The invention relates generally to graded barrier coatings. More specifically, the invention relates to graded barrier coatings that are used with substrates, devices and the like.
Many devices are susceptible to reactive chemical species, such as oxygen or water vapor, normally encountered in the environment. Such devices are found in certain electrochromic devices, liquid crystal displays, organic light emitting diodes (“OLEDs”), light emitting diodes, photovoltaic devices, radiation detectors, medical diagnostic systems, integrated circuits, sensors, packaging and other components. Reference is made in this specification to non-limiting exemplary OLED embodiments; however, one of ordinary skill in the art will appreciate the applicability of the present invention to other devices and substrates.
EL devices, which may be classified as either organic or inorganic, are known in the graphic display and imaging arts. EL devices have been produced in different shapes for many applications. Inorganic EL devices, however, typically suffer from a required high activation voltage and low brightness. On the other hand, OLEDs, which have been developed more recently, offer the benefits of lower activation voltage and higher brightness in addition to simple manufacture, and, thus, the promise of more widespread application. The meaning of the acronym OLED herein is intended to include all variations of organic electroluminescence devices and their names, including, for example, light emitting polymers (LEP) and organic electroluminescence (OEL) devices.
Most organic electronic devices, especially OLEDs, are prