1. Field of the Invention
This invention generally relates to the area of low cost, high-resolution, high-throughput lithography with the potential to make structures that are below 100 nm in size.
2. Description of the Relevant Art
Optical lithography techniques are currently used to make microelectronic devices. However, these methods are reaching their limits in resolution. Sub-micron scale lithography has been a critical process in the microelectronics industry. The use of sub-micron scale lithography allows manufacturers to meet the increased demand for smaller and more densely packed electronic components on chips. The finest structures producible in the microelectronics industry are currently on the order of about 0.13 μm. It is expected that in the coming years, the microelectronics industry will pursue structures that are smaller than 0.05 μm (50 nm). Further, there are emerging applications of nanometer scale lithography in the areas of opto-electronics and magnetic storage. For example, photonic crystals and high-density patterned magnetic memory of the order of terabytes per square inch require nanometer scale lithography.
For making sub-50 nm structures, optical lithography techniques may require the use of very short wavelengths of light (for instance 13.2 nm). At these short wavelengths, few, if any, materials are optically transparent and therefore imaging systems typically have to be constructed using complicated reflective optics [1]. Furthermore, obtaining a light source that has sufficient output intensity at these wavelengths of light is difficult. Such systems lead to extremely complicated equipment and processes that appear to be prohibitively expensive. High-resolution e-beam lithography techniques, though very precise, typically are too slow for high-volume commercial applications.
One of the main challenges with current imprint lithography technologies is the need to establish direct contact between the template (master) and the substrate. This may lead to defects, low process yields, and low template life. Additionally, the template in imprint lithography typically is the same size as the eventual structures on the substrate (1X), as compared to 4X masks typically used in optical lithography. The cost of preparing the template and the life of the template are issues that may make imprint lithography impractical. Hence there exists a need for improved lithography techniques that address the challenges associated with optical lithography, e-beam lithography and imprint lithography for creating very high-resolution features.
In one embodiment, patterned structures may be created on a substrate using imprint lithography. The process involves applying a polymerizable composition to the upper surface of the substrate. The substrate may be a substrate used to prepare a semiconductor device. Examples of substrates include, but are not limited to, Si wafers, GaAs wafers, SiGeC wafers, or an InP wafers. The polymerizable composition may be an ultraviolet light curable composition. The ultraviolet light curable composition may include a polymerizable monomer and a photo initiator. The composition may be spin coated onto the substrate.
After the substrate has been coated with the polymerizable composition a template may be placed above the polymerizable composition. The template is formed from an electrically conductive material. The template may also be substantially transparent to visible and/or ultraviolet light. The template may be formed of a combination of an electrically conductive material coupled to a non-conductive material. Both the electrically conductive material and the non-conductive material may be substantially transparent to light. In one embodiment, the template may be formed of indium tin oxide and fused silica. The template includes a pattern of structures. The pattern of structures are complimentary to the pattern of structures which are to be produced on the substrate. At least a portion of the structures may have a feature size of less than about 100 nm.
An electric field may be applied between the template and the substrate. The application of the electric field may create a static force that attracts at least a portion of the polymerizable composition toward the template. The portions of the polymerizable composition that are attracted to the template are complementary to the pattern of structures imprinted on the template. In one embodiment, the portions of the polymerizable composition that are attracted to the template come into contact with the template, while the remaining portions do not contact the template. Alternatively, neither the attracted portions nor the remaining portions of the polymerizable composition come into contact with the template. The attracted portions, however, extend toward the template while the unattracted portions do not extend to the same extent that the attracted portions extend toward the template.
The polymerizable composition may be polymerized using an appropriate curing technique. For example, the polymerizable composition may include a photoinitiator and be curable by exposure to activating light while an electric field is applied to the template and the substrate. As used herein “activating light” means light that may affect a chemical change. Activating light may include ultraviolet light (e.g., light having a wavelength between about 300 nm to about 400 nm), actinic light, visible light or infrared light. Generally, any wavelength of light capable of affecting a chemical change may be classified as activating. Chemical changes may be manifested in a number of forms. A chemical change may include, but is not limited to, any chemical reaction that causes a polymerization or a cross-linking reaction to take place. The activating light may be passed through the template prior to reaching the composition. In this manner the polymerizable composition may be cured to form structures complementary to the structures formed on the template. Alternatively, the polymerizable composition may be cured by applying heat to the composition, while an electric field is applied to the template and the substrate.
