Method for forming conformal carbon films, structures conformal carbon film, and system of forming same

Information

  • Patent Grant
  • 9605343
  • Patent Number
    9,605,343
  • Date Filed
    Wednesday, November 13, 2013
    11 years ago
  • Date Issued
    Tuesday, March 28, 2017
    7 years ago
Abstract
Methods of forming carbon films, structures and devices including the carbon films, and systems for forming the carbon films are disclosed. A method includes depositing a metal carbide film using atomic layer deposition (ALD). Metal from the metal carbide film is removed from the metal carbide film to form a carbon film. Because the films are formed using ALD, the films can be relatively conformal and can have relatively uniform thickness over the surface of a substrate.
Description
FIELD OF INVENTION

The present disclosure generally relates to methods and systems for forming carbon films. More particularly, the disclosure relates to methods suitable for forming conformal carbon films, to structures and devices including the carbon films, and to systems for forming the films.


BACKGROUND OF THE DISCLOSURE

Carbon films can exhibit a variety of desirable properties and therefore can be used for a variety of applications. For example, carbon films can be used for electrical energy storage, methane storage, hydrogen storage, as battery components (e.g., as anode material in a lithium-ion cell), as catalyst material or a catalyst support, for coatings, for microelectronic applications (e.g., logic devices, capacitors, or as hard masks), and for carbon nanotube and nanocrystal applications.


The carbon films are typically formed using chemical vapor deposition (CVD) or physical vapor deposition (PVD) techniques. Although such techniques can work relatively well for some applications, it can be relatively difficult to control the structure, morphology, and thickness of the deposited layers. Moreover, typical techniques for depositing carbon are not suitable for forming conformal films over high aspect ratio features.


Recently, techniques have been developed to form carbon films by depositing a metal carbide layer using CVD or PVD techniques and then exposing the metal carbide layer to chlorine or another reactant to remove the metal from the metal carbide film. Such techniques produce carbon films that generally follow the original shape or form of the initial metal carbide film. The CVD and PVD methods used to form the metal carbide films generally suffer from the same deficiencies of typical methods used to deposit carbon films, namely, the thickness of the deposited films is relatively difficult to control, and such techniques do not lend themselves to formation of conformal films, especially when formed overlying high-aspect ratio features. Accordingly, improved methods and systems to form conformal carbon layers and structures and devices including the layers are desired.


SUMMARY OF THE DISCLOSURE

Various embodiments of the present disclosure relate to methods of forming carbon films, structures and devices including the carbon films, and systems for forming the carbon films. While the ways in which various embodiments of the present disclosure address drawbacks of prior techniques for forming carbon films are discussed in more detail below, in general, the present disclosure provides methods of forming conformal carbon films—e.g., over large aspect ratio features on a substrate—with tight control of film thickness over a surface of the substrate.


In accordance with exemplary embodiments of the disclosure, a method of forming a carbon film includes the steps of providing a substrate, depositing, using atomic layer deposition (ALD), a layer of metal carbide onto the substrate, and removing metal from the layer of metal carbide to form a layer of carbon on the substrate. Because the exemplary methods use ALD deposition techniques to deposit the metal carbide, monolayer thickness control of the deposited metal carbide and thus the resulting carbon film can be achieved, even when the carbon films are formed over high aspect ratio features. In accordance with various aspects of these embodiments, the deposited films are at least 80, 90, or 95 percent conformal when deposited over features having an aspect ratio greater than or equal to 10, 15, or 20, and may be conformal to within one monolayer over features having these aspect ratios. In accordance with further aspects of these embodiments, the step of removing metal from the layer of metal carbide includes exposing the metal carbide to a halogen gas that does not etch carbon, such as a gas selected from the group consisting of chlorine, bromine, and iodine. The halogen gas may be exposed to a direct or an indirect plasma or to thermal excitation to form, for example, excited species of chlorine, bromine, and/or iodine. In accordance with yet further aspects of these embodiments, the step of removing metal from the layer of metal carbide can be performed after every deposition cycle of the step of depositing, after a predetermined number of deposition cycles, after a predetermine time, or after a predetermined thickness of the metal carbide layer is deposited. The step of removing metal can be performed in-situ in the same reactor chamber used to deposit the layer of metal carbide—e.g., such that the substrate is not exposed to a vacuum break between the step of depositing and the step of removing. In accordance with yet further exemplary aspects of these embodiments, a duration of the step of removing metal from the layer of metal carbide is determine by monitoring etch products within the reactor chamber and/or by determining an endpoint for the process step. Various examples of these exemplary methods can be used to form thin films of carbon (e.g., 10 monolayers or less, 5 monolayers or less, 2 monolayers, or one monolayer). In accordance with further aspects of these embodiments, the step of depositing includes forming a metal carbide layer at a temperature of about 350° C. or less. In accordance with some exemplary aspects of these embodiments, the substrate is a sacrificial substrate, which is removed after the metal carbide deposition step. In these cases, the method can be used to form, for example, thin-walled carbon nanotubes or similar structures. Exemplary methods can also include an annealing step (e.g., in the presence of nitrogen, hydrogen, and/or ammonia) to alter or transform the structure of the carbon film.


In accordance with additional exemplary embodiments of the disclosure, a structure includes a substrate and a carbon film formed, for example, using atomic layer deposition to deposit a layer of metal carbide onto the substrate and then removing metal from the metal carbide layer. In accordance with exemplary aspects of these embodiments, a thickness of the carbon layer is less than or equal to 10 monolayers, less than or equal to 5 monolayers, less than 2 monolayers, or about one monolayer. The substrate can include features having aspect ratio greater than or equal to 5, greater than or equal to 10, greater than or equal to 15, or greater than or equal to 20. In accordance with various exemplary aspects, the carbon layer is deposed overlying features on the substrate and the carbon layer is at least 80% or at least 90% or at least 95% conformal over the substrate, including the features. In accordance with further aspects, the carbon layer can be substantially amorphous, include carbon nanocrystals, or include ordered graphite structures.


Exemplary structures can be formed using a sacrificial substrate, which is removed or substantially removed during processing. In these cases, the substrate and the carbon film can initially have any of the attributes described above. Structures formed using a sacrificial substrate can include carbon nanotubes or the like.


In accordance with yet further exemplary embodiments of the disclosure, a device includes a structure as described herein. Exemplary devices can include carbon films, e.g., carbon films that are formed as described herein, that can be used to store energy, as low dielectric constant films in semiconductor devices, as carbon hard masks, as wear-resistant layers, or the like.


In accordance with yet additional embodiments of the disclosure, a system includes an atomic layer deposition reactor.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

A more complete understanding of the embodiments of the present disclosure may be derived by referring to the detailed description and claims when considered in connection with the following illustrative figures.



FIG. 1 illustrates a method of forming a carbon film in accordance with exemplary embodiments of the disclosure.



FIG. 2 illustrates a system for forming a carbon film in accordance with exemplary embodiments of the disclosure.



FIG. 3 illustrates a structure including a carbon film in accordance with exemplary embodiments of the disclosure.



FIGS. 4-6 illustrate steps of forming a carbon layer over a sacrificial substrate in accordance with exemplary embodiments of the disclosure.



FIG. 7 illustrates a carbon nanotube in accordance with further exemplary embodiments of the disclosure.



FIGS. 8-11 illustrate a method of forming a conformal carbon layer overlying a feature on a substrate in accordance with yet additional exemplary embodiments of the disclosure.





It will be appreciated that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve the understanding of illustrated embodiments of the present disclosure.


DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS OF THE DISCLOSURE

The description of exemplary embodiments of methods, structures, devices, and systems provided below is merely exemplary and is intended for purposes of illustration only; the following description is not intended to limit the scope of the disclosure or the claims. Moreover, recitation of multiple embodiments having stated features is not intended to exclude other embodiments having additional features or other embodiments incorporating different combinations of the stated features.


The present disclosure generally relates to methods of forming carbon films, to structures and devices including the carbon films, and to systems for forming the carbon films. As set forth in more detail below, carbon films formed in accordance with embodiments of the present disclosure can be used for a variety of applications, including dielectric or capacitor plate layers in microelectronic devices, in energy storage devices, in carbon nanotube applications, as wear-resistant films, as hard masks, and the like.



FIG. 1 illustrates a method 100 of forming a carbon film in accordance with exemplary embodiments of the disclosure. Method 100 includes the step of providing a substrate (step 102), depositing a layer of metal carbide onto the substrate (step 104), removing metal from the metal carbide (step 106), and optionally annealing the carbon film (step 108). Method 100 is particularly well suited for forming conformal carbon films overlying a substrate.


During step 102, one or more substrates are provided within a reaction chamber of a reactor, such as a reaction chamber 204, described in more detail below. As used herein, a “substrate” refers to any material having a surface onto which a carbon film can be deposited. A substrate may include a bulk material such as silicon (e.g., single crystal silicon), a sacrificial substrate, such as a ceramic or a polymer, and may include one or more layers overlying the bulk material. Further, the substrate may include various features, such as trenches, vias, lines, and the like formed within or on at least a portion of the substrate. The features can have an aspect ratio, defined as a feature's height divided by the feature's width, of, for example greater than or equal to 5, greater than or equal to 10, greater than or equal to 15, or greater than or equal to 20. Pre-deposition reactor conditions, such as substrate temperature, reaction chamber pressure, and the like can be set at step 102.


