The method described here serves for highly precise determination of the absolute layer thickness of samples. In this connection, the thickness of both transparent and non-transparent samples can be determined directly, with the height resolution that is usual for confocal microscopes. This is made possible by means of a fully automated calibration of the system, without the use of reference normals. This calibration takes less than one minute and can therefore be carried out at short intervals, even in industrial use.
In the case of previously known methods, samples that are lying on a planar surface can be measured, and a thickness can be calculated by way of the measured height. A disadvantage for this method is the possibility of the occurrence of domed formations on the underside of the sample, and the great influence of errors during mounting of the sample on the measurement result.
In other previously known methods, the layer thickness of transparent layers can be determined by way of optical transmitted light methods, for example, but a precise knowledge of the index of refraction and of the usable numerical aperture of the lens being used is required for this purpose. Nevertheless, problems in the evaluation can sometimes occur, which lead to incorrect results. The method described here does not utilize the transparency of layers, but rather is based on measuring the sample surface from two opposite sides. In this method, due to the thermal expansion effect, regular calibration to a reference thickness is required, utilizing the linearity of the measurement heads. Here, a new method for calibrating to a reference thickness, without using reference samples, is described. By means of this method, it is possible to determine the absolute thickness of samples having up to almost twice the thickness of the measurement range of a single microscope, with a resolution accurate to nanometers. In this case, the measurement range amounts to 250 μm and 500 μm, respectively, for example, leading to a maximally measurable sample thickness of almost 0.5 and 1 mm, respectively.
The figures show:
Settings: To carry out the measurement, the piezo position (5) of head 1 is first set to a value of about 50 μm, whereby the position 0 μm is the position that lies closest to the other measurement head, in each instance. Afterwards, the measurement head 2 carries out a measurement, whereby its light source (11) is shut off and the Nipkow disk (14) rotates. In the evaluation, only points whose intensity is very high are taken into consideration, i.e. only the points illuminated by the opposite microscope are evaluated. A mapping of the superimposition of the focal planes is therefore obtained. The infinitesimally thin sample is simulated by means of this measurement principle. A counter-trial can be carried out, in that the same procedure is carried out with reverse mirror symmetry. In this connection, the Nipkow disk (14) of the right measurement head is therefore stopped, and illuminated by the light source (11), while the confocal image stack is recorded during scanning by the left lens (5), by way of the rotating Nipkow disk (4) of the left measurement head, by means of the CCD camera (4). The average height difference and the inclines in the x and y direction are calculated from the results, in each instance. Proceeding from a correct basic calibration, the results should be identical, within the framework of the measurement accuracy of the individual microscopes. In this manner, the thickness determination by means of the measurement machine can be calibrated in simple manner, which can be automated, without any additional materials. In this manner, the accuracy of the individual measurement devices can be transferred to the thickness measurement with both measurement devices.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 022 819.4 | May 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2006/000806 | 5/11/2006 | WO | 00 | 11/13/2007 |