The present invention relates to the production by fermentation of beverages using nutritive liquid media containing sugars and, specifically to the field of the production of an alcoholic beverage such as wine, fermented fruit juice or beer.
French patent 2887257 has already proposed a method for the preparation of a fermented beverage from fruit juice; in this patent it is essentially sought to produce a beverage with a low percentage of alcohol using natural fruit juice, for which the initial rate of sugar can potentially result in a beverage with a higher alcohol content. This method uses only biologic culturing methods and yeast fermentation: it is based on fermentation mechanisms identical to those that are commonly used for the production of wines and that make it possible to obtain a beverage with organoleptic qualities that are attractive to consumers. This method consists, on one hand of supplying an anaerobic culture reactor containing yeast in multiplication phase with a first fraction of fruit juice, and on the other hand, of supplying and anaerobic fermentation reactor with the medium loaded with yeast obtained at the step cited above and with a second fraction of fruit juice, in order to obtain a must, and finally, of filtering the must in order to separate the yeast and the fermented beverage thus obtained. This patent also discloses a device for the implementation of the above cited method; this device comprises a first reactor for the aerobic culturing of yeast, a second reactor for anaerobic fermentation by means of said yeast, these reactors being equipped with means for the introduction of a determined fraction of fruit juice, with a filtration unit for the product of fermentation and with means for the transfer between the reactors and the filtration unit in order to obtain, by batch, the desired product.
The problem with this state of the art is that it requires the implementation of costly equipment and does not make continuous production of the final product possible. The scope of the method according to this state of the art includes, clearly, the production of wines. In the case of wine, grape juice is traditionally subjected to alcoholic fermentation and to a malo-lactic fermentation: these fermentations are performed on the must in unstirred tanks, which requires a relatively long time, which is not conducive to obtaining high production.
We therefore propose to improve yield by using immobilized microorganisms, and no longer free organisms in the liquid medium in which the fermentations are conducted, but this operational mode is not yet perfected (Z. Genisheva, J. A. Teixeira and J. M. Oliveira, “Trends in Food Science and Technology,” 40, (2014), pp. 33-47). It is in particular known that the mode of immobilization of the microorganisms can act on the speed of the fermentation reaction, on the ease of separation of the microorganisms in relation to the circulating liquid medium and on the ability to recover microorganisms after the end of the fermentation (P. Strehaiano, F. Centeno—IFV Midi-Pyrenees “Rencontres techniques microorganismes et gestion thermique,” (Dec. 18, 2008), pp. 26-27). Among the difficulties that arise, certain of them are related to the activity of the microorganisms implemented for the fermentations, others originate with the means for maintaining the microorganisms in place, which are immobilized on the media, and finally others originate with the internal structure of the reactors where the immobilized microorganisms are placed.
In this state of the art (European Patent Application 0046613), it is stated that the immobilization of microorganisms by adhesion to a solid medium, in relation to other processes, presents the advantage of maintaining a direct contact between the microbial population and the liquid medium and, as a result, of reducing limitations, by so-called “fusional” phenomena, of the transfer of nutritive substances or of substances produced by the microorganisms; it has been stated that a high proportion of adhering microorganisms conserve the ability to conduct enzymatic reactions and to reproduce. Using this same document, the person skilled in the art knows that the media for usable adhering microorganisms can be very diverse mineral or organic materials.
The goal of this invention is to reduce the time for obtaining a fermented product using a fruit juice and, specifically, wine, using a must, by the use of microorganisms fixed on a solid medium, the overall apparatus implemented remaining at a reduced cost despite the significant increase in productivity due to the rapid execution of the necessary fermentations. In the case of processing of a grape must in order to obtain a must, the method can be used for alcoholic fermentation and malo-lactic fermentation. The method according to the invention results in continuous production, which is especially advantageous in the operational area.
The present invention has, as a result, as its first subject, a method for fermentation of a supply flow of nutritive liquid medium using yeast or bacteria, with this method comprising two steps, in the first of which an aerobic multiplication of said microorganisms is ensured using the supply flow with which they are put into contact, and in the second of which, the microorganisms thus multiplied during the first step are used to ensure the fermentation of said nutritive medium and to provide, at output, a flow of fermented nutritive medium, a method for which the continuous implementation consists of ensuring, in the first step, the fixing by adhesion of at least a part of the microorganisms, on at least a fraction of a solid medium, in order to constitute, with the solid medium(s) thus loaded, at least one filtering barrier interposed between the supply of the nutritive medium and the output of the fermented nutritive medium, characterized in that, in order to constitute the filtering barrier, the nutritive medium is passed on said solid mediums loaded with microorganisms grouped inside one or more housings, in order to supply, at peripheral output, the fermented nutritive medium.
According to a first embodiment of the method according to the invention, the microorganisms are yeast from alcoholic fermentation.
According to a second embodiment of the method according to the invention, the microorganisms are bacteria from malo-lactic fermentation. In this case, the nutritive liquid medium is an at least partially fermented nutritive medium and the aeration is low.