At step 104, a metal carbide layer is deposited onto the substrate using atomic layer deposition. Although use of atomic layer deposition may be a relatively slow process for forming metal carbide layers, using atomic layer deposition to deposit the metal carbide has several advantages over prior art techniques to form carbon films. For example, atomic layer deposition allows for relatively conformal deposition of the metal carbide layer over features having the aspect ratios noted above, and reaction temperatures (e.g., substrate temperatures) can be relatively low—e.g., less than 500° C. or less than 350° C. Exemplary carbide layers are greater than or equal to 80 percent conformal over the features, greater than or equal to 85 percent, greater than or equal to 90 percent, greater than or equal to 95 percent or greater than or equal to 99 percent conformal over features having an aspect ratio equal to or greater than 10, 15, and 20.


A thickness of the metal carbide layer deposited during step 104 can vary according to application. By way of examples, less than or equal to 10, less than or equal to 5, less than or equal to 2, or one monolayer can be deposited during step 104. However, the disclosure is not restricted to such number of layers or layer thicknesses, unless otherwise noted.


A variety of metal carbides can be deposited during step 104. By way of examples, the metal carbide film can include one or more of TiAlC, NbC, VC, HfC, ZrC, TaC, MoC, WC, BaC, SrC, SiC, AlC, FeC and ternary mixtures or any combination thereof.


The process conditions during step 104 can vary depending on the metal carbide layer deposited onto the substrate. By way of examples, a temperature during step 104 can range from about 100° C. to about 500° C., or as noted above, be less than 500° C. or less than 350° C., and a pressure can range from about 50 mTorr to about 600 Torr.


After a metal carbide layer is deposited onto a substrate during step 104, metal from the metal carbide layer is removed during step 106. Step 106 can be performed in the same reaction chamber as step 104, e.g., without a vacuum break between steps, or step 106 can be performed in a separate reaction chamber that can be, for example, part of the same cluster tool as the reaction chamber used for step 104. When steps 104 and 106 are performed in the same reaction chamber, steps 104 and 106 can operate at the same or substantially same operating pressure and operating temperature.


A halogen gas that does not etch carbon or significantly etch carbon, such as a gas selected from the group consisting of chlorine, bromine, and iodine, can be used to etch or remove the metal from the metal carbide. The gas, e.g., chlorine, bromine, and/or iodine, can be thermally and/or plasma (direct or remote) activated to increase the activity of the etch reactant gas. In these cases, the etch reactant can include a combination of molecules, radicals and/or ions including, for example, chlorine, bromine, and/or iodine. By way of example, chlorine gas at a flow rate of about 500 sccm, at a pressure of about 1 Torr and a temperature of about 350° C., for a period of about 10 seconds can be used to remove metal from a metal carbide layer having a thickness of about 50 Å.


Step 106 can be performed after a number of ALD cycles performed during step 104 (e.g., 1, 2, 5, 10, 15, 20, or more cycles), after a predetermined thickness of metal carbide is deposited during step 104, or after a predetermined amount of time for step 104. Additionally, method 100 can include repeating steps 104, 106 a desired number of times before proceeding to optional step 108 or to completion.


At optional step 108, the metal-depleted carbon film is exposed to an anneal process to, e.g., alter a structure of the carbon film. By way of examples, step 108 can be performed at a temperature of about 150 degrees C. to about 1200 degrees C. or about 200 degrees C. to about 400 degrees C. in, for example, a nitrogen, hydrogen, and/or ammonia environment or any other suitable reducing environment including hydrazine or hydrazine derivatives. The carbon films can be transformed, for example, from an amorphous structure to a nanocrystalline graphite structure or an ordered graphite structure.


Turning now to FIG. 2, a system 200 for forming a carbon film is illustrated. System 200 includes a reactor 202, including reaction chamber 204, a substrate holder 206, and a gas distribution system 208; a first ALD reactant source 210; a second ALD reactant source 212; a carrier or purge gas source 214; lines 216, 218, 220 connecting sources 210-214 to reactor 202; valves 222, 224 and 226 interposed between the sources 210-214 and reactor 202; etch reactant source 230, coupled to reactor 202 and gas distribution system 208, via a line 232 and a valve 234; and a vacuum source 228.


Reactor 202 may be a standalone reactor or part of a cluster tool. Further, reactor 202 may be dedicated to metal carbide material deposition and optionally a metal removal processes as described herein, or reactor 202 may be used for other processes—e.g., for other layer deposition and/or etch processing. Reactor 202 is a reactor suitable for ALD deposition. An exemplary ALD reactor suitable for system 200 is described in U.S. Pat. No. 8,152,922 to Schmidt et al., issued Apr. 10, 2012, entitled “Gas Mixer and Manifold Assembly for ALD Reactor,” the contents of which are hereby incorporated herein by reference, to the extent such contents do not conflict with the present disclosure.


Substrate holder 206 is designed to hold a substrate or workpiece 230 in place during processing. In accordance with various exemplary embodiments, holder 206 may form part of a direct plasma circuit. Additionally or alternatively, holder 206 may be heated, cooled, or be at ambient process temperature during processing.


Although gas distribution system 208 is illustrated in block form, gas distribution system 208 may be relatively complex and designed to mix vapor (gas) from sources 210, 212 and/or 214 and carrier/purge gas from one or more sources, such as gas source 214, prior to distributing the gas mixture to the remainder of reactor 202. Further, system 208 can be configured to provide vertical (as illustrated) or horizontal flow of gasses to reaction chamber 204. An exemplary gas distribution system is described in U.S. Pat. No. 8,152,922.


First reactant source 210 can include any source used to deposit, using ALD, a metal carbide. By way of examples, source 210 can include trimethylaluminum (TMA), triethylaluminum (TEA), or any other suitable metal carbide, transition metal carbide, or other suitable source.


Similarly, second reactant source 212 can include a second reactant used to deposit metal carbide material using ALD. By way of examples, source 212 can include titanium chloride (e.g., TiCl4) or any other suitable source.


Carrier or inert source 214 includes one or more gases, or materials that become gaseous, that are relatively unreactive in reactor 202. Exemplary carrier and inert gasses include nitrogen, argon, helium, and any combinations thereof.


Etch reactant source 230 includes one or more gases, or materials that become gaseous. Source 230 can include any halide that does not etch carbon, such as one or more gasses including for example, chlorine, bromine, iodine or molecules comprising chlorine, bromine and/or iodine. Gas from source 230 may be exposed to a thermal and/or remote plasma and/or direct plasma source to form activated species, such as ions and/or radicals including one or more of chlorine, bromine, and iodine.



FIG. 3 illustrates a structure 300, which can be formed, for example, using method 100 and/or system 200. Structure 300 includes a substrate 302 and a carbon layer 304 formed by using ALD to conformally deposit a metal carbide layer and removing metal from the metal carbide layer. Before an anneal process, layer 304 can include amorphous carbon material. After an anneal process, the layer can transform and include nanocrystalline graphite, ordered graphite, diamond-like structures, fullerenes, or the like. In addition, the optical and/or electrical properties of layer 304 can be transformed during an anneal process to obtain desired properties for layer 304. For example, when layer 304 contains graphite, the layer can be conductive and used to form capacitor plates in microelectronic devices. A monolayer of graphite (graphene) can be used for microelectronic logic and capacitor application.


As noted above, exemplary techniques described herein can be used to form a carbon layer overlying a sacrificial substrate, to form, for example a nanotube 700, illustrated in FIG. 7. A method of forming a carbon layer over a sacrificial substrate is illustrated in FIGS. 4-6. The method begins with providing a sacrificial substrate 400. A layer of conformal metal carbide 500, illustrated in FIG. 5, is then deposited onto sacrificial substrate 400, using for example, the techniques described above with step 104 in connection with FIG. 1.


In this case, the thickness of the metal carbide layer can between about 1 and 10 monolayers or between about 1 and 5 monolayers. Because the metal carbide layer is deposited onto sacrificial substrate 400, a deposition temperature during the step of depositing the metal carbide onto the sacrificial substrate can desirably be relatively low—e.g., less than 500° C., less than 400° C., less than 350° C., or about 100° C. to about 500° C.


A material for sacrificial substrate 400 can vary is accordance with a desired structure for the resulting carbon film. By way of examples, sacrificial substrate material can include polymers or aluminum oxide (e.g., anodic aluminum oxide). Advantageously, utilizing a polymer substrate material can be easily accomplished with sub-250 degree C. process temperatures in accordance with various examples of the present disclosure.


After metal carbide layer 500 is formed overlying sacrificial substrate 400, metal is removed from layer 500 to form a metal-depleted carbon layer 600, illustrated in FIG. 6. The method to remove the metal from layer 500 can be the same or similar to step 106, described above in connection with FIG. 1.


After metal carbide layer 500 is deposited onto sacrificial substrate 400, substrate 400 can be removed—e.g., etched or dissolved. The removing step can occur during the metal removal step or can occur subsequent to the metal removal step, as illustrated in FIGS. 6 and 7 to form nanotube 700. Although illustrated with capped or closed ends 702, 704, nanotube structures in accordance with the present disclosure can have one or more open ends.


Turning now to FIGS. 8-11, a method of forming a structure including a carbon film overlying a high aspect ratio feature is illustrated. The method begins with providing a substrate 802, having a feature 804 having a high aspect ratio, as illustrated in FIG. 8. Substrate 802 can include any of the substrate materials described herein. The aspect ratio of feature 804 can be, for example, greater than or equal to 5, greater than or equal to 10, greater than or equal to 15, or greater than or equal to 20. Although illustrated as a trench or via, substrate 802 can additionally or alternatively include lines or other protrusions having the same or similar aspect ratios.