After the polymerizable composition is cured, the structures may be further defined by etching the cured polymerizable composition. Etching may improve the aspect ratio of the structures. Any of the commonly used etching techniques may be used, including reactive ion etching.
In one embodiment, the template may be positioned less than about 1 μm from the polymerizable composition. The substrate should therefore have a planarity of less than about 1 μm, preferable less than about 0.25 μm. As used herein planarity is defined as the variance in curvature over the surface of the substrate. For example, a planarity of 1 μm indicates that the curvature of the surface varies by 1 μm above and/or below a center point which defines a planar surface.
To achieve a surface having a planarity of less than about 1 μm, the substrate may be placed on an apparatus configured to alter the shape of the substrate. The apparatus may include a holder configured to couple to and support the substrate. The apparatus may also include a plurality of pressure application devices coupled to the holder. The pressure application devices may be configured to apply a deforming force to the holder such that the shape of the holder is altered. The substrate may be coupled to the holder such that the changes in the shape of the holder may be imparted to the substrate. In this manner, the planarity of the substrate may be altered to conform to the desired planarity. The apparatus may include a programmable controller. The programmable controller may include a detection device configured to determine the planarity of the substrate. The controller may further be configured to operate the pressure application devices to alter the planarity of the substrate based on the determined planarity.
A curing agent 24, shown in
In
Finally, in
Next, at step 34, the spacing between the template and substrate is controlled so that a relatively uniform gap is created between the two layers permitting the type of precise orientation required for successful imprinting. The present invention provides a device and system for achieving the type of orientation (both course and fine) required at step 34. At step 36, a liquid is dispensed into the gap between the template and substrate. Preferably, the liquid is a UV curable organosilicon solution or other organic liquids that become a solid when exposed to UV light. The fact that a liquid is used eliminates the need for high temperatures and high pressures associated with prior art lithography techniques.
At step 38, the gap is closed with fine orientation of the template about the substrate and the liquid is cured resulting in a hardening of the liquid into a form having the features of the template. Next, the template is separated from the substrate, step 40, resulting in features from the template being imprinted or transferred onto the substrate. Finally, the structure is etched, step 42, using a preliminary etch to remove residual material and a well-known oxygen etching technique to etch the transfer layer.
As mentioned above, recent imprint lithography techniques with UV curable liquids [2, 3, 4, 5] and polymers [6] have been described for preparing nanoscale structures. These techniques may potentially be significantly lower cost than optical lithography techniques for sub-50 nm resolution. Recent research [7, 8] has also investigated the possibility of applying electric fields and van der Waals attractions between a template that possesses a topography and a substrate that contains a polymeric material to form nanoscale structures. This research has been for systems of polymeric material that may be heated to temperatures that are slightly above their glass transition temperature. These viscous polymeric materials tend to react very slowly to the electric fields (order of several minutes) making them less desirable for commercial applications.
The embodiments described herein may potentially create lithographic patterned structures quickly (in a time of less than about 1 second). The structures may have sizes of tens of nanometers. The structures may be created by curing a polymerizable composition (e.g., a spin-coated UV curable liquid) in the presence of electric fields. Curing the polymerizable composition then sets the pattern of structures on the substrate. The pattern may be created by placing a template with a specific nanometer-scale topography at a carefully controlled nanoscale distance from the surface of a thin layer of the liquid on a substrate. If all or a portion of the desired structures are regularly repeating patterns (such as an array of dots), the pattern on the template may be considerably larger than the size of the desired repeating structures. The template may be formed using direct write e-beam lithography. The template may be used repeatedly in a high-throughput process to replicate nanostructures onto substrates. In one embodiment, the template may be fabricated from a conducting material such as Indium Tin Oxide that is also transparent to UV light. The template fabrication process is similar to that of phase shift photomasks for optical lithography; phase shift masks require an etch step that creates a topography on the template.
