted as in the description of
It is thus considered that the frequency varies according to the following equation:
Ω(t)=Ωop+δΩ Cos(επt+φ)
with ε such that 0<επ/Ωop<10−1 with ε the frequency scan rate.
The excitation frequency is thus modulated in a harmonic manner around a frequency value Ωop with a modulation amplitude δΩ, in the frequency range [Ωmin; Ωmax].
It is of course possible to vary this frequency according to any type of law, such as for example a square law, that may be described in the form of an infinite series:
In the case of the resonator before detection of particles, it is possible to define a bifurcation frequency Ωlim.
The latter can be determined experimentally by observing the frequency response of the device. One then chooses a frequency Ωmax slightly lower than this value, which calibrates the smallest mass that it is possible to detect, for example |Ωmin−Ωmax| lying between 0 and 10−1 times the frequency Ωop, advantageously 10−9 and 10−1 times the frequency Ωop.
One then defines the modulation amplitude δΩ and the value Ωop with respect to the biggest particle to be detected.
Indeed the minimum frequency Ωmin=Ωmax−2 δΩ attained by modulation must be situated in a frequency zone where a single vibratory state is possible (quasi-linear).
All the response curves for the beam with or without particle exhibit the same trend (peak deviated towards the low frequencies), shifted all the more to the left the larger the added mass.
Indeed, it may be particularly advantageous to provide for a range of frequencies, such that various types of different mass particles can be detected. Thus within the framework of the detection for example of a set of type of distinct and increasing specific mass particles, there exists a type of particles to be detected having a maximum mass and therefore a specific curve, called the limit curve, maximizing the leftward shift.
Thereafter, the calibration of the scan rates is performed while complying with the following principle: the scan must be fast enough such that during the presence of a particle on the beam, as described in the article by Chaste et al, “A nanomechanical mass sensor with yoctogram resolution”, Nature Nanotechnology 2012, at least one complete scan cycle of the modulation interval [Ωmax−2 δΩ, Ωmax] can be carried out.
This scan frequency ε can lie between for example 1 Hz and 100 kHz or adjusted such that 0<επ/Ωop<10−1. The principle of frequency modulation is known in the field of RF devices, and can be implanted by many commercial RF voltage sources, and is also used as detection principle for detecting the mechanical motion of an NEMS as described in the article by V. Gouttenoire, T. Barois, S. Perisanu, J.-L. Leclercq, S. T. Purcell, P. Vincent, and A. Ayari, “Digital and FM demodulation of a doubly clamped single-walled carbon-nanotube oscillator: towards a nanotube cell phone,” Small (Weinheim an der Bergstrasse, Germany), vol. 6, no. 9, pp. 1060-5, May 2010.
It is thus possible to carry out the transduction of the mechanical motion of the device at the same time as applying the detection principle.
In the course of continuous measurements, and with a state of the resonator which does not revert to its initial state, the perturbations accumulating, a curve FM becomes an initial curve for the following measurement curve FM′ and so on. In typical cases of this type, it may be beneficial to verify that the new curve of initial state FM makes it possible to maintain the conditions required at the level of the frequency bounds in the present invention, namely, that one of these bounds belongs to the unstable frequency band and the other to the stable frequency band, making it possible if appropriate to adjust the central frequency Ωop.
To ensure this control, the means for detecting and analysing the signal arising from the electrical detection transducer can advantageously be correlated with the excitation source in a servocontrol loop, when it is detected that the frequency Ωmin is no longer low enough and no longer makes it possible to jump from the higher branch to the lower branch (see points 7 to 8 of
The invention being generic, it can be applied to a large number of devices, using for example silicon NEMS such as described in the article E. Mile, G. Jourdan, I. Bargatin, S. Labarthe, C. Marcoux, P. Andreucci, S. Hentz, C. Kharrat, E. Colinet, and L. Duraffourg, “In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection,” Nanotechnology, vol. 21, no. 16, p. 165504, April 2010, or in the patent application filed by the Applicant: PCT/EP2011/065682.
Number | Date | Country | Kind |
---|---|---|---|
13 61972 | Dec 2013 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
8653716 | Hentz et al. | Feb 2014 | B2 |
20110221301 | Hentz | Sep 2011 | A1 |
20120206594 | Datskos | Aug 2012 | A1 |
20130047710 | Rhoads | Feb 2013 | A1 |
20130154440 | Hentz | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
102005010498 | Sep 2006 | DE |
2365282 | Sep 2011 | EP |
02093111 | Nov 2002 | WO |
2010139055 | Dec 2010 | WO |
2012034949 | Mar 2012 | WO |
Entry |
---|
N. Kacem, et al., “Nonlinear Dynamics of Nanomechanical Beam Resonators: Improving the Performance of NEMS-Based Sensors”, Nanotechnology, 2009, pp. 1-11, vol. 20, IOP Publishing. |
Ville Kaajakari, et al., “Phase Noise in Capacitatively Couled Micromechanical Oscillators”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Dec. 2005, pp. 2322-2331, vol. 52, No. 12, IEEE. |
Wenhua Zhang, et al., “Application of Parametric Resonance Amplification in a Single-Crystal Silicon Micro-Oscillator Based Mass Sensor”, Sensors and Actuators A: Physical, Jul. 2005, pp. 23-30, vol. 122, No. 1, Elsevier B.V. |
Mohammad I. Younis, et al., “Exploration of New Concepts for Mass Detection in Electrostatically-Actuated Structures Based on Nonlinear Phenomena”, Journal of Computational and Nonlinear Dynamics, Apr. 2009, pp. 021010-1 thru 021010-15, vol. 4, No. 2, ASME. |
Vijay Kumar, et al., “Modeling, Analysis, and Experimental Validation of a Bifurcation-Based Microsensor”, Journal of Microelectromechanical Systems, Jun. 2012, pp. 549-558, vol. 21, No. 3, IEEE Service Center, USA, XP011445756. |
J. Chaste, et al., “A Mechanical Mass Sensor with Yoctogram Resolution”, Nature Nanotechnology, 2012, pp. 1-19. |
Vincent Gouttenoire, et al., “Digital and FM Demodulation of a Doubly Clamped Single-Walled Carbon Nanotube Oscillator: Towards a Nanotube Cell Phone”, Small, 2010, pp. 1060-1165, vol. 6, No. 9, Wiley-VCH Verlag GmbH. |
E Mile, et al., “In-Plane Nanoelectromechanical Resonators Based on Silicon Nanowire Piezoresistive Detection”, Nanotechnology, Apr. 2010, pp. 1-7, No. 21, No. 16, IOP Publishing. |
Number | Date | Country | |
---|---|---|---|
20150153221 A1 | Jun 2015 | US |