The present disclosure relates generally to semiconductor devices and, more particularly, to a method of fabricating a metal-insulator-metal capacitor in a semiconductor device.
In fabricating highly-integrated memory devices, a capacitor has to provide a relatively high capacitance in a small area. Conventionally, capacitance can be increased by forming a capacitor using a dielectric layer with a large dielectric constant, forming a thin dielectric layer, and/or increasing a cross-sectional area of a capacitor.
Known multi-layered capacitors or trench-type capacitors have been used to increase a cross-sectional area of a capacitor. A half-spherical polysilicon layer has also been used to that end. However, these known technologies tend to complicate a capacitor structure, reduce process yield, and increase manufacturing cost.
Dielectric materials including SiO2/Si3N4 are used as commonly used as a dielectric layer of a capacitor. Based on the material used for a capacitor electrode, a polysilicon-insulator-polysilicon (PIP) capacitor structure or a metal-insulator-metal (MIM) capacitor structure may be employed. Thin film capacitors such as PIP capacitors and MIM capacitors are used in analog semiconductor devices requiring precise capacitance values because, in contrast to MOS capacitors and junction capacitors, these capacitors are independent of bias.
In addition, although the MIM capacitor has a disadvantage because it has smaller capacitance per unit area than that of the PIP capacitor, the former has better VCC (voltage coefficient for capacitance) and TCC (temperature coefficient for capacitance) according to voltage and temperature as compared to the PIP capacitor.
a through 1f illustrate, in cross-sectional views, the process steps of a known capacitor-fabricating method. Referring to
Korean Patent Publication No. 10-2003-0058317 discloses a MIM capacitor fabricating method that forms an etch stopping layer to prevent the interlayer dielectric from being attacked by etching solution and eliminating an oxide supporting a lower electrode. Another Korean Patent Publication No. 10-2002-0073822 discloses a method of fabricating a MIM capacitor that provides good step coverage and a uniform dielectric layer and forms spacers on lateral walls of a lower electrode.
However, in these conventional methods the process of forming an MIM capacitor by etching simultaneously an upper metal layer and a dielectric layer, causes a fringing effect at the edge of the MIM capacitor, and is accompanied by bridge, which increases leakage current. The bridge is generated by redeposition of metal etched from the lower metal layer during over-etching necessary for etching a dielectric layer of MIM capacitor. To obviate these problems, the formation of spacers on a lower electrode has been proposed, but such spacers do not completely prevent the bridge due to the difficulty in controlling the process and, in some cases, may significantly complicate processing.
a through 1f illustrate, in cross-sectional views, known the processing steps.
a through 2f illustrate, in cross-sectional views, an example method for fabricating an MIM capacitor.
As described above, known methods of fabricating an MIM capacitor etch an upper metal layer and a dielectric layer simultaneously using an etch stopping layer formed on a lower metal layer. In addition, these known methods use over-etching to remove the remaining dielectric layer on the lower metal layer. The metal generated by etching of the lower metal layer is redeposited to induce a bridge between the upper and the lower metal layers, which leads to an increase in the leakage current.
In contrast, the example method described below in connection with
An example method for fabricating an MIM capacitor of semiconductor device deposits a metal layer to be used as a lower electrode of the MIM capacitor, deposits a sacrificial layer on the metal layer, removes some area of the sacrificial layer to form an MIM capacitor thereon, deposits a dielectric layer and an upper metal layer, and forms an MIM capacitor by patterning the dielectric layer and the upper metal layer.
Referring to
Referring to
Referring to
Referring to
Referring to
In the above-mentioned processes, the metal layers of the MIM capacitor are made of aluminum, a transition element, or an alloy consisting of aluminum and a transition element.
The above-described example method for fabricating an MIM capacitor can prevent increase in leakage current due to redeposition because a sacrificial layer is used to protect a lower metal layer in spite of over-etching.
Although certain methods and apparatus have been described herein, the scope of coverage of this patent is not limited thereto. To the contrary, this patent covers all embodiments fairly falling within the scope of the appended claims either literally or under the doctrine of equivalents.
| Number | Date | Country | Kind |
|---|---|---|---|
| 10-2003-0056827 | Aug 2003 | KR | national |
| Number | Name | Date | Kind |
|---|---|---|---|
| 5351163 | Dawson et al. | Sep 1994 | A |
| 5972722 | Visokay et al. | Oct 1999 | A |
| 6387750 | Lai et al. | May 2002 | B1 |
| 6784069 | Patraw et al. | Aug 2004 | B1 |
| 20040137693 | Kim | Jul 2004 | A1 |
| 20040152256 | Noguchi et al. | Aug 2004 | A1 |
| Number | Date | Country |
|---|---|---|
| 10-1998-0034728 | Aug 1998 | KR |
| 10-2001-00013685 | Mar 2001 | KR |
| 10-2001-0088733 | Dec 2001 | KR |
| Number | Date | Country | |
|---|---|---|---|
| 20050042820 A1 | Feb 2005 | US |