Referring to
It may be possible to control the electric field, the design of the topography of the template and the proximity of the template to the liquid surface so as to create a pattern in the polymerizable composition that does not come into contact with the surface of the template. This technique may eliminate the need for mechanical separation of the template from the polymerized composition. This technique may also eliminate a potential source of defects in the pattern. In the absence of contact, however, the liquid may not form sharp, high-resolution structures that are as well defined as in the case of contact. This may be addressed by first creating structures in the polymerizable composition that are partially defined at a given electric field. Subsequently, the gap may be increased between the template and substrate while simultaneously increasing the magnitude of the electric field to “drawout” the liquid to form clearly defined structures without requiring contact.
The polymerizable composition may be deposited on top of a hard-baked resist material to lead to a bi-layer process. Such a bi-layer process allows for the formation of low aspect ratio, high-resolution structures using the electrical fields followed by an anisotropic etch that results in high-aspect ratio, high-resolution structures. Such a bi-layer process may also be used to perform a “metal lift-off process” to deposit a metal on the substrate such that the metal is left behind after lift-off in the trench areas of the originally created structures.
By using a low viscosity polymerizable composition, the pattern formation due to the electric field may be fast (e.g., less than about 1 sec.), and the structure may be rapidly cured. Avoiding temperature variations in the substrate and the polymerizable composition may also avoid undesirable pattern distortion that makes nano-resolution layer-to-layer alignment impractical. In addition, as mentioned above, it is possible to quickly form a pattern without contact with the template, thus eliminating defects associated with imprint methods that require direct contact.
In one embodiment, depicted in
In
In
The mechanical device in
Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.
The following references are specifically incorporated herein by reference
Number | Name | Date | Kind |
---|---|---|---|
3757846 | Herman Jr. | Sep 1973 | A |
3783520 | King | Jan 1974 | A |
3807027 | Heisler | Apr 1974 | A |
3807029 | Troeger | Apr 1974 | A |
3811665 | Seelig | May 1974 | A |
4062600 | Wyse | Dec 1977 | A |
4070116 | Frosch et al. | Jan 1978 | A |
4098001 | Watson | Jul 1978 | A |
4119688 | Hiraoka | Oct 1978 | A |
4155169 | Drake et al. | May 1979 | A |
4201800 | Alcorn et al. | May 1980 | A |
4202107 | Watson | May 1980 | A |
4267212 | Sakawaki | May 1981 | A |
4337579 | De Fazio | Jul 1982 | A |
4355469 | Nevins et al. | Oct 1982 | A |
4414750 | De Fazio | Nov 1983 | A |
4426247 | Tamamura et al. | Jan 1984 | A |
