Method for erasing a memory cell

Information

  • Patent Grant
  • 6888757
  • Patent Number
    6,888,757
  • Date Filed
    Monday, September 8, 2003
    20 years ago
  • Date Issued
    Tuesday, May 3, 2005
    19 years ago
Abstract
A method for erasing a bit of a memory cell in a non-volatile memory cell array, the method comprising applying an erase pulse to at least one bit of at least one memory cell of the array, waiting a delay period wherein a threshold voltage of the at least one memory cell drifts to a different magnitude than at the start of the delay period, and after the delay period, erase verifying the at least one bit to determine if the at least one bit is less than a reference voltage level.
Description
FIELD OF THE INVENTION

The present invention relates generally to erasing memory cells of non-volatile memory arrays, and particularly to methods for erasing a bit of a memory cell so as to reduce retention loss thereafter and increase reliability.


BACKGROUND OF THE INVENTION

A well known type of non-volatile cell is a nitride, read only memory (NROM) cell, described in such patents as Applicant's U.S. Pat. No. 6,490,204, entitled “Programming And Erasing Methods For An NROM Array”, and Applicant's U.S. Pat. No. 6,396,741, entitled “Programming Of Nonvolatile Memory Cells”, the disclosures of which are incorporated herein by reference.


Unlike a floating gate cell, the NROM cell has two separated and separately chargeable areas. Each chargeable area defines one bit. The separately chargeable areas are found within a nitride layer formed in an oxide-nitride-oxide (ONO) sandwich underneath a gate. When programming a bit, channel hot electrons are injected into the nitride layer. Programming an NROM cell may typically involve applying positive voltages to gate and drain terminals of the transistor, while the source may be floated.


Erasing an NROM cell requires decreasing the threshold voltage of the cell. Erasing an NROM cell, which is done in the same source/drain direction as programming, typically involves applying a negative voltage to the gate and a positive voltage to the drain, while the source may be floated. The negative gate voltage creates holes in the junction near the drain, typically through band-to-band tunneling. The holes may be accelerated by the lateral field near the drain and the ONO layer. As the holes accelerate towards the drain, they eventually achieve sufficient energy to be injected into the nitride layer, this being known as tunnel-assisted hot hole injection.


A concern with NROM cells, as well as for other kinds of non-volatile memory (NVM) cells, is drift or unintended changes in the threshold voltages of memory cells. For example, over time at room temperature, bits that are supposed to be in an erased state may experience an increase in threshold voltage.


There are several problems associated with the drift problem. The changes alter the state of the memory cell and the data value stored therein, thereby creating a data error. Such data errors are intolerable in many memory applications. The drift causes a loss in the margin of voltage level between the erased state voltage level and the read reference level. Accordingly, in the prior art, the erase verify level may be set at a certain low voltage level, taking into account a factor of safety so as to distance the erased state voltage level from the read reference level. This is referred to as maintaining a “window” between the erased state voltage level and the read reference level. There may be likewise a “window” between the programmed state voltage level and the read reference level. One way of combating the margin loss would be to maintain a large window that would separate the erased state voltage level from the read reference level even after drift in the erased state voltage level over time. However, this in turn causes other problems. A larger window may lower reliability by detrimentally affecting cycling and retention. In addition, the larger window necessitates longer write times, thereby causing a loss in performance.


Applicant's U.S. patent application Ser. No. 09/983,510, entitled “Method For Erasing A Memory Cell”, corresponding to published PCT patent application WO 03/036650 (PCT/IL02/00855), provides further methods for erasing a bit of a memory cell so as to reduce the drift of the threshold voltage thereafter. After applying an erase pulse to a bit, the bit is read to check if the bit has passed an erase verify level. If the bit has passed the erase verify level, then at least one more erase pulse is applied to that bit. The extra erase pulse may be applied with the same or different voltage levels of gate and drain and for the same or different time duration as the previous erase pulse.


The application of one or more extra erase pulses lowers the initial threshold voltage of the erased bit. This provides several advantages. First, it will take longer for the threshold voltage to drift upwards than the prior art. Second, the erase verify level may be set at a higher voltage level than the prior art. Third, the application of the extra erase pulse or pulses may actually decrease the slope of the increase in threshold voltage level of the erased bit.