Structure 900, illustrated in FIG. 9, is formed by depositing a metal carbide film 902 over substrate 802, for example using the method described above in connection with step 104. As noted above, even with aspect ratios of 20 or higher, layer 902, in accordance with exemplary embodiments, is 80 percent, 85, percent, 90 percent, 95 percent, 99 percent or more conformal over the surface of substrate 802, including within feature 804. By way of examples, layer 902 can be conformal to within 2 or to within 1 monolayer of metal carbide material.


Structure 1000 is then formed by removing metal from metal carbide layer 902 to form layer 1002, illustrated in FIG. 10. The metal can be removed using techniques described herein, such as those described in connection with step 106.


Then, structure 1100 is formed by annealing layer 1002 to form restructured carbon layer 1102, illustrated in FIG. 11. Layer 1102 can include graphene, nanocrystalline graphite, or ordered graphite.


Devices, such as microelectronic devices can include a structure as described herein—e.g., structure 300, 700, or 1100. By way of particular examples, a microelectronic device includes structure 1100, wherein layer 1102 can form a capacitor plate or a dielectric layer. Alternatively, an energy storage device includes an exemplary structure as described herein.


Although exemplary embodiments of the present disclosure are set forth herein, it should be appreciated that the disclosure is not so limited. For example, although the system and method are described in connection with various specific chemistries, the disclosure is not necessarily limited to these examples. Further, although methods are illustrated in a particular sequence, the method is not limited to such sequence of steps, unless indicated herein to the contrary. Various modifications, variations, and enhancements of the system and method set forth herein may be made without departing from the spirit and scope of the present disclosure.


The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various processes, systems and configurations, and other features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.

