Embodiments of the present disclosure relate to a microelectronic device, and in particular to multi-layered electronic devices that include via structures created by a double-sided laser process.
Many microelectronic devices or chips are multi-layer devices that can be made up of multiple substrates or dielectric layers and metal layers, along with other layers and components such as, for example, insulating layers, redistribution layers (RDLs), bond pads, etc. In order to electrically couple the various layers and components, in particular, the metal layers, any RDLs, bond pads, etc., via structures (generally referred to as vias) are created within such a multi-layer device and generally extend vertically through the various layers. Vias are generally created with some kind of drilling process and then filled with a conductive material such as, for example, metal. Examples of drilling processes that may be used include, but are not limited to, mechanical drilling processes, laser processes, etc. One particular example of a drilling process that may be used is referred to as a double-side laser process that can be done with a single laser for a 2-step drilling process. One side of a substrate is drilled first with the laser. The substrate is then flipped over and the other side of the substrate is drilled with the laser. However, such a double-side laser process is generally only feasible with single substrates that include only two metal layers. Thus, a more complicated and expensive build-up of layers is needed for many multi-layer microelectronic devices, where each substrate is drilled with one of either a mechanical drilling process or a laser drilling process and then the layers are coupled together such that each layer's drilled vias are properly aligned with other vias in other layers.
In various embodiments, the present disclosure provides a method of making a multilayer substrate, where the method comprises providing a first dielectric layer, patterning a first side of the first dielectric layer to provide a first metal layer, and patterning a second side of the first dielectric layer to provide a second metal layer. The method further comprises providing a second dielectric layer and a third dielectric layer, patterning a first side of the second dielectric layer to provide a third metal layer, and patterning a first side of the third dielectric layer to provide a fourth metal layer. The method also comprises coupling a second side of the second dielectric layer to the first side of the first dielectric layer, coupling a second side of the third dielectric layer to the second side of the first dielectric layer, and creating vias between the metal layers via a double-side laser process. At least some of the vias have different depths relative to one another such that a first via couples the first metal layer and the second metal layer and a second via couples the second metal layer and the fourth metal layer, and a third via couples the first metal layer and the second metal layer and a fourth via couples third metal layer and the fourth metal layer. The first via is contiguous with the second via and the third via is contiguous with the fourth via.
In various embodiments, the present disclosure also provides a multi-layer apparatus comprising a first dielectric layer, wherein a first side of the first dielectric layer comprises a first metal layer, and wherein a second side of the first dielectric layer comprises a second metal layer; a second dielectric layer, wherein a first side of the second dielectric layer comprises a third metal layer, and wherein a second side of the second dielectric layer is coupled to the first side of the first dielectric layer; and a third dielectric layer, wherein a first side of the third dielectric layer comprises a fourth metal layer, and wherein a second side of the third dielectric layer is coupled to the second side of the first dielectric layer. The multi-layer apparatus further comprises a first via coupling the first metal layer and the second metal layer, a second via coupling the second metal layer and the fourth metal layer, a third via coupling the first metal layer and the second metal layer, and a fourth via coupling the third metal layer and the fourth metal layer. The first via is contiguous with the second via and the third via is contiguous with the fourth via. At least some of the vias have different depths relative to one another.
Embodiments of the present disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements. Various embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
In accordance with various embodiments, a multi-layered substrate or printed circuit board (PCB) is drilled such that via structures within the substrate have different depths with respect to one another. For example, a via extending from a top surface of the substrate may extend from a first metal layer on the top surface of the substrate only to a depth of a second metal layer (or slightly deeper than the second metal layer) within the substrate and electrically couple the first metal layer with the second metal layer, while a second via may extend from a fourth metal layer on a bottom surface of the substrate only to a depth of the second metal layer (or slightly deeper than the second metal layer, i.e., the depth of the first via and the depth of the second via need to deep enough to allow both vias to form a channel that can be filled with metal to electrically connect the desired metal layers) and electrically couple the fourth metal layer with the second metal layer. Thus, the first via would only extend a depth between the first and second metal layers, while the second via would extend a depth between the fourth metal layer and the second metal layer. This can allow for the substrate to be drilled in a single step with a double-side laser process, where the first and second vias are created by a top laser and a bottom laser, respectively.
As can be seen in
In accordance with various embodiments, the vias 106 are created via a double-side laser process. Thus, a first or top laser creates the first via 106a, while a second or bottom laser creates the second via 106b. The substrate 100a is then moved (or alternatively, an apparatus that includes the top and bottom lasers is moved relative to the substrate 100a) and the top laser creates the third via 106c, while the bottom laser creates the fourth via 106d. Finally, the substrate 100a is moved again (or alternatively, an apparatus that includes the top and bottom lasers is moved again relative to the substrate 100a) and the top laser creates the fifth via 106e, while the bottom laser creates the sixth via 106f. Alternatively, the top laser can create the vias 106a, 106c and 106e, and then the bottom laser can create the vias 106b, 106d and 106f. Accordingly, as can be seen in
In accordance with various embodiments, one or more of the dielectric layers 102 are patterned with the metal layers 104 using a known process that includes depositing and etching a masking layer (not illustrated) on a dielectric layer 102 to outline a desired pattern for a metal layer 104 on the dielectric layer 102 and then depositing the metal layer 104 on the dielectric layer 102. A dielectric layer 102 may include one metal layer 104 located on a single surface of the dielectric layer 102. A dielectric layer 102 may also include two metal layers 104, with one metal layer 104 being located on a first surface of the dielectric layer 102 and the other metal layer 104 being located on a second surface of the dielectric layer 102 opposite to the first surface. Alternatively, one or more of the dielectric layers 102 may be pre-patterned with a desired metal layer 104 or metal layers 104 include thereon. Thus, such pre-patterned dielectric layers 102 may be obtained from a separate vendor or may be created by the entity making the substrate or PCB 100a. In accordance with an embodiment, the dielectric layers 102 are coupled to one another using a lamination process that includes providing an epoxy or other adhesive on the dielectric layers 102 and pressing the dielectric layers 102 together with at least some pressure. The lamination process may also include applying some heat while pressing the dielectric layers 102 together.
While
As previously noted, in accordance with an embodiment, a double-side laser process may be used to create the vias 106. The pulsing of the lasers during the drilling of the vias with the double-side laser process results in the vias 106 having a tapered shape, as can be seen in the figures. Additionally, while the example embodiments of
Although certain embodiments have been illustrated and described herein, a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments illustrated and described without departing from the scope of the present invention. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments in accordance with the present invention be limited only by the claims and the equivalents thereof.
This disclosure is a divisional of and claims priority to U.S. patent application Ser. No. 14/642,098, filed Mar. 9, 2015, which claims priority to U.S. Provisional Patent Application No. 61/950,738, filed Mar. 10, 2014, which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61950738 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14642098 | Mar 2015 | US |
Child | 15236794 | US |