However, the extra erase pulse may have the disadvantage of increasing the number of holes in the ONO stack dielectric, which may increase the retention loss.


SUMMARY OF THE INVENTION

The present invention seeks to provide improved methods for erasing a bit of a memory cell so as to reduce the retention loss thereafter. In accordance with an embodiment of the present invention, a time delay may be implemented before erase verifying, that is, before checking if the bit has passed an erase verify level. Waiting before performing erase verify (EV) may allow the erased state threshold voltage to drift upwards before EV. If EV is passed after the end of the wait period, then no extra erase pulse is needed. Avoiding application of an unnecessary extra erase pulse may prevent or reduce enhanced retention loss.


There is thus provided in accordance with an embodiment of the invention a method for erasing at least a single bit of a memory cell in a non-volatile memory cell array, the method including applying an erase pulse to at least one bit of at least one memory cell of the array, waiting a delay period wherein a threshold voltage of the at least one memory cell drifts to a different magnitude than at the start of the delay period, and after the delay period, erase verifying the at least one bit to determine if the at least one bit is less than a reference voltage level.


In accordance with an embodiment of the invention the delay period is determined as a function of prior threshold voltage drift behavior of at least one similar memory cell.


Further in accordance with an embodiment of the invention, during the delay period, an environmental and/or erase condition of the at least one memory cell may or may not remain generally unchanged. The environmental condition may comprise at least one of temperature, pressure, and humidity. The erase condition may comprise at least one of a gate voltage, a drain voltage, a source voltage, and a time duration of an erase pulse.


Still further in accordance with an embodiment of the invention the at least one memory cell comprises a channel formed in a substrate, two diffusion areas formed one on either side of the channel in the substrate, and an oxide-nitride-oxide (ONO) layer formed at least over the channel, the ONO layer comprising a bottom oxide layer, a top oxide layer and a nitride layer intermediate the bottom and top oxide layers, and wherein the delay period is determined as a function of the thickness of the bottom layer.


In accordance with an embodiment of the invention, if the at least one bit does not pass the erase verify level (i.e., the threshold voltage is not less than the reference voltage level), then at least one more erase pulse is applied to the at least one bit. Optionally, in accordance with another embodiment of the invention, even if the at least one bit passes the erase verify level, then at least one more erase pulse may be applied to the at least one bit.


There is also provided in accordance with an embodiment of the invention a nonvolatile memory cell array comprising a plurality of memory cells, a power supply adapted to generate erase pulses to bits of the cells, and a controller in communication with the power supply, the controller adapted to perform the steps of:


applying an erase pulse to at least one bit of at least one memory cell of the array,


waiting a delay period wherein a threshold voltage of the at least one memory cell drifts to a different magnitude than at the start of the delay period, and


after the delay period, erase verifying the at least one bit to determine if the at least one bit is less than a reference voltage level.


In accordance with an embodiment of the invention the memory cells comprise nitride read only memory (NROM) cells.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the appended drawings in which:



FIG. 1 is a simplified schematic illustration of non-volatile memory cell array, constructed and operative in accordance with a preferred embodiment of the present invention;



FIG. 2 is a simplified illustration of an example of a memory cell used in the array of FIG. 1, the example being an NROM cell, constructed and operative in accordance with an embodiment of the invention;



FIG. 3 is a simplified flow chart of a method for erasing a bit or bits in the array of FIG. 1, in accordance with an embodiment of the present invention; and



FIG. 4 is a simplified graphical illustration of an upward drift of the threshold voltage of the memory cells during a wait period before implementing erase verify.





DETAILED DESCRIPTION OF THE PRESENT INVENTION

Reference is now made to FIG. 1, which illustrates a non-volatile memory cell array 10 constructed and operative in accordance with a preferred embodiment of the present invention. Array 10 may be an EEPROM array, for example. Array 10 comprises a multiplicity of memory cells 12 each connected to an associated word line, generally designated WL, and two bit lines, generally designated BL. A single memory cell 12 may store a single bit or multiple bits.


A power supply 14 is adapted to generate erase pulses to erase bits of memory cells 12. A controller 16 is preferably in communication with power supply 14 to control erasure of the bits, as is described in detail hereinbelow.