4440804 | Milgram | Apr 1984 | A |
4451507 | Beltz et al. | May 1984 | A |
4507331 | Hiraoka | Mar 1985 | A |
4512386 | Haller | Apr 1985 | A |
4512848 | Deckman et al. | Apr 1985 | A |
4544572 | Sandvig et al. | Oct 1985 | A |
4552833 | Ito et al. | Nov 1985 | A |
4600309 | Fay | Jul 1986 | A |
4610442 | Oku et al. | Sep 1986 | A |
4657845 | Frechet et al. | Apr 1987 | A |
4692205 | Sachdev et al. | Sep 1987 | A |
4694703 | Routson | Sep 1987 | A |
4707218 | Giammarco et al. | Nov 1987 | A |
4731155 | Napoli et al. | Mar 1988 | A |
4737425 | Lin et al. | Apr 1988 | A |
4763886 | Takei | Aug 1988 | A |
4808511 | Holmes | Feb 1989 | A |
4826943 | Ito et al. | May 1989 | A |
4848911 | Uchida et al. | Jul 1989 | A |
4857477 | Kanamori | Aug 1989 | A |
4891303 | Garza et al. | Jan 1990 | A |
4908298 | Hefferon et al. | Mar 1990 | A |
4919748 | Bredbenner et al. | Apr 1990 | A |
4921778 | Thackeray et al. | May 1990 | A |
4929083 | Brunner | May 1990 | A |
4931351 | McColgin et al. | Jun 1990 | A |
4959252 | Bonnebat et al. | Sep 1990 | A |
4964945 | Calhoun | Oct 1990 | A |
4976818 | Hashimoto et al. | Dec 1990 | A |
4980316 | Huebner | Dec 1990 | A |
4982796 | Lari et al. | Jan 1991 | A |
4999280 | Hiraoka | Mar 1991 | A |
5028366 | Harakal et al. | Jul 1991 | A |
5053318 | Gulla et al. | Oct 1991 | A |
5071694 | Uekita et al. | Dec 1991 | A |
5072126 | Progler | Dec 1991 | A |
5074667 | Miyatake | Dec 1991 | A |
5108875 | Thackeray et al. | Apr 1992 | A |
5110514 | Soane | May 1992 | A |
5126006 | Cronin et al. | Jun 1992 | A |
5148036 | Matsugu et al. | Sep 1992 | A |
5148037 | Suda et al. | Sep 1992 | A |
5151754 | Ishibashi et al. | Sep 1992 | A |
5169494 | Hashimoto et al. | Dec 1992 | A |
5173393 | Sezi et al. | Dec 1992 | A |
5179863 | Uchida et al. | Jan 1993 | A |
5198326 | Hashimoto et al. | Mar 1993 | A |
5204739 | Domenicali | Apr 1993 | A |
5212147 | Sheats | May 1993 | A |
5234793 | Sebald et al. | Aug 1993 | A |
5240550 | Boehnke et al. | Aug 1993 | A |
5240878 | Fitzsimmons et al. | Aug 1993 | A |
5242711 | DeNatale et al. | Sep 1993 | A |
5244818 | Jokerst et al. | Sep 1993 | A |
5314772 | Kozicki et al. | May 1994 | A |
5318870 | Hartney | Jun 1994 | A |
5324683 | Fitch et al. | Jun 1994 | A |
5328810 | Lowrey et al. | Jul 1994 | A |
5330881 | Sidman et al. | Jul 1994 | A |
5348616 | Hartman et al. | Sep 1994 | A |
5362606 | Hartney et al. | Nov 1994 | A |
5366851 | Novembre | Nov 1994 | A |
5374454 | Bickford et al. | Dec 1994 | A |
5376810 | Hoenk et al. | Dec 1994 | A |
5380474 | Rye et al. | Jan 1995 | A |
5392123 | Marcus et al. | Feb 1995 | A |
5417802 | Obeng | May 1995 | A |
5421981 | Leader et al. | Jun 1995 | A |
5422295 | Choi et al. | Jun 1995 | A |
5424549 | Feldman | Jun 1995 | A |
5425848 | Haisma et al. | Jun 1995 | A |
5425964 | Southwell et al. | Jun 1995 | A |
5431777 | Austin et al. | Jul 1995 | A |
5439766 | Day et al. | Aug 1995 | A |
5452090 | Progler et al. | Sep 1995 | A |
5453157 | Jeng | Sep 1995 | A |
5458520 | DeMercurio et al. | Oct 1995 | A |