According to an embodiment of the method according to the invention, in the first step, the fixing of the microorganisms is effected on a plurality of fractions of solid media implemented, during said first step, into the supply flow of the nutritive medium.
In an embodiment of the variant defined above, fractional solid media are made of wood, metal, sintered metal, a porous or non-porous plastic material, porous organic material, porous mineral material, particularly a porous ceramic material, or any other porous material compatible with the liquid to be fermented.
In another embodiment, solid media are chosen constituting wires, steel wires, stainless or not, slides, groups of slides and/or of wires, metallic helicoids in cylindrical or tronconical shape, or metallic grids.
In an embodiment of the method according to the invention, in order to constitute a filtering barrier with the fractional media implemented in the supply flow of the nutritive medium during the first step, said supply flow is passed through a fixed tray which retains the fractional media in order to form a bed enclosing a large part of the microorganisms multiplied during the first step.
In an embodiment of the method according to the invention, in order to constitute a filtering barrier with the fractional media implemented in the supply flow of the nutritive medium during the first step, said supply flow is passed vertically through a stack of horizontal arranged parallel to each other, the fractional media remaining caught in the spaces between the grids.
In an embodiment of the method according to the invention, the filtering barrier is constituted around a nutritive medium supply zone, in a cylindrical shape, for which the output is arranged peripherally, said filtering barrier being constituted by a cylindrical ring of fractional media held externally by a sleeve, which constitutes the housing and which allows the liquid flow of the nutritive medium to pass in order to constitute the output of the fermented nutritive medium.
In an embodiment of the method according to the invention, the housing is a plurality of cartridges, which can be detachable, enclosing the fractional media, in a substantially tubular shape installed on a tray, impermeable to the liquid, overflowing in relation to the horizontal plane of said tray, on the horizontal plane of said tray, on one hand and, of which the lateral wall is of a perforated material or of metallic grids, on the other hand The height of the overflow of the upper part of each cartridge corresponds substantially to the thickness of the bed of fractional solid media on the tray which ensures the execution of a first fermentation. In this case, the flow of the partially fermented nutritive medium coming from the bed spills into each one of the cartridges in order to undergo the second fermentation there.
The invention also has as a subject a device for the implementation of the method defined above, a device which comprises two compartments, wherein one of the compartments is equipped with an output for filling for the extraction of a liquid constituted by a nutritive medium, which has already undergone the desired fermentation, the other compartment being equipped with a supply for the introduction of said nutritive medium, unfermented or weakly fermented, and with a transit output toward first compartment, with a filtering barrier being arranged between the two compartments the liquid of one of the compartments containing, during operation, at least one solid medium on which microorganisms are adhered, which were introduced into said first compartment during the start-up phase, characterized in that the filtering barrier is constituted of said solid media which are grouped inside one or more housings, possibly detachable, in order to provide at output, peripherally, the fermented nutritive medium.
In a variant of the device according to the invention, during the start-up phase, the microorganisms are introduced into the first compartment by recycling a fraction of nutritive medium which has already undergone, at least partially, the desired fermentation.
In a variant of the device according to the invention, the filtering barrier is a bed constituted of a layer of fractional mediums bearing adhering microorganisms, with this bed being supported by a perforated tray, or a fixed grid placed in the passage between the two compartments.
In a variant of the device according to the invention, the two compartments are arranged to the right of each other, the transit of the flow of nutritive medium being conducted by gravity. In such case, the housing can be a plurality of cartridges, enclosing the fractional media, in a substantially tubular shape placed on a tray, impermeable to the liquid, placed in the passage between the two compartments, a cartridge of which the upper part, impermeable to the liquid, overflows in relation to the horizontal plane of said tray, on the other hand, and of which the lateral wall is of a perforated material or of metallic grids, on the other hand The height of the overflow of the upper part of each cartridge substantially corresponds to the thickness of the bed of fractional solid mediums.
In a variant, the device according to the invention comprises two units of the same structure, for which the filling outputs are arranged in a series in order to supply the input of a storage tank of fermented product, one of the units providing fermentation by means of the yeast, and the other by means of the bacteria.
In a variant of the device according to the invention, the bed of fractional media is fluidized by the nutritive medium or by air, especially in the case of yeast.
In a variant of the device according to the invention, the filtering barrier is a cluster in a cylindrical ring of fractional media retained around a cylindrical supply volume of the nutritive medium, by a sleeve, which constitutes the housing, and which allows the passage of the output flow of the fermented nutritive medium.
In a variant of the device according to the invention, the second compartment is a closed volume defined by a fabric or a permeable perforated material and supplied by a conduit which brings to it the microorganisms, the oxygenated gas and the nutritive liquid medium, partially fermented or not, this second compartment enclosing the fractional media onto which the microorganisms adhere, the first compartment being an enclosure inside which is arranged said second compartment, said enclosure being filled by the fermented nutritive medium produced then ejected from the second compartment by the circulation liquid that crosses it, in order to supply an external storage tank.