Claims
  • 1. A method of forming a carbon film, the method comprising the steps of: providing a substrate;depositing, using atomic layer deposition (ALD), a first layer of metal carbide onto the substrate;in a reaction chamber having a pressure in the range of about 50 mTorr to about 600 Torr and having a temperature less than 500° C., removing by etching metal from the layer of metal carbide to form a layer of carbon on the substrate,wherein the step of removing metal is performed after one or more ALD cycles to form the layer of carbon and the method further comprises a step of depositing, using ALD, a second layer of metal carbide over the layer of carbon.
  • 2. The method of forming a carbon film of claim 1, wherein the step of providing a substrate comprises providing a substrate comprising features having an aspect ratio greater than or equal to 10.
  • 3. The method of claim 2, wherein the aspect ratio is greater than or equal to 15.
  • 4. The method of claim 1, wherein the step of providing a substrate comprises providing a sacrificial substrate.
  • 5. The method of claim 1, wherein the step of removing metal comprises exposing the metal carbide to one or more halogen gases selected from the group consisting of chlorine, bromine and iodine.
  • 6. The method of claim 1, wherein the step of removing metal comprises exposing the metal carbide to a plasma excited species containing one or more of plasma-excited chlorine, plasma-excited bromine and plasma-excited iodine.
  • 7. The method of claim 1, wherein the temperature is less than 350° C.
  • 8. The method of claim 1, wherein the step of removing metal is performed after 20 or more ALD cycles.
  • 9. The method of claim 1, wherein the step of depositing and the step of removing metal by etching are performed in the same reaction chamber without breaking vacuum between the steps.
  • 10. The method of claim 1, wherein a duration of the step of removing is determined by monitoring an endpoint for the removing metal step.
  • 11. The method of claim 1, wherein a duration of the step of removing is determined by monitoring etch products during the step of removing metal.
  • 12. The method of claim 1, wherein the step of depositing the first layer comprises depositing ten monolayers or less of the metal carbide.
  • 13. The method of claim 1, further comprising a step of exposing the layer of carbon to an anneal process after the step of removing metal from the layer of metal carbide.
  • 14. The method of claim 13, wherein the anneal process is performed in an environment comprising one or more gases selected from the group consisting of nitrogen, hydrogen, ammonia, hydrazine and hydrazine derivatives.
  • 15. The method of claim 13, wherein a structure of the layer of carbon is transformed during the anneal process.
  • 16. The method of claim 2, wherein the aspect ratio is greater than or equal to 20.
  • 17. The method of claim 1, wherein the step of removing is performed after each ALD cycle.
  • 18. The method of claim 13, wherein a temperature during the anneal process ranges from about 150° C. to about 1200° C.
  • 19. The method of claim 13, wherein a temperature during the anneal process ranges from about 200° C. to about 400° C.
  • 20. The method of claim 5, wherein the one or more halogen gases are exposed to a direct plasma, an indirect plasma, or a thermal excitation.
US Referenced Citations (664)
Number Name Date Kind
2745640 Cushman May 1956 A
2990045 Root Sep 1959 A
3094396 Flugge et al. Jun 1963 A
3232437 Hultgren Feb 1966 A
3833492 Bollyky Sep 1974 A
3854443 Baerg Dec 1974 A
3862397 Anderson et al. Jan 1975 A
3887790 Ferguson Jun 1975 A
4054071 Patejak Oct 1977 A
4058430 Suntola et al. Nov 1977 A
4145699 Hu et al. Mar 1979 A
4164959 Wurzburger Aug 1979 A
4176630 Elmer Dec 1979 A
4181330 Kojima Jan 1980 A
4194536 Stine et al. Mar 1980 A
4322592 Martin Mar 1982 A
4389973 Suntola et al. Jun 1983 A
4393013 McMenamin Jul 1983 A
4436674 McMenamin Mar 1984 A
4479831 Sandow Oct 1984 A
4499354 Hill et al. Feb 1985 A
4512113 Budinger Apr 1985 A
4570328 Price et al. Feb 1986 A
D288556 Wallgren Mar 1987 S
4653541 Oehlschlaeger et al. Mar 1987 A
4722298 Rubin et al. Feb 1988 A
4735259 Vincent Apr 1988 A
4753192 Goldsmith et al. Jun 1988 A
4756794 Yoder Jul 1988 A
4789294 Sato et al. Dec 1988 A
4821674 deBoer et al. Apr 1989 A
4827430 Aid et al. May 1989 A
4882199 Sadoway et al. Nov 1989 A
4976996 Monkowski et al. Dec 1990 A
4978567 Miller Dec 1990 A
4984904 Nakano et al. Jan 1991 A
4986215 Yamada Jan 1991 A
4991614 Hammel Feb 1991 A
5013691 Lory et al. May 1991 A
5027746 Frijlink Jul 1991 A
5062386 Christensen Nov 1991 A
5065698 Koike Nov 1991 A
5074017 Toya et al. Dec 1991 A
5098638 Sawada Mar 1992 A
5104514 Quartarone Apr 1992 A
5119760 McMillan et al. Jun 1992 A
5130003 Conrad Jul 1992 A
5167716 Boitnott et al. Dec 1992 A
5199603 Prescott Apr 1993 A
5221556 Hawkins et al. Jun 1993 A
5242539 Kumihashi et al. Sep 1993 A
5243195 Nishi Sep 1993 A
5246500 Samata et al. Sep 1993 A
5271967 Kramer et al. Dec 1993 A
5278494 Obigane Jan 1994 A
5310456 Kadomura May 1994 A
5310698 Wild May 1994 A
5315092 Takahashi et al. May 1994 A
5326427 Jerbic Jul 1994 A
5326722 Huang Jul 1994 A
5336327 Lee Aug 1994 A
5360269 Ogawa et al. Nov 1994 A
5380367 Bertone Jan 1995 A
5413813 Cruse et al. May 1995 A
5414221 Gardner May 1995 A
5421893 Perlov Jun 1995 A
5422139 Shinriki et al. Jun 1995 A
5518549 Hellwig May 1996 A
5577331 Suzuki Nov 1996 A
5595606 Fujikawa et al. Jan 1997 A
5616947 Tamura Apr 1997 A
5621982 Yamashita Apr 1997 A
5632919 MacCracken et al. May 1997 A
5681779 Pasch et al. Oct 1997 A
5695567 Kordina Dec 1997 A
5724748 Brooks Mar 1998 A
5730801 Tepman et al. Mar 1998 A
5732744 Barr et al. Mar 1998 A
5736314 Hayes et al. Apr 1998 A
5782979 Kaneno Jul 1998 A
5786027 Rolfson Jul 1998 A
5796074 Edelstein et al. Aug 1998 A
5836483 Disel Nov 1998 A
5837320 Hampden-Smith et al. Nov 1998 A
5852879 Schumaier Dec 1998 A
5855680 Soininen et al. Jan 1999 A
5888876 Shiozawa et al. Mar 1999 A
5920798 Higuchi et al. Jul 1999 A
5979506 Aarseth Nov 1999 A
6013553 Wallace Jan 2000 A
6015465 Kholodenko et al. Jan 2000 A
6017818 Lu Jan 2000 A
6035101 Sajoto et al. Mar 2000 A
6060691 Minami et al. May 2000 A
6067680 Pan et al. May 2000 A
6074443 Venkatesh Jun 2000 A
6083321 Lei et al. Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6122036 Yamasaki et al. Sep 2000 A
6125789 Gupta et al. Oct 2000 A
6129044 Zhao et al. Oct 2000 A
6134807 Komino Oct 2000 A
6148761 Majewski et al. Nov 2000 A
6160244 Ohashi Dec 2000 A
6161500 Kopacz et al. Dec 2000 A
6190634 Lieber Feb 2001 B1
6201999 Jevtic Mar 2001 B1
6204206 Hurley Mar 2001 B1
6212789 Kato Apr 2001 B1
6274878 Li et al. Aug 2001 B1
6287965 Kang et al. Sep 2001 B1
6302964 Umotoy et al. Oct 2001 B1
6312525 Bright et al. Nov 2001 B1
D451893 Robson Dec 2001 S
D452220 Robson Dec 2001 S
6325858 Wengert Dec 2001 B1
6326597 Lubomirsky et al. Dec 2001 B1
6342427 Choi et al. Jan 2002 B1
6367410 Leahey et al. Apr 2002 B1
6368987 Kopacz et al. Apr 2002 B1
6383566 Zagdoun May 2002 B1
6410459 Blalock et al. Jun 2002 B2
6420279 Ono et al. Jul 2002 B1
6445574 Saw et al. Sep 2002 B1
6448192 Kaushik Sep 2002 B1
6454860 Metzner et al. Sep 2002 B2
6475276 Elers Nov 2002 B1
6478872 Chae et al. Nov 2002 B1
6482331 Lu et al. Nov 2002 B2
6483989 Okada et al. Nov 2002 B1
6511539 Raaijmakers Jan 2003 B1
6521295 Remington Feb 2003 B1
6534395 Werkhoven et al. Mar 2003 B2
6552209 Lei et al. Apr 2003 B1
6569239 Arai et al. May 2003 B2
6578589 Mayusumi Jun 2003 B1
6579833 McNallan et al. Jun 2003 B1
6590251 Kang et al. Jul 2003 B2
6594550 Okrah Jul 2003 B1
6598559 Vellore et al. Jul 2003 B1
6627503 Ma et al. Sep 2003 B2
6633364 Hayashi Oct 2003 B2
6645304 Yamaguchi Nov 2003 B2
6648974 Ogliari et al. Nov 2003 B1
6656281 Ueda Dec 2003 B1
6673196 Oyabu Jan 2004 B1
6682973 Paton et al. Jan 2004 B1
6709989 Ramdani et al. Mar 2004 B2
6710364 Guldi et al. Mar 2004 B2
6713824 Mikata Mar 2004 B1
6734090 Agarwala et al. May 2004 B2
6760981 Leap Jul 2004 B2
6809005 Ranade et al. Oct 2004 B2
6820570 Kilpela et al. Nov 2004 B2
6821910 Adomaitis et al. Nov 2004 B2
6824665 Shelnut et al. Nov 2004 B2
6835039 Van Den Berg Dec 2004 B2
6847014 Benjamin et al. Jan 2005 B1
6858524 Haukka et al. Feb 2005 B2
6858547 Metzner Feb 2005 B2
6861334 Raaijmakers et al. Mar 2005 B2