In accordance with one embodiment of the present invention, memory cells 12 are nitride read only memory (NROM) cells. The description follows for NROM cells, however, the present invention is not limited to NROM cells.


Reference is now made to FIG. 2, which illustrates one example of memory cell 12, the example being an NROM cell 20, constructed and operative in accordance with an embodiment of the invention.


NROM cell 20 preferably includes a channel 22 formed in a substrate 24. Two diffusion areas 26 and 28 are preferably formed on either side of channel 22 in substrate 24, each diffusion area having a junction with channel 22. An oxide-nitride-oxide (ONO) layer 30 (i.e., a sandwich of a bottom oxide layer 32, a nitride layer 34 and a top oxide layer 36) is preferably formed at least over channel 22, and a polysilicon gate 38 is preferably formed at least over ONO layer 30. NROM cell 20 may comprise two separated and separately chargeable areas 40 and 42 in the nitride layer 34, each chargeable area defining and storing one bit.


Reference is now made to FIG. 3, which illustrates a method for erasing a bit of the memory cell 12 in array 10, in accordance with an embodiment of the present invention.


An erase pulse is applied (by means of power supply 14 and controller 16, FIG. 1) to one or more bits of one or more memory cells 12 of array 10 (step 100). Application of erase pulses to a selected bit in a preferred embodiment generally comprises application of a negative gate voltage to the word line of the bit, a positive drain voltage to the bit line serving as drain, and a floating voltage to the bit line serving as source. The magnitude and time duration of the negative gate voltage and positive drain voltage, inter alia, affect the amount of erasure of the bit. Procedures for applying erase pulses are described in Applicant's U.S. Pat. No. 6,490,204, for example.


The erase pulse lowers the threshold voltage of the bit. The threshold voltage of any bit is generally checked by reading the bit, such as with a sense amplifier (not shown), as is known in the art. If the threshold voltage of the bit is less than a reference voltage level, then that bit is considered to be in an erased state. Conversely, if the threshold voltage of the bit is not less than the reference voltage level, then that bit is not considered to be in an erased state. This is referred to as “erase verify” (EV).


In accordance with an embodiment of the present invention, the method waits a delay period before performing EV (step 101). During the delay period, the threshold voltage of the one or more memory cells 12 may drift to a different magnitude (typically, a greater magnitude) than at the start of the delay period. This may be seen graphically in FIG. 4, to which reference is now additionally made. At point A (e.g., at time zero), the erase pulse is applied to the one or more bits of one or more memory cells 12 of array 10. A delay period B is then implemented, during which the threshold voltage may drift upwards, i.e., increase with time.


In one embodiment of the present invention, the time duration of delay period B may be determined as a function of prior threshold voltage (Vt) drift behavior of one or more similar memory cells. For example, the threshold voltage may increase, without limitation, at a rate of about 50 mV per decade of time in a log scale, and may eventually approach an upper limit asymptotically. The delay period B may be chosen such that most of the threshold voltage rise has occurred by the end of the delay period B. In accordance with another embodiment of the invention, the delay period B may be determined as a function of the thickness of one of the layers of the ONO layer 30, such as but not limited to, the bottom oxide layer 32. It has been found that decreasing the bottom oxide layer 32 may reduce the Vt saturation level and may also decrease the time duration of the delay period B, because the threshold voltage approaches the asymptotic limit more rapidly.


As a non-limiting example, if the thickness of bottom oxide layer 32 is about 50 angstroms, most of the threshold voltage increase (e.g., about 300 mV) may occur in approximately the first 60 seconds. In this example, erase verify may be delayed by a delay period of about 300 microseconds to 3 milliseconds in order to capture a significant part of the threshold voltage drift. The delay period may be implemented before applying one erase pulse, or may implemented consecutively before successive applications of erase pulses. Waiting the delay period before applying the erase pulse, whether singly or consecutively, may help avoid unnecessary application of an extra pulse after the last EV and may thus help reduce retention loss.


At the end of the delay period B, erase verify is preferably performed on the bit (step 102). If the threshold voltage of the bit is less than a reference voltage level, then that bit is considered to be in an erased state, and no further erase pulses may be applied.