5468542 | Crouch | Nov 1995 | A |
5480047 | Tanigawa et al. | Jan 1996 | A |
5512131 | Kumar et al. | Apr 1996 | A |
5515167 | Ledger et al. | May 1996 | A |
5527662 | Hashimoto et al. | Jun 1996 | A |
5545367 | Bae et al. | Aug 1996 | A |
5566584 | Briganti | Oct 1996 | A |
5601641 | Stephens | Feb 1997 | A |
5633505 | Chung et al. | May 1997 | A |
5654238 | Cronin et al. | Aug 1997 | A |
5670415 | Rust | Sep 1997 | A |
5700626 | Lee et al. | Dec 1997 | A |
5723176 | Keyworth et al. | Mar 1998 | A |
5724145 | Kondo et al. | Mar 1998 | A |
5736424 | Prybyla et al. | Apr 1998 | A |
5743998 | Park | Apr 1998 | A |
5747102 | Smith et al. | May 1998 | A |
5753014 | Van Rijn | May 1998 | A |
5760500 | Kondo et al. | Jun 1998 | A |
5772905 | Chou | Jun 1998 | A |
5776748 | Singhvi et al. | Jul 1998 | A |
5779799 | Davis | Jul 1998 | A |
5802914 | Fassler et al. | Sep 1998 | A |
5804474 | Sakaki et al. | Sep 1998 | A |
5849209 | Kindt-Larsen et al. | Dec 1998 | A |
5849222 | Jen et al. | Dec 1998 | A |
5855686 | Rust | Jan 1999 | A |
5877036 | Kawai | Mar 1999 | A |
5877861 | Ausschnitt et al. | Mar 1999 | A |
5884292 | Baker et al. | Mar 1999 | A |
5888650 | Calhoun et al. | Mar 1999 | A |
5895263 | Carter et al. | Apr 1999 | A |
5900160 | Whitesides et al. | May 1999 | A |
5907782 | Wu | May 1999 | A |
5912049 | Shirley | Jun 1999 | A |
5926690 | Toprac et al. | Jul 1999 | A |
5942871 | Lee | Aug 1999 | A |
5948219 | Rohner | Sep 1999 | A |
5948470 | Harrison et al. | Sep 1999 | A |
5948570 | Kornblit et al. | Sep 1999 | A |
5952127 | Yamanaka | Sep 1999 | A |
6033977 | Gutsche et al. | Mar 2000 | A |
6035805 | Rust | Mar 2000 | A |
6038280 | Rossiger et al. | Mar 2000 | A |
6039897 | Lochhead et al. | Mar 2000 | A |
6046056 | Parce et al. | Apr 2000 | A |
6051345 | Huang | Apr 2000 | A |
6074827 | Nelson et al. | Jun 2000 | A |
6091485 | Li et al. | Jul 2000 | A |
6096655 | Lee et al. | Aug 2000 | A |
6125183 | Jiawook et al. | Sep 2000 | A |
6128085 | Buermann et al. | Oct 2000 | A |
6143412 | Schueller et al. | Nov 2000 | A |
6150231 | Muller et al. | Nov 2000 | A |
6150680 | Eastman et al. | Nov 2000 | A |
6168845 | Fontana, Jr. et al. | Jan 2001 | B1 |
6180239 | Whitesides et al. | Jan 2001 | B1 |
6204922 | Chalmers | Mar 2001 | B1 |
6218316 | Marsh | Apr 2001 | B1 |
6234379 | Donges | May 2001 | B1 |
6245213 | Olsson et al. | Jun 2001 | B1 |
6245581 | Bonser et al. | Jun 2001 | B1 |
6274294 | Hines | Aug 2001 | B1 |
6309580 | Chou | Oct 2001 | B1 |
6326627 | Putvinski et al. | Dec 2001 | B1 |
6329256 | Ibok | Dec 2001 | B1 |
6334960 | Willson et al. | Jan 2002 | B1 |
6383928 | Eissa | May 2002 | B1 |
6387783 | Furukawa et al. | May 2002 | B1 |
6388253 | Su | May 2002 | B1 |
6391798 | DeFelice et al. | May 2002 | B1 |
6455411 | Jiang et al. | Sep 2002 | B1 |
6482742 | Chou | Nov 2002 | B1 |
6489068 | Kye | Dec 2002 | B1 |
6514672 | Young et al. | Feb 2003 | B2 |
6517977 | Resnick et al. | Feb 2003 | B2 |
6517995 | Jacobenson et al. | Feb 2003 | B1 |