6863019 Shamouilian Mar 2005 B2
6874247 Hsu Apr 2005 B1
6874480 Ismailov Apr 2005 B1
6875677 Conley, Jr. et al. Apr 2005 B1
6884066 Nguyen et al. Apr 2005 B2
6884319 Kim Apr 2005 B2
6889864 Lindfors et al. May 2005 B2
6909839 Wang et al. Jun 2005 B2
6930059 Conley, Jr. et al. Aug 2005 B2
6935269 Lee et al. Aug 2005 B2
6955836 Kumagai et al. Oct 2005 B2
6972478 Waite et al. Dec 2005 B1
7005391 Min Feb 2006 B2
7045430 Ahn et al. May 2006 B2
7053009 Conley, Jr. et al. May 2006 B2
7071051 Jeon et al. Jul 2006 B1
7087536 Nemani et al. Aug 2006 B2
7115838 Kurara et al. Oct 2006 B2
7122085 Shero et al. Oct 2006 B2
7129165 Basol et al. Oct 2006 B2
7132360 Schaeffer et al. Nov 2006 B2
7135421 Ahn et al. Nov 2006 B2
7147766 Uzoh et al. Dec 2006 B2
7157327 Haupt Jan 2007 B2
7172497 Basol et al. Feb 2007 B2
7186648 Rozbicki Mar 2007 B1
7192824 Ahn et al. Mar 2007 B2
7192892 Ahn et al. Mar 2007 B2
7195693 Cowans Mar 2007 B2
7204887 Kawamura et al. Apr 2007 B2
7205247 Lee et al. Apr 2007 B2
7235501 Ahn et al. Jun 2007 B2
7238596 Kouvetakis et al. Jul 2007 B2
D553104 Oohashi et al. Oct 2007 S
7288463 Papasouliotis Oct 2007 B1
7298009 Yan et al. Nov 2007 B2
D557226 Uchino et al. Dec 2007 S
7312494 Ahn et al. Dec 2007 B2
7329947 Adachi et al. Feb 2008 B2
7357138 Ji et al. Apr 2008 B2
7393418 Yokogawa Jul 2008 B2
7393736 Ahn et al. Jul 2008 B2
7402534 Mahajani Jul 2008 B2
7405166 Liang et al. Jul 2008 B2
7405454 Ahn et al. Jul 2008 B2
7414281 Fastow Aug 2008 B1
7431966 Derderian et al. Oct 2008 B2
7437060 Wang et al. Oct 2008 B2
7442275 Cowans Oct 2008 B2
7489389 Shibazaki Feb 2009 B2
7494882 Vitale Feb 2009 B2
D593969 Li Jun 2009 S
7547363 Tomiyasu et al. Jun 2009 B2
7575968 Sadaka et al. Aug 2009 B2
7589003 Kouvetakis et al. Sep 2009 B2
7601223 Lindfors et al. Oct 2009 B2
7601225 Tuominen et al. Oct 2009 B2
7611751 Elers Nov 2009 B2
7640142 Tachikawa et al. Dec 2009 B2
7651583 Kent et al. Jan 2010 B2
D609655 Sugimoto Feb 2010 S
7678197 Maki Mar 2010 B2
7678715 Mungekar et al. Mar 2010 B2
7682454 Sneh Mar 2010 B2
D614153 Fondurulia et al. Apr 2010 S
7720560 Menser et al. May 2010 B2
7723648 Tsukamoto et al. May 2010 B2
7740705 Li Jun 2010 B2
7754621 Putjkonen Jul 2010 B2
7780440 Shibagaki et al. Aug 2010 B2
7833353 Furukawahara et al. Nov 2010 B2
7838084 Derderian et al. Nov 2010 B2
7851019 Tuominen et al. Dec 2010 B2
7884918 Hattori Feb 2011 B2
D634719 Yasuda et al. Mar 2011 S
7939447 Bauer et al. May 2011 B2
7955516 Chandrachood Jun 2011 B2
7992318 Kawaji Aug 2011 B2
7998875 DeYoung Aug 2011 B2
8020315 Nishimura Sep 2011 B2
8030129 Jeong Oct 2011 B2
8041197 Kasai et al. Oct 2011 B2
8043972 Numakura Oct 2011 B1
8055378 Numakura Nov 2011 B2
8071451 Uzoh Dec 2011 B2
8071452 Raisanen Dec 2011 B2
8072578 Yasuda Dec 2011 B2
8076230 Wei Dec 2011 B2
8076237 Uzoh Dec 2011 B2
8076251 Akae et al. Dec 2011 B2
8082946 Laverdiere et al. Dec 2011 B2
8092604 Tomiyasu et al. Jan 2012 B2
8119466 Avouris Feb 2012 B2
8137462 Fondurulia et al. Mar 2012 B2
8147242 Shibagaki et al. Apr 2012 B2
8216380 White et al. Jul 2012 B2
8267633 Obikane Sep 2012 B2
8272516 Salvador Sep 2012 B2
8278176 Bauer et al. Oct 2012 B2
8282769 Iizuka Oct 2012 B2
8287648 Reed et al. Oct 2012 B2
8293016 Bahng et al. Oct 2012 B2
8309173 Tuominen et al. Nov 2012 B2
8323413 Son Dec 2012 B2
8367528 Bauer et al. Feb 2013 B2
8372204 Nakamura Feb 2013 B2
8393091 Kawamoto Mar 2013 B2
8415258 Akae Apr 2013 B2
8444120 Gregg et al. May 2013 B2
8445075 Xu et al. May 2013 B2
8492170 Xie et al. Jul 2013 B2
8506713 Takagi Aug 2013 B2
D691974 Osada et al. Oct 2013 S
8592005 Ueda Nov 2013 B2
8608885 Goto et al. Dec 2013 B2
8617411 Singh Dec 2013 B2
8633115 Chang et al. Jan 2014 B2
8664127 Bhatia et al. Mar 2014 B2
8667654 Gros-Jean Mar 2014 B2
8668957 Dussarrat et al. Mar 2014 B2
8683943 Onodera et al. Apr 2014 B2
8711338 Liu et al. Apr 2014 B2
D705745 Kurs et al. May 2014 S
8722510 Watanabe et al. May 2014 B2
8726837 Patalay et al. May 2014 B2
8728832 Raisanen et al. May 2014 B2
8802201 Raisanen et al. Aug 2014 B2
8841182 Chen et al. Sep 2014 B1
D716742 Jang et al. Nov 2014 S
8877655 Shero et al. Nov 2014 B2
8883270 Shero et al. Nov 2014 B2
8945305 Marsh Feb 2015 B2
8945339 Kakimoto Feb 2015 B2
8956983 Swaminathan Feb 2015 B2
8986456 Fondurulia et al. Mar 2015 B2
8993054 Jung et al. Mar 2015 B2
9005539 Halpin et al. Apr 2015 B2
9017481 Pettinger et al. Apr 2015 B1
9018111 Milligan et al. Apr 2015 B2
9021985 Alokozai et al. May 2015 B2
9023738 Kato et al. May 2015 B2
9029253 Milligan et al. May 2015 B2
9096931 Yednak et al. Aug 2015 B2
9171714 Mori Oct 2015 B2
9190264 Yuasa et al. Nov 2015 B2
9196483 Lee et al. Nov 2015 B1
9202727 Dunn et al. Dec 2015 B2
9257274 Kang et al. Feb 2016 B2
9299595 Dunn et al. Mar 2016 B2
9324811 Weeks Apr 2016 B2
9341296 Yednak May 2016 B2
9384987 Camilo Jul 2016 B2
9394608 Jung et al. Jul 2016 B2
9396934 Shero et al. Jul 2016 B2
9396956 Tolle Jul 2016 B1
9404587 Fukazawa Aug 2016 B2
9412564 Shugrue Aug 2016 B2
9447498 Milligan Sep 2016 B2
20010017103 Takeshita et al. Aug 2001 A1
20010046765 Cappellani et al. Nov 2001 A1
20020001974 Chan Jan 2002 A1
20020001976 Danek Jan 2002 A1
20020011210 Satoh et al. Jan 2002 A1
20020064592 Datta et al. May 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020108670 Baker et al. Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020164420 Derderian et al. Nov 2002 A1
20020172768 Endo et al. Nov 2002 A1
20020187650 Blalock et al. Dec 2002 A1
20030003696 Gelatos et al. Jan 2003 A1
20030015596 Evans Jan 2003 A1
20030019580 Strang Jan 2003 A1
20030025146 Narwankar et al. Feb 2003 A1
20030040158 Saitoh Feb 2003 A1
20030042419 Katsumata et al. Mar 2003 A1
20030066826 Lee et al. Apr 2003 A1
20030075925 Lindfors et al. Apr 2003 A1
20030094133 Yoshidome et al. May 2003 A1
20030111963 Tolmachev et al. Jun 2003 A1
20030121608 Chen Jul 2003 A1
20030141820 White et al. Jul 2003 A1
20030143328 Chen Jul 2003 A1
20030168001 Sneh Sep 2003 A1
20030180458 Sneh Sep 2003 A1
20030192875 Bieker et al. Oct 2003 A1
20030217915 Ouellet Nov 2003 A1
20030228772 Cowans Dec 2003 A1
20030232138 Tuominen et al. Dec 2003 A1
20040009679 Yeo et al. Jan 2004 A1
20040013577 Ganguli et al. Jan 2004 A1
20040016637 Yang Jan 2004 A1
20040018307 Park et al. Jan 2004 A1
20040018750 Sophie et al. Jan 2004 A1
20040023516 Londergan et al. Feb 2004 A1
20040036129 Forbes et al. Feb 2004 A1
20040077182 Lim et al. Apr 2004 A1
20040094402 Gopalraja May 2004 A1
20040101622 Park et al. May 2004 A1
20040106249 Huotari Jun 2004 A1
20040124131 Aitchison Jul 2004 A1
20040144980 Ahn et al. Jul 2004 A1
20040168627 Conley et al. Sep 2004 A1
20040169032 Murayama et al. Sep 2004 A1
20040198069 Metzner et al. Oct 2004 A1
20040200499 Harvey et al. Oct 2004 A1
20040211357 Gadgil Oct 2004 A1
20040214399 Ahn et al. Oct 2004 A1
20040219793 Hishiya et al. Nov 2004 A1
20040221807 Verghese et al. Nov 2004 A1
20040266011 Lee et al. Dec 2004 A1
20050008799 Tomiyasu et al. Jan 2005 A1
20050019026 Wang et al. Jan 2005 A1
20050020071 Sonobe et al. Jan 2005 A1
20050023624 Ahn et al. Feb 2005 A1
20050037610 Cha Feb 2005 A1
20050054228 March Mar 2005 A1
20050066893 Soininen Mar 2005 A1
20050070123 Hirano Mar 2005 A1
20050072357 Shero et al. Apr 2005 A1
20050092249 Kilpela et al. May 2005 A1
20050100669 Kools et al. May 2005 A1
20050106893 Wilk May 2005 A1
20050110069 Kil et al. May 2005 A1
20050112282 Gordon et al. May 2005 A1
20050120805 Lane Jun 2005 A1
20050123690 Derderian et al. Jun 2005 A1
20050173003 Laverdiere et al. Aug 2005 A1
20050175789 Helms Aug 2005 A1
20050187647 Wang et al. Aug 2005 A1
20050212119 Shero Sep 2005 A1
20050214457 Schmitt et al. Sep 2005 A1
20050214458 Meiere Sep 2005 A1
20050218462 Ahn et al. Oct 2005 A1
20050229848 Shinriki Oct 2005 A1
20050229972 Hoshi et al. Oct 2005 A1
20050241176 Shero et al. Nov 2005 A1
20050251990 Choi Nov 2005 A1
20050263075 Wang et al. Dec 2005 A1
20050271813 Kher et al. Dec 2005 A1
20050282101 Adachi Dec 2005 A1
20050287725 Kitagawa Dec 2005 A1
20060013946 Park et al. Jan 2006 A1
20060014384 Lee et al. Jan 2006 A1
20060019033 Muthukrishnan et al. Jan 2006 A1
20060024439 Tuominen et al. Feb 2006 A2
20060046518 Hill et al. Mar 2006 A1
20060051925 Ahn et al. Mar 2006 A1
20060060930 Metz et al. Mar 2006 A1
20060062910 Meiere Mar 2006 A1
20060063346 Lee et al. Mar 2006 A1
20060068125 Radhakrishnan Mar 2006 A1
20060087638 Hirayanagi Apr 2006 A1
20060107898 Blomberg May 2006 A1