If the threshold voltage of the bit is not less than a reference voltage level, then that bit is considered not to be in an erased state and the process may be repeated by applying the erase pulse (step 100) and waiting the delay period (step 101) before erase verifying again.


In summary, in one embodiment of the invention, one or more bits (e.g., a small or large portion of the array) may be erased with an erase pulse and erase verified after waiting the delay period. (This may be done bit by bit or performed for a portion of bits.) Those bits that pass EV (that is, their threshold voltages are less than the erase verify voltage level) may be marked (such as by a sticky bit in a buffer, for example) to indicate that no more erase pulses should be applied to them. Those bits that do not pass EV (that is, their threshold voltages are not less than the erase verify voltage level) may be further erased with erase pulses.


In another embodiment of the present invention, environmental and/or erase conditions may be changed during the delay period (step 103). The environmental condition may comprise, without limitation, temperature, pressure or humidity. The erase condition may comprise gate voltage, drain voltage, source voltage, and time duration of the erase pulse.


Alternatively, in accordance with another embodiment of the present invention, even if the particular bit has passed erase verify, then one or more erase pulses may be applied to that bit (step 104). The one or more additional erase pulses may be of an equal, less or greater magnitude than the erase pulse applied in step 100. “Greater magnitude” means more positive BL voltage or more negative WL voltage or both. Additionally or alternatively, the one or more additional erase pulses may be applied at an equal, less or greater time duration than the erase pulse applied in step 100. For example, if the previous erase pulse was Vg=−5 V and Vd=6 V for a duration of 250 μsec, then the additional erase pulse may be Vg=−5.2 V and Vd=6 V for a duration of 250 μsec. Another alternative may be Vg=−5 V and Vd=6.3 V for a duration of 250 μsec. Another alternative may be Vg=−5.5 V and Vd=6.3 V for a duration of 250 μsec. Yet another alternative may be Vg=−5 V and Vd=6 V for a duration of 500 μsec.


It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described herein above. Rather the scope of the invention is defined by the claims that follow:

Claims
  • 1. A method for erasing a bit of a memory cell in a non-volatile memory cell array, the method comprising: applying an erase pulse to at least one bit of at least one memory cell of said array; waiting a delay period wherein a threshold voltage of said at least one memory cell drifts to a different magnitude than at the start of the delay period; and after said delay period, erase verifying said at least one bit to determine if said at least one bit is less than a reference voltage level.
  • 2. The method according to claim 1, wherein said delay period is determined as a function of prior threshold voltage drift behavior of at least one similar memory cell.
  • 3. The method according to claim 1, wherein during said delay period, an environmental condition of said at least one memory cell remains generally unchanged.
  • 4. The method according to claim 1, further comprising changing an environmental condition of said at least one memory cell during said delay period.
  • 5. The method according to claim 4, wherein said environmental condition comprises at least one of temperature, pressure, and humidity.
  • 6. The method according to claim 1, wherein an erase condition used to erase said at least one memory cell remains generally unchanged throughout said delay period.
  • 7. The method according to claim 1, further comprising changing an erase condition used to erase said at least one memory cell after said delay period has started.
  • 8. The method according to claim 7, wherein said erase condition comprises at least one of a gate voltage, a drain voltage, a source voltage, and a time duration of an erase pulse.
  • 9. The method according to claim 1, wherein said at least one memory cell comprises a channel formed in a substrate, two diffusion areas formed one on either side of said channel in said substrate, and an oxide-nitride-oxide (ONO) layer formed at least over said channel, said ONO layer comprising a bottom oxide layer, a top oxide layer and a nitride layer intermediate said bottom and top oxide layers, and wherein said delay period is determined as a function of the thickness of said bottom layer.
  • 10. The method according to claim 1, wherein if a threshold voltage of said at least one bit is not less than said reference voltage level, at least one more erase pulse is applied to said at least one bit.
  • 11. The method according to claim 1, wherein if a threshold voltage of said at least one bit is less than said reference voltage level, at least one more erase pulse is applied to said at least one bit.
  • 12. A non-volatile memory cell array comprising: a plurality of memory cells; a power supply adapted to generate erase pulses to bits of said cells; and a controller in communication with said power supply, said controller adapted to perform the steps of: applying an erase pulse to at least one bit of at least one memory cell of said array; waiting a delay period wherein a threshold voltage of said at least one memory cell drifts to a different magnitude than at the start of the delay period; and after said delay period, erase verifying said at least one bit to determine if said at least one bit is less than a reference voltage level.
  • 13. The array according to claim 12, wherein said memory cells comprise nitride read only memory (NROM) cells.
CROSS REFERENCE TO OTHER APPLICATIONS

The present application is a continuation-in-part of U.S. Pat. No. 6,643,181, entitled “Method For Erasing A Memory Cell”, assigned to the assignee of the present application, and claims priority therefrom.