6518189 | Chou | Feb 2003 | B1 |
6534418 | Plat et al. | Mar 2003 | B1 |
6541360 | Plat et al. | Apr 2003 | B1 |
6561706 | Singh et al. | May 2003 | B2 |
6565928 | Sakamoto et al. | May 2003 | B2 |
6580172 | Mancini et al. | Jun 2003 | B2 |
6632742 | Yang et al. | Oct 2003 | B2 |
6635581 | Wong | Oct 2003 | B2 |
6646662 | Nebashi et al. | Nov 2003 | B1 |
6677252 | Marsh | Jan 2004 | B2 |
6696220 | Bailey et al. | Feb 2004 | B2 |
6703190 | Elian et al. | Mar 2004 | B2 |
6713238 | Chou et al. | Mar 2004 | B1 |
6716767 | Shih et al. | Apr 2004 | B2 |
6730256 | Bloomstein et al. | May 2004 | B1 |
6737202 | Gehoski et al. | May 2004 | B2 |
6743713 | Mukherjee-Roy et al. | Jun 2004 | B2 |
6676983 | Fujiyama et al. | Jul 2004 | B2 |
6770852 | Steger | Aug 2004 | B1 |
6776094 | Whitesides et al. | Aug 2004 | B1 |
6777170 | Bloomstein et al. | Aug 2004 | B1 |
6809356 | Chou | Oct 2004 | B2 |
6828244 | Chou | Dec 2004 | B2 |
6873087 | Choi et al. | Mar 2005 | B1 |
20020132482 | Chou | Sep 2001 | A1 |
20010026714 | Uezono et al. | Oct 2001 | A1 |
20020042027 | Chou et al. | Apr 2002 | A1 |
20020167117 | Chou | Nov 2002 | A1 |
20020177319 | Chou | Nov 2002 | A1 |
20030034329 | Chou | Feb 2003 | A1 |
20030080471 | Chou | May 2003 | A1 |
20030081193 | White et al. | May 2003 | A1 |
20030011368 | Mancini et al. | Jun 2003 | A1 |
20030129542 | Shih et al. | Jul 2003 | A1 |
20040009673 | Sreenivasan et al. | Jan 2004 | A1 |
20040029041 | Shih et al. | Feb 2004 | A1 |
20040036201 | Chou et al. | Feb 2004 | A1 |
20040046288 | Chou | Mar 2004 | A1 |
20040110856 | Young et al. | Jun 2004 | A1 |
20040118809 | Chou et al. | Jun 2004 | A1 |
20040131718 | Chou et al. | Jul 2004 | A1 |
20040137734 | Chou et al. | Jul 2004 | A1 |
20040156108 | Chou et al. | Aug 2004 | A1 |
20040192041 | Jeong et al. | Sep 2004 | A1 |
20040197843 | Chou et al. | Oct 2004 | A1 |
20040200411 | Willson et al. | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
2800476 | Jul 1978 | DE |
19648844 | Sep 1997 | DE |
244884 | Mar 1987 | EP |
733455 | Sep 1996 | EP |
55-88332 | Dec 1978 | JP |
57-7931 | Jun 1980 | JP |
63-138730 | Dec 1986 | JP |
1-196749 | Aug 1989 | JP |
02-24846 | Jan 1990 | JP |
02-92603 | Apr 1990 | JP |
WO 9217883 | Oct 1992 | WO |
WO 9810121 | Mar 1998 | WO |
WO 9905724 | Feb 1999 | WO |
WO 9945753 | Sep 1999 | WO |
WO 9963535 | Dec 1999 | WO |
WO 0021689 | Apr 2000 | WO |
WO 0133232 | May 2001 | WO |
WO 0133300 | May 2001 | WO |
WO 0147003 | Jun 2001 | WO |
WO 0153889 | Jul 2001 | WO |
WO 0163361 | Aug 2001 | WO |
WO 0169317 | Sep 2001 | WO |
WO 0179589 | Oct 2001 | WO |
WO 0179591 | Oct 2001 | WO |
WO 0179592 | Oct 2001 | WO |
WO 0179933 | Oct 2001 | WO |
WO 0190816 | Nov 2001 | WO |
WO 0207199 | Jan 2002 | WO |
WO 03010289 | Feb 2003 | WO |
WO 03079416 | Sep 2003 | WO |
WO 03099536 | Dec 2003 | WO |
WO 2004013693 | Feb 2004 | WO |
WO 2004016406 | Feb 2004 | WO |
WO 2004114016 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20030215577 A1 | Nov 2003 | US |