20060110934 Fukuchi May 2006 A1
20060113675 Chang et al. Jun 2006 A1
20060128168 Ahn et al. Jun 2006 A1
20060148180 Ahn et al. Jul 2006 A1
20060163612 Kouvetakis et al. Jul 2006 A1
20060177855 Utermohlen Aug 2006 A1
20060193979 Meiere et al. Aug 2006 A1
20060208215 Metzner et al. Sep 2006 A1
20060213439 Ishizaka Sep 2006 A1
20060223301 Vanhaelemeersch et al. Oct 2006 A1
20060226117 Bertram et al. Oct 2006 A1
20060228888 Lee et al. Oct 2006 A1
20060240574 Yoshie Oct 2006 A1
20060257563 Doh et al. Nov 2006 A1
20060257584 Derderian et al. Nov 2006 A1
20060258078 Lee et al. Nov 2006 A1
20060263522 Byun Nov 2006 A1
20060266289 Verghese et al. Nov 2006 A1
20060286818 Wang et al. Dec 2006 A1
20060291982 Tanaka Dec 2006 A1
20070010072 Bailey et al. Jan 2007 A1
20070020953 Tsai et al. Jan 2007 A1
20070022954 Iizuka et al. Feb 2007 A1
20070026651 Learn et al. Feb 2007 A1
20070028842 Inagawa et al. Feb 2007 A1
20070031598 Okuyama et al. Feb 2007 A1
20070031599 Gschwandtner et al. Feb 2007 A1
20070037412 Dip et al. Feb 2007 A1
20070042117 Kupurao et al. Feb 2007 A1
20070049053 Mahajani Mar 2007 A1
20070059948 Metzner et al. Mar 2007 A1
20070065578 McDougall Mar 2007 A1
20070066010 Ando Mar 2007 A1
20070066079 Kloster et al. Mar 2007 A1
20070077355 Chacin et al. Apr 2007 A1
20070082132 Shinriki Apr 2007 A1
20070084405 Kim Apr 2007 A1
20070096194 Streck et al. May 2007 A1
20070116873 Li et al. May 2007 A1
20070134942 Ahn et al. Jun 2007 A1
20070146621 Yeom Jun 2007 A1
20070155138 Tomasini et al. Jul 2007 A1
20070163440 Kim et al. Jul 2007 A1
20070166457 Yamoto et al. Jul 2007 A1
20070175397 Tomiyasu et al. Aug 2007 A1
20070209590 Li Sep 2007 A1
20070232501 Tonomura Oct 2007 A1
20070237697 Clark Oct 2007 A1
20070237699 Clark Oct 2007 A1
20070249131 Allen et al. Oct 2007 A1
20070252244 Srividya et al. Nov 2007 A1
20070264807 Leone et al. Nov 2007 A1
20080006208 Ueno et al. Jan 2008 A1
20080018004 Steidl Jan 2008 A1
20080029790 Ahn et al. Feb 2008 A1
20080054332 Kim et al. Mar 2008 A1
20080057659 Forbes et al. Mar 2008 A1
20080075881 Won et al. Mar 2008 A1
20080085226 Fondurulia et al. Apr 2008 A1
20080102203 Wu May 2008 A1
20080113096 Mahajani May 2008 A1
20080113097 Mahajani et al. May 2008 A1
20080124908 Forbes et al. May 2008 A1
20080142483 Hua Jun 2008 A1
20080149031 Chu et al. Jun 2008 A1
20080176375 Erben et al. Jul 2008 A1
20080179104 Zhang Jul 2008 A1
20080202416 Provencher Aug 2008 A1
20080216077 Emani et al. Sep 2008 A1
20080224240 Ahn et al. Sep 2008 A1
20080233288 Clark Sep 2008 A1
20080237572 Chui et al. Oct 2008 A1
20080242097 Boescke et al. Oct 2008 A1
20080248310 Kim et al. Oct 2008 A1
20080257494 Hayashi et al. Oct 2008 A1
20080261413 Mahajani Oct 2008 A1
20080282970 Heys et al. Nov 2008 A1
20080298945 Cox Dec 2008 A1
20080315292 Ji et al. Dec 2008 A1
20090000550 Tran et al. Jan 2009 A1
20090011608 Nabatame Jan 2009 A1
20090020072 Mizunaga et al. Jan 2009 A1
20090029503 Arai Jan 2009 A1
20090029564 Yamashita et al. Jan 2009 A1
20090035947 Horii Feb 2009 A1
20090042344 Ye et al. Feb 2009 A1
20090061644 Chiang et al. Mar 2009 A1
20090085156 Dewey et al. Apr 2009 A1
20090093094 Ye et al. Apr 2009 A1
20090095221 Tam et al. Apr 2009 A1
20090107404 Ogliari et al. Apr 2009 A1
20090130331 Asai May 2009 A1
20090136668 Gregg et al. May 2009 A1
20090139657 Lee et al. Jun 2009 A1
20090206056 Xu Aug 2009 A1
20090211523 Kuppurao et al. Aug 2009 A1
20090211525 Sarigiannis et al. Aug 2009 A1
20090236014 Wilson Sep 2009 A1
20090239386 Suzaki et al. Sep 2009 A1
20090242957 Ma et al. Oct 2009 A1
20090246374 Vukovic Oct 2009 A1
20090261331 Yang et al. Oct 2009 A1
20090269941 Raisanen Oct 2009 A1
20090277510 Shikata Nov 2009 A1
20090283041 Tomiyasu et al. Nov 2009 A1
20090289300 Sasaki et al. Nov 2009 A1
20100024727 Kim et al. Feb 2010 A1
20100025796 Dabiran Feb 2010 A1
20100055312 Kato et al. Mar 2010 A1
20100075507 Chang et al. Mar 2010 A1
20100090149 Thompson et al. Apr 2010 A1
20100092696 Shinriki Apr 2010 A1
20100102417 Ganguli et al. Apr 2010 A1
20100124610 Aikawa et al. May 2010 A1
20100130017 Luo et al. May 2010 A1
20100159638 Jeong Jun 2010 A1
20100162752 Tabata et al. Jul 2010 A1
20100163937 Clendenning Jul 2010 A1
20100170441 Won et al. Jul 2010 A1
20100193501 Zucker et al. Aug 2010 A1
20100230051 Iizuka Sep 2010 A1
20100255198 Cleary et al. Oct 2010 A1
20100255658 Aggarwal Oct 2010 A1
20100275846 Kitagawa Nov 2010 A1
20100282645 Wang Nov 2010 A1
20100294199 Tran et al. Nov 2010 A1
20100307415 Shero et al. Dec 2010 A1
20100322604 Fondurulia et al. Dec 2010 A1
20110000619 Suh Jan 2011 A1
20110027999 Sparks et al. Feb 2011 A1
20110061810 Ganguly et al. Mar 2011 A1
20110070380 Shero et al. Mar 2011 A1
20110089469 Merckling Apr 2011 A1
20110097901 Banna et al. Apr 2011 A1
20110108194 Yoshioka et al. May 2011 A1
20110117749 Sheu May 2011 A1
20110139748 Donnelly et al. Jun 2011 A1
20110143461 Fish et al. Jun 2011 A1
20110183527 Cho Jul 2011 A1
20110192820 Yeom et al. Aug 2011 A1
20110198736 Shero et al. Aug 2011 A1
20110236600 Fox et al. Sep 2011 A1
20110239936 Suzaki et al. Oct 2011 A1
20110254052 Kouvetakis Oct 2011 A1
20110256675 Avouris Oct 2011 A1
20110256726 LaVoie Oct 2011 A1
20110256734 Hausmann et al. Oct 2011 A1
20110265715 Keller Nov 2011 A1
20110265725 Tsuji Nov 2011 A1
20110275166 Shero et al. Nov 2011 A1
20110308460 Hong et al. Dec 2011 A1
20120024479 Palagashvili et al. Feb 2012 A1
20120032311 Gates Feb 2012 A1
20120043556 Dube et al. Feb 2012 A1
20120070136 Koelmel et al. Mar 2012 A1
20120070997 Larson Mar 2012 A1
20120090704 Laverdiere et al. Apr 2012 A1
20120098107 Raisanen et al. Apr 2012 A1
20120114877 Lee May 2012 A1
20120156108 Fondurulia et al. Jun 2012 A1
20120160172 Wamura et al. Jun 2012 A1
20120240858 Taniyama et al. Sep 2012 A1
20120263876 Haukka et al. Oct 2012 A1
20120270393 Pore et al. Oct 2012 A1
20120289053 Holland et al. Nov 2012 A1
20120295427 Bauer Nov 2012 A1
20120304935 Oosterlaken et al. Dec 2012 A1
20120318334 Bedell et al. Dec 2012 A1
20120321786 Satitpunwaycha et al. Dec 2012 A1
20130023129 Reed Jan 2013 A1
20130064973 Chen et al. Mar 2013 A1
20130068727 Okita Mar 2013 A1
20130084714 Oka et al. Apr 2013 A1
20130104988 Yednak et al. May 2013 A1
20130104992 Yednak et al. May 2013 A1
20130105796 Liu et al. May 2013 A1
20130115383 Lu et al. May 2013 A1
20130115763 Takamure et al. May 2013 A1
20130126515 Shero et al. May 2013 A1
20130129577 Halpin et al. May 2013 A1
20130160709 White Jun 2013 A1
20130168354 Kanarik Jul 2013 A1
20130203266 Hintze Aug 2013 A1
20130230814 Dunn et al. Sep 2013 A1
20130256838 Sanchez et al. Oct 2013 A1
20130264659 Jung Oct 2013 A1
20130269612 Cheng et al. Oct 2013 A1
20130285155 Glass Oct 2013 A1
20130288480 Sanchez et al. Oct 2013 A1
20130292676 Milligan et al. Nov 2013 A1
20130292807 Raisanen et al. Nov 2013 A1
20130313656 Tong Nov 2013 A1
20130330911 Huang et al. Dec 2013 A1
20130330933 Fukazawa et al. Dec 2013 A1
20130337583 Kobayashi et al. Dec 2013 A1
20130340619 Tammera Dec 2013 A1
20130344248 Clark Dec 2013 A1
20140000843 Dunn et al. Jan 2014 A1
20140001520 Glass Jan 2014 A1
20140014644 Akiba et al. Jan 2014 A1
20140020619 Vincent et al. Jan 2014 A1
20140027884 Fang et al. Jan 2014 A1
20140036274 Marquardt et al. Feb 2014 A1
20140048765 Ma et al. Feb 2014 A1
20140057454 Subramonium Feb 2014 A1
20140060147 Sarin et al. Mar 2014 A1
20140067110 Lawson et al. Mar 2014 A1
20140073143 Alokozai et al. Mar 2014 A1
20140077240 Roucka et al. Mar 2014 A1
20140084341 Weeks Mar 2014 A1
20140087544 Tolle Mar 2014 A1
20140094027 Azumo et al. Apr 2014 A1
20140103145 White et al. Apr 2014 A1
20140110798 Cai Apr 2014 A1
20140120487 Kaneko May 2014 A1
20140141625 Fuzazawa et al. May 2014 A1
20140159170 Raisanen et al. Jun 2014 A1
20140175054 Carlson et al. Jun 2014 A1
20140179085 Hirose et al. Jun 2014 A1
20140217065 Winkler et al. Aug 2014 A1
20140220247 Haukka et al. Aug 2014 A1
20140225065 Rachmady et al. Aug 2014 A1
20140251953 Winkler et al. Sep 2014 A1
20140251954 Winkler et al. Sep 2014 A1
20140256156 Harada et al. Sep 2014 A1
20140346650 Raisanen et al. Nov 2014 A1
20140363985 Jang et al. Dec 2014 A1
20150004316 Thompson et al. Jan 2015 A1
20150014632 Kim et al. Jan 2015 A1
20150021599 Ridgeway Jan 2015 A1
20150024609 Milligan et al. Jan 2015 A1
20150048485 Tolle Feb 2015 A1
20150091057 Xie et al. Apr 2015 A1
20150096973 Dunn et al. Apr 2015 A1
20150111374 Bao Apr 2015 A1