US Referenced Citations (150)
Number Name Date Kind
3895380 Cricchi et al. Jul 1975 A
4016588 Ohya et al. Apr 1977 A
4017888 Christie et al. Apr 1977 A
4151021 McElroy Apr 1979 A
4173766 Hayes Nov 1979 A
4173791 Bell Nov 1979 A
4281397 Neal et al. Jul 1981 A
4306353 Jacobs et al. Dec 1981 A
4342149 Jacobs et al. Aug 1982 A
4360900 Bate Nov 1982 A
4380057 Kotecha et al. Apr 1983 A
4388705 Sheppard Jun 1983 A
4389705 Sheppard Jun 1983 A
4435786 Tickle Mar 1984 A
4471373 Shimizu et al. Sep 1984 A
4521796 Rajkanan et al. Jun 1985 A
4527257 Cricchi Jul 1985 A
4586163 Koike Apr 1986 A
4630085 Koyama Dec 1986 A
4667217 Janning May 1987 A
4742491 Liang et al. May 1988 A
4780424 Holler et al. Oct 1988 A
4847808 Kobatake Jul 1989 A
4870470 Bass, Jr. et al. Sep 1989 A
4916671 Ichiguchi Apr 1990 A
4941028 Chen et al. Jul 1990 A
5021999 Kohda et al. Jun 1991 A
5075245 Woo et al. Dec 1991 A
5117389 Yiu May 1992 A
5159570 Mitchell et al. Oct 1992 A
5168334 Mitchell et al. Dec 1992 A
5172338 Mehrotra et al. Dec 1992 A
5175120 Lee Dec 1992 A
5214303 Aoki May 1993 A
5241497 Komarek Aug 1993 A
5260593 Lee Nov 1993 A
5268861 Hotta Dec 1993 A
5289412 Frary et al. Feb 1994 A
5293563 Ohta Mar 1994 A
5295108 Higa Mar 1994 A
5305262 Yoneda Apr 1994 A
5311049 Tsuruta May 1994 A
5315541 Harari et al. May 1994 A
5338954 Shimoji Aug 1994 A
5345425 Shikatani Sep 1994 A
5349221 Shimoji Sep 1994 A
5350710 Hong et al. Sep 1994 A
5359554 Odake et al. Oct 1994 A
5393701 Ko et al. Feb 1995 A
5394355 Uramoto et al. Feb 1995 A
5399891 Yiu et al. Mar 1995 A
5400286 Chu et al. Mar 1995 A
5412601 Sawada et al. May 1995 A
5414693 Ma et al. May 1995 A
5418176 Yang et al. May 1995 A
5418743 Tomioka et al. May 1995 A
5422844 Wolstenholme et al. Jun 1995 A
5424978 Wada et al. Jun 1995 A
5426605 Van Berkel et al. Jun 1995 A
5434825 Harari Jul 1995 A
5440505 Fazio et al. Aug 1995 A
5450341 Sawada et al. Sep 1995 A
5450354 Sawada et al. Sep 1995 A
5455793 Amin et al. Oct 1995 A
5467308 Chang et al. Nov 1995 A
5477499 Van Buskirk et al. Dec 1995 A
5495440 Asakura Feb 1996 A
5518942 Shrivastava May 1996 A
5521870 Ishikawa May 1996 A
5523251 Hong Jun 1996 A
5523972 Rashid et al. Jun 1996 A
5537358 Fong Jul 1996 A
5553018 Wang et al. Sep 1996 A
5563823 Yiu et al. Oct 1996 A
5583808 Brahmbhatt Dec 1996 A
5599727 Hakozaki et al. Feb 1997 A
5623438 Guritz et al. Apr 1997 A
5654568 Nakao Aug 1997 A
5656513 Wang et al. Aug 1997 A
5661060 Gill et al. Aug 1997 A
5683925 Irani et al. Nov 1997 A
5689459 Chang et al. Nov 1997 A