We can choose as the perforated material a plastic or metallic material for which the entirety in its overall structure is permeable to the nutritive liquid medium. Said material is presented in the form of a film or membrane, flexible or not, and of low thickness.
In a variant of the device according to the invention, the enclosure, which constitutes the first compartment and is of one piece with the second compartment and with its conduit in order to be able to be placed in a storage tank as a monobloc assembly constituting a cartridge.
In a variant of the device according to the invention, the conduit of the second compartment is equipped with piping which, when its opening is inserted into the tank, to which it is attached, makes possible a partial recirculation of the liquid contained in said tank.
In a variant of the device according to the invention, the second compartment is a component containing at least one metallic grid, of which the wires form media for the culturing of the microorganisms.
In a variant of the device according to the invention, the component comprises a plurality of grids, of which the wires are close to each other in order to improve the efficiency of the fermentation said grids being planes and parallel, or cylindrically rolled, wherein the component is equipped with end sleeves, which hold the grids between each other and which ensure the input and output of the nutritive liquid medium.
In a variant of the device according to the invention, the liquid nutritive medium is a grape must and the obtained nutritive liquid medium is a wine.
In a variant of the device according to the invention, the nutritive liquid medium is a fruit juice and the device produces a fermented juice.
In a variant of the device according to the invention, the fermented nutritive medium obtained by the implementation of the device is a beer.
In order to better understand the invention, we will disclose below several examples of embodiment and of implementation represented on the annexed drawing. On this drawing:
Referring to
The status of the fluidized bed 8, which has just been described, is that which exists in the tank 1 as part of its permanent conditions; but, in the start-up phase, a load of wood strips 10 has been placed in compartment 5, by means of opening 9, intended to constitute the bed 8. The wood strips thus introduced have been represented on the drawing, falling by means of gravity. The wood strips thus loaded in the reactor have been, by prior processing, covered with yeast which adhered to them, wherein this yeast is that which will make alcoholic fermentation of the must introduced into the tank possible. In a variant, it being a given that the must contains, in its natural state, alcoholic fermentation yeast, a prior adhesion of the yeast to the wood strips can be carried out, but adding more or less commercial yeast through opening 9, so that the adhesion of the yeast to the wood strips 10 is carried out in the compartment 5.
In order to regulate, in compartment 5, the alcoholic fermentation, a by-pass circulation by means of a tube 11 can be implemented, which connects the compartment 6 and the compartment 5 in order to avoid passage through the fluidized bed 8, the flow of this conduit 11 being regulated by a pump 12.
When the start-up phase has ended and the degree of fermentation desired has been reached in compartment 6, the degree of fermentation in compartment 6 remains constant since the yeast of the fluidized bed 8 multiplies during the process due to the oxygenation due to the introduction of air according to arrow F0 and the supply according to arrow F1 undergoes alcoholic fermentation by increase of the yeast in compartment 5. The ability to modify the quantity of by-pass by means of pump 12 makes it possible to specify, if desired, a production of yeast to be extracted from the filling flow according to F2. The person skilled in the art will know the quantity of air which must be introduced into the multiplication of the microorganisms, without altering, by oxidation, the desired quality of the final product.
It is clear that in its permanent regime, compartment 5 comprises practically no strips 10 which, after start-up, have all sedimented in bed 8. The fact that the yeast is adhered to the fractional media which constitute the wood strips, is favorable to their fermentation efficiency. It is clear that, in the start-up phase of the reactor, which has just been disclosed, a phase which is essentially used to culture the yeast, a molasses solution can be used as the nutritive medium which will later be evacuated from the reactor by conduit 3.
A compartment is arranged around the conduit 102, in the cylinder 100, which is defined by a cylindrical fabric sleeve, inside of which buffers made of metallic strips have been amassed, wherein this filling is sufficiently snug such that the liquid flow channeled by the conduit 102 has a large area of contact with the filling; it is arranged such that the output of the conduit 102 is situated principally toward the bottom of the cylinder 100 and that the flow in the sleeve is ascending, the ends of the sleeve being hermetically sealed; the flow of the nutritive medium 101 is evacuated radially through the metallic buffer which, as a whole, is designated by 108.
When the flow F′ contains yeast, this yeast adheres to the metal constituting the buffer 108 before the flow of liquid exits from the sleeve 107 to go into the cylinder 100, thereby ensuring the output of the nutritive medium 101 thus processed by the upper part of the cylinder 100, with this output not represented on
In this use, the sub-assembly of
Below, different means of embodiment of media in metallic materials capable of being used for the implementation of the method according to the invention will be disclosed, specifically in the means of embodiment previously disclosed for the device according to the invention.
In
In
Number | Date | Country | Kind |
---|---|---|---|
1770846 | Aug 2017 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2018/000198 | 8/2/2018 | WO | 00 |