20150132212 Winkler et al. May 2015 A1
20150140210 Jung et al. May 2015 A1
20150147877 Jung May 2015 A1
20150162214 Thompson Jun 2015 A1
20150167159 Halpin et al. Jun 2015 A1
20150179427 Hirose et al. Jun 2015 A1
20150184291 Alokozai et al. Jul 2015 A1
20150187568 Pettinger et al. Jul 2015 A1
20150255324 Li et al. Sep 2015 A1
20150376211 Girard Dec 2015 A1
20160013042 Hashimoto et al. Jan 2016 A1
20160020094 Van Aerde et al. Jan 2016 A1
20160093528 Chandrashekar et al. Mar 2016 A1
20160141176 Van Aerde et al. May 2016 A1
Foreign Referenced Citations (26)
Number Date Country
1563483 Jan 2005 CN
101330015 Dec 2008 CN
101522943 Sep 2009 CN
101423937 Sep 2011 CN
102383106 Mar 2012 CN
102008052750 Jun 2009 DE
2036600 Mar 2009 EP
07283149 Oct 1995 JP
08335558 Dec 1996 JP
2001-15698 Jan 2001 JP
2001342570 Dec 2001 JP
2004014952 Jan 2004 JP
2004091848 Mar 2004 JP
2004538374 Dec 2004 JP
2005507030 Mar 2005 JP
2006186271 Jul 2006 JP
2008527748 Jul 2008 JP
2012146939 Aug 2012 JP
20100032812 Mar 2010 KR
I226380 Jan 2005 TW
200701301 Jan 2007 TW
2004008827 Jan 2004 WO
2006056091 Jun 2006 WO
2006078666 Jul 2006 WO
2009154889 Dec 2009 WO
2014107290 Jul 2014 WO
Non-Patent Literature Citations (169)
Entry
Crowell, John E. “Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies.” Journal of Vacuum Science & Technology A 21.5 (2003): S88-S95.
Conversion of metal carbides to carbide derived carbon by reactive ion etching in halogen gas Proceedings of SPIE—The International Society for Optical Engineering (2006), 6223(Micro (MEMS) and Nanotechnologies for Space Applications), 62230J/1-62230J/11 CODEN: PSISDG; ISSN: 0277-786X; English.
Presser, Volker, et al. “Effect of pore size on carbon dioxide sorption by carbide derived carbon.” Energy & Environmental Science 4.8 (2011): 3059-3066.
USPTO; Office Action dated Aug. 27, 2010 in U.S. Appl. No. 12/118,596.
USPTO; Office Action dated Feb. 15, 2011 in U.S. Appl. No. 12/118,596.
USPTO; Notice of Allowance dated Aug. 4, 2011 in U.S. Appl. No. 12/118,596.
USPTO; Notice of Allowance dated Jun. 16, 2011 in U.S. Appl. No. 12/430,751.
USPTO; Notice of Allowance dated Jul. 27, 2011 in U.S. Appl. No. 12/430,751.
USPTO; Restriction Requirement dated Jan. 15, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Feb. 26, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Final Office Action dated Jun. 28, 2013 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Feb. 25, 2014 in U.S. Appl. No. 12/754,223.
USPTO; Office Action dated Apr. 23, 2013 in U.S. Appl. No. 12/763,037.
USPTO; Final Office Action dated Oct. 21, 2013 in U.S. Appl. No. 12/763,037.
USPTO; Restriction Requirement dated Sep. 25, 2012 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Dec. 6, 2012 in U.S. Appl. No. 12/854,818.
USPTO; Final Office Action dated Mar. 13, 2013 in U.S. Appl. No. 12/854,818.
USPTO; Office Action dated Aug. 30, 2013 in U.S. Appl. No. 12/854,818.
USPTO; Final Office Action dated Mar. 26, 2014 in U.S. Appl. No. 12/854,818.
USPTO; Restriction Requirement dated May 8, 2013 in U.S. Appl. No. 13/102,980.
USPTO; Office Action dated Oct. 7, 2013 in U.S. Appl. No. 13/102,980.
USPTO; Final Office Action dated Mar. 25, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Restriction Requirement dated Dec. 16, 2013 in U.S. Appl. No. 13/284,642.
USPTO; Restriction Requirement dated Apr. 21, 2014 in U.S. Appl. No. 13/284,642.
USPTO; Office Action dated Jan. 28, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Final Office Action dated May 14, 2014 in U.S. Appl. No. 13/312,591.
USPTO; Office Action dated Jan. 10, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Final Office Action dated May 17, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Aug. 29, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Final Office Action dated Dec. 18, 2013 in U.S. Appl. No. 13/339,609.
USPTO; Notice of Allowance dated Apr. 7, 2014 in U.S. Appl. No. 13/339,609.
USPTO; Office Action dated Feb. 13, 2014 in U.S. Appl. No. 13/411,271.
USPTO; Restriction Requirement dated Oct. 29, 2013 in U.S. Appl. No. 13/439,258.
USPTO; Office Action dated Mar. 24, 2014 in U.S. Appl. No. 13/439,258.
USPTO; Office Action dated May 23, 2013 in U.S. Appl. No. 13/465,340.
USPTO; Final Office Action dated Oct. 30, 2013 in U.S. Appl. No. 13/465,340.
USPTO; Notice of Allowance dated Feb. 12, 2014 in U.S. Appl. No. 13/465,340.
USPTO; Office Action dated Dec. 20, 2013 in U.S. Appl. No. 13/535,214.
USPTO; Office Action dated Nov. 15, 2013 in U.S. Appl. No. 13/612,538.
USPTO; Office Action dated Apr. 24, 2014 in U.S. Appl. No. 13/784,362.
USPTO; Restriction Requirement dated May 8, 2014 in U.S. Appl. No. 13/791,246.
PCT; International Search report and Written Opinion dated Nov. 12, 2010 in Application No. PCT/US2010/030126.
PCT; International Search report and Written Opinion dated Jan. 12, 2011 in Application No. PCT/US2010/045368.
PCT; International Search report and Written Opinion dated Feb. 6, 2013 in Application No. PCT/US2012/065343.
PCT; International Search report and Written Opinion dated Feb. 13, 2013 in Application No. PCT/US2012/065347.
Chinese Patent Office; Office Action dated Jan. 10, 2013 in Serial No. 201080015699.9.
Chinese Patent Office; Notice on the First Office Action dated May 24, 2013 in Serial No. 201080036764.6.
Chinese Patent Office; Notice on the Second Office Action dated Jan. 2, 2014 in Serial No. 201080036764.6.
Japanese Patent Office; Office Action dated Jan. 25, 2014 in Serial No. 2012-504786.
Chang et al. Small-Subthreshold-Swing and Low-Voltage Flexible Organic Thin-Film Transistors Which Use HfLaO as the Gate Dielectric; IEEE Electron Device Letters; Feb. 2009; 133-135; vol. 30, No. 2; IEEE Electron Device Society.
Maeng et al. Electrical properties of atomic layer disposition Hf02 and Hf0xNy on Si substrates with various crystal orientations, Journal of the Electrochemical Society, Apr. 2008, p. H267-H271, vol. 155, No. 4, Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea.
Novaro et al. Theoretical Study on a Reaction Pathway of Ziegler-Natta-Type Catalysis, J. Chem. Phys. 68(5), Mar. 1, 1978 p. 2337-2351.
USPTO; Notice of Allowance dated Jan. 27, 2015 in U.S. Appl. No. 12/763,037.
USPTO; Final Office Action dated Jan. 29, 2015 in U.S. Appl. No. 13/283,408.
USPTO; Notice of Allowance dated Feb. 11, 2015 in U.S. Appl. No. 13/284,642.
USPTO; Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 13/411,271.
USPTO; Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Notice of Allowance dated Feb. 26, 2015 in U.S. Appl. No. 13/677,151.
USPTO; Notice of Allowance dated Jan. 20, 2015 in U.S. Appl. No. 13/941,134.
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 14/457,058.
USPTO; Non-Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 14/563,044.
Chinese Patent Office; Office Action dated Jan. 12, 2015 in Application No. 201080015699.9.
Chinese Patent Office; Notice on the Third Office Action dated Feb. 9, 2015 in Application No. 201110155056.
Japanese Patent Office; Office Action dated Dec. 1, 2014 in Application No. 2012-504786.
Taiwan Patent Office; Office Action dated Dec. 30, 2014 in Application No. 099114330.
Taiwan Patent Office; Office Action dated Dec. 19, 2014 in Application No. 099127063.
USPTO; Final Office Action dated Jul. 14, 2014 in U.S. Appl. No. 12/754,223.
USPTO; Notice of Allowance dated Jul. 3, 2014 in U.S. Appl. No. 13/102,980.
USPTO; Office Action dated Jun. 3, 2014 in U.S. Appl. No. 12/854,818.
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/283,408.
USPTO; Non-Final Office Action dated Jul. 30, 2014 in U.S. Appl. No. 13/284,642.
USPTO; Office Action dated Jul. 31, 2014 in U.S. Appl. No. 13/411,271.
USPTO Final Office Action dated Jul. 8, 2014 in U.S. Appl. No. 13/439,528.
USPTO; Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/535,214.
USPTO; Non-Final Office Action dated Aug. 8, 2014 in U.S. Appl. No. 13/563,066.
USPTO; Non-Final Office Action dated Jul. 10, 2014 in U.S. Appl. No. 13/612,538.
USPTO; Non-Final Office Action dated Jun. 2, 2014 in U.S. Appl. No. 13/677,151.
USPTO; Notice of Allowance dated Aug. 13, 2014 in U.S. Appl. No. 13/784,362.
USPTO; Restriction Requirement dated Jun. 6, 2014 in U.S. Appl. No. 13/874,708.
USPTO; Non-Final Office Action dated May 29, 2014 in U.S. Appl. No. 14/183,187.
Chinese Patent Office; Notice on the Third Office Action dated Jul. 1, 2014 in Application No. 201080036764.6.