5712814 Fratin et al. Jan 1998 A
5715193 Norman Feb 1998 A
5726946 Yamagata et al. Mar 1998 A
5751037 Aozasa et al. May 1998 A
5754475 Bill et al. May 1998 A
5768192 Eitan Jun 1998 A
5768193 Lee et al. Jun 1998 A
5777919 Chi-Yung et al. Jul 1998 A
5781476 Seki et al. Jul 1998 A
5784314 Sali et al. Jul 1998 A
5787036 Okazawa Jul 1998 A
5793079 Georgescu et al. Aug 1998 A
5812449 Song Sep 1998 A
5825686 Schmitt-Landsiedel et al. Oct 1998 A
5834851 Ikeda et al. Nov 1998 A
5836772 Chang et al. Nov 1998 A
5841700 Chang Nov 1998 A
5847441 Cutter et al. Dec 1998 A
5862076 Eitan Jan 1999 A
5864164 Wen Jan 1999 A
5870335 Khan et al. Feb 1999 A
5886927 Takeuchi Mar 1999 A
5920507 Takeuchi et al. Jul 1999 A
5946258 Evertt et al. Aug 1999 A
5946558 Hsu Aug 1999 A
5949714 Hemink et al. Sep 1999 A
5949728 Liu et al. Sep 1999 A
5963412 En Oct 1999 A
5963465 Eitan Oct 1999 A
5969989 Iwahashi Oct 1999 A
5969993 Takeshima Oct 1999 A
5973373 Krautschneider et al. Oct 1999 A
5990526 Bez et al. Nov 1999 A
5991202 Derhacobian et al. Nov 1999 A
6011725 Eitan Jan 2000 A
6018186 Hsu Jan 2000 A
6020241 You et al. Feb 2000 A
6028324 Su et al. Feb 2000 A
6030871 Eitan Feb 2000 A
6034403 Wu Mar 2000 A
6034896 Ranaweera et al. Mar 2000 A
6063666 Chang et al. May 2000 A
6064591 Takeuchi et al. May 2000 A
6075724 Li et al. Jun 2000 A
6097639 Choi et al. Aug 2000 A
6128226 Eitan et al. Oct 2000 A
6134156 Eitan Oct 2000 A
6137718 Reisinger Oct 2000 A
6157570 Nachumovsky Dec 2000 A
6163048 Hirose et al. Dec 2000 A
6181605 Hollmer et al. Jan 2001 B1
6201282 Eitan Mar 2001 B1
6215148 Eitan Apr 2001 B1
6215702 Derhacobian et al. Apr 2001 B1
6256231 Lavi et al. Jul 2001 B1
6266281 Derhacobian et al. Jul 2001 B1
6285574 Eitan Sep 2001 B1
6292394 Cohen et al. Sep 2001 B1
6304485 Harari et al. Oct 2001 B1
6307807 Sakui et al. Oct 2001 B1
6348711 Eitan Feb 2002 B1
6396741 Bloom et al. May 2002 B1
6490204 Bloom et al. Dec 2002 B2
6552387 Eitan Apr 2003 B1
6643181 Sofer et al. Nov 2003 B2
20020132436 Eliyahu et al. Sep 2002 A1
20020191465 Maayan et al. Dec 2002 A1
20030076710 Sofer et al. Apr 2003 A1
Foreign Referenced Citations (11)
Number Date Country
0693781 Jan 1996 EP
0751560 Jan 1997 EP
1073120 Jan 2001 EP
2157489 Oct 1985 GB
04226071 Aug 1992 JP
04291962 Oct 1992 JP
05021758 Jan 1993 JP
07193151 Jul 1995 JP
09162314 Jun 1997 JP
WO 9615553 May 1996 WO
WO 9931670 Jun 1999 WO
Related Publications (1)
Number Date Country
20040047198 A1 Mar 2004 US
Continuation in Parts (1)
Number Date Country
Parent 09983510 Oct 2001 US
Child 10656251 US