Taiwan Patent Office; Office Action dated Jul. 4, 2014 in Application No. 099110511.
USPTO; Office Action dated Oct. 8, 2014 in U.S. Appl. No. 12/763,037.
USPTO; Non-Final Office Action dated Sep. 17, 2014 in U.S. Appl. No. 13/187,300.
USPTO; Non-Final Office Action dated Nov. 26, 2014 in U.S. Appl. No. 13/312,591.
UPPTO; Notice of Allowance dated Oct. 21, 2014 in U.S. Appl. No. 13/439,528.
USPTO; Notice of Allowance dated Oct. 23, 2014 in U.S. Appl. No. 13/535,214.
USPTO; Non-Final Office Action dated Oct. 15, 2014 in U.S. Appl. No. 13/597,043.
USPTO; Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 13/677,151.
USPTO; Non-Final Office Action dated Oct. 9, 2014 in U.S. Appl. No. 13/874,708.
USPTO; Non-Final Office Action dated Sep. 19, 2014 in U.S. Appl. No. 13/791,246.
USPTO; Non-Final Office Action dated Sep. 12, 2014 in U.S. Appl. No. 13/941,134.
USPTO; Restriction Requirement dated Sep. 16, 2014 in U.S. Appl. No. 13/948,055.
USPTO; Non-Final Office Action dated Oct. 30, 2014 in U.S. Appl. No. 13/948,055.
USPTO; Final Office Action dated Nov. 7, 2014 in U.S. Appl. No. 14/183,187.
Chinese Patent Office; Notice on the Second Office Action dated Sep. 16, 2014 in Application No. 201110155056.
Koutsokeras et al. Texture and Microstructure Evolution in Single-Phase TixTa1-xN Alloys of Rocksalt Structure. Journal of Applied Physics, 110, pp. 043535-1-043535-6, (2011).
Portet, et al., “Impact of Synthesis Conditions on Surface Chemistry and Structure of Carbide-Derived Carbons,” Thermochimica Acta 497, pp. 137-142, (2010).
Yushin, et al., “8 Carbon-Derived Carbon,” Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania. (2006).
USPTO; Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/187,300.
USPTO; Final Office Action dated Mar. 20, 2015 in U.S. Appl. No. 13/312,591.
USPTO; Notice of Allowance dated May 14, 2015 in U.S. Appl. No. 13/312,591.
USPTO; Final Office Action dated Mar. 13, 2015 in U.S. Appl. No. 13/597,043.
USPTO; Final Office Action dated Jun. 1, 2015 in U.S. Appl. No. 13/597,108.
USPTO; Non-Final Office Action dated May 28, 2015 in U.S. Appl. No. 13/651,144.
USPTO; Non-Final Office Action dated Apr. 3, 2015 in U.S. Appl. No. 13/677,133.
USPTO; Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 13/791,246.
USPTO; Notice of Allowance dated Mar. 10, 2015 in U.S. Appl. No. 13/874,708.
USPTO; Restriction Requirement dated Apr. 30, 2015 in U.S. Appl. No. 13/941,216.
USPTO; Non-Final Office Action dated Apr. 7, 2015 in U.S. Appl. No. 14/018,345.
USPTO; Non-Final Office Action dated Apr. 28, 2015 in U.S. Appl. No. 14/040,196.
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/079,302.
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/166,462.
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 14/183,187.
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 29/447,298.
Bearzotti, et al., “Fast Humidity Response of a Metal Halide-Doped Novel Polymer,” Sensors and Actuators B, 7, pp. 451-454, (1992).
Crowell, “Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies,” Journal of Vacuum Science & Technology A 21.5, (2003): S88-S95.
Varma, et al., “Effect of Metal Halides on Thermal, Mechanical, and Electrical Properties of Polypyromelitimide Films,” Journal of Applied Polymer Science, vol. 32, pp. 3987-4000, (1986).
USPTO; Final Office Action dated Aug. 12, 2015 in U.S. Appl. No. 12/754,223.
USPTO; Non-Final Office Action dated Jun. 17, 2015 in U.S. Appl. No. 13/283,408.
USPTO; Notice of Allowance dated Jun. 12, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Notice of Allowance dated Jul. 16, 2015 in U.S. Appl. No. 13/563,066.
USPTO; Notice of Allowance dated Aug. 4, 2015 in U.S. Appl. No. 13/677,133.
USPTO; Non-Final Office Action dated Jul. 30, 2015 in U.S. Appl. No. 13/941,216.
USPTO; Non-Final Office Action dated Jun. 29, 2015 in U.S. Appl. No. 13/966,782.
USPTO; Final Office Action dated Jul. 14, 2015 in U.S. Appl. No. 14/457,058.
USPTO; Notice of Allowance dated Jul. 6, 2015 in U.S. Appl. No. 29/447,298.
USPTO; Notice of Allowance dated May 23, 2016 in U.S. Appl. No. 12/754,223.
USPTO; Non-Final Office Action dated Apr. 7, 2016 in U.S. Appl. No. 13/187,300.
USPTO; Notice of Allowance dated Mar. 28, 2016 in U.S. Appl. No. 13/283,408.
USPTO; Final Office Action dated Jun. 2, 2016 in U.S. Appl. No. 13/597,108.
USPTO; Non-Final Office Action dated May 10, 2016 in U.S. Appl. No. 13/651,144.
USPTO; Non-Final Office Action dated Jun. 15, 2016 in U.S. Appl. No. 13/941,216.
USPTO; Final Office Action dated Apr. 20, 2016 in U.S. Appl. No. 13/791,246.
USPTO; Final Office Action dated Apr. 12, 2016 in U.S. Appl. No. 13/791,339.
USPTO; Restriction Requirement dated May 20, 2016 in U.S. Appl. No. 14/218,690.
USPTO; Notice of Allowance dated Jun. 2, 2016 in U.S. Appl. No. 14/260,701.
USPTO; Final Office Action dated Jun. 17, 2016 in U.S. Appl. No. 14/457,058.
USPTO; Final Office Action dated Apr. 5, 2016 in U.S. Appl. No. 14/498,036.
USPTO; Final Office Action dated May 26, 2016 in U.S. Appl. No. 14/508,296.
USPTO; Notice of Allowance dated Jun. 2, 2016 in U.S. Appl. No. 14/571,126.
USPTO; Notice of Allowance dated May 31, 2016 in U.S. Appl. No. 14/659,437.
USPTO; Non-Final Office Action dated Mar. 30, 2016 in U.S. Appl. No. 14/808,979.
Kobayshi, et al., “Temperature Dependence of SiO2 Film Growth with Plasma-Enhanced Atomic Layer Deposition,” regarding Thin Solid Films, published by Elsevier in the International Journal on the Science and Technology of Condensed Matter, in vol. 520, No. 11, 3994-3998 (2012).
H.J. Yun et al., “Comparison of Atomic Scale Etching of Poly-Si in Inductively Coupled Ar and He Plasmas”, Korean Journal of Chemical Engineering, vol. 24, year 2007, pp. 670-673.
Krenek et al. “IR Laser CVD of Nanodisperse Ge—Si—Sn Alloys Obtained by Dielectric Breakdown of GeH4/SiH4/SnH4 Mixtures”, NanoCon 2014, Nov. 5-7, Brno, Czech Republic, EU.
Moeen, “Design, Modelling and Characterization of Si/SiGe Structures for IR Bolometer Applications,” KTH Royal Institute of Technology. Information and Communication Technology, Department of Integrated Devices and Circuits, Stockholm Sweden 2015.
Presser, et al., “Effect of Pore Size on Carbon Dioxide Sorption by Carbide Derived Carbon,” Energy & Environmental Science 4.8, 3059-3066 (2011).
Radamson et al. “Growth of Sn-alloyed Group IV Materials for Photonic and Electronic Applications”, Chapter 5 pp. 129-144, Manufacturing NanoStructures.
S.D. Athavale and D.J. Economou, “Realization of Atomic Layer Etching of Silicon”, Journal of Vacuum Science and Technology B, vol. 14, year 1996, pp. 3702-3705.
Yun et al., “Behavior of Various Organosilicon Molecules in PECVD Processes for Hydrocarbon-Doped Silicon Oxide Films,” Solid State Phenomena, vol. 124-126, 347-350 (2007).
USPTO; Final Office Action dated Sep. 23, 2016 in U.S. Appl. No. 13/187,300.
USPTO; Non-Final Office Action dated Sep. 15, 2016 in U.S. Appl. No. 13/597,108.
USPTO; Notice of Allowance dated Sep. 13, 2016 in U.S. Appl. No. 13/941,216.
USPTO; Final Office Action dated Sep. 20, 2016 in U.S. Appl. No. 13/651,144.
USPTO; Final Office Action dated Aug. 25, 2016 in U.S. Appl. No. 14/188,760.
USPTO; Non Final Office Action dated Aug. 12, 2016 in U.S. Appl. No. 14/246,969.
USPTO; Non-Final Office Action dated Sep. 8, 2016 in U.S. Appl. No. 14/508,296.
USPTO; Final Office Action dated Sep. 29, 2016 in U.S. Appl. No. 14/568,647.
USPTO; Non-Final Office Action dated Sep. 9, 2016 in U.S. Appl. No. 14/829,565.
USPTO; Non-Final Office Action dated Jul. 29, 2016 in U.S. Appl. No. 14/884,695.
USPTO; Non-Final Office Action dated Aug. 12, 2016 in U.S. Appl. No. 14/981,434.
USPTO; Non-Final Office Action dated Sep. 23, 2016 in U.S. Appl. No. 15/048,422.
Becker et al., “Atomic Layer Deposition of Insulating Hafnium and Zirconium Nitrides,” Chem. Mater., 16, 3497-3501 (2004).
Nigamananda et al., “Low-Temperature (<200° C.) Plasma-Enhanced Atomic Deposition of Dense Titanium Nitride Thin Films.”
Potts et al., “Low Temperature Plasma-Enhanced Atomic Layer Deposition of metal Oxide Thin Films,” Journal of the Electrochemical Society, 157, 66-74 (2010).
Yun et al., “Effect of Plasma on Characteristics of Zirconium Oxide Films Deposited by Plasma-Enhanced Atomic Layer Deposition,” Electrochemical and Solid State Letters, 8(11) F47-F50 (2005).
Related Publications (1)
Number Date Country
20150132212 A1 May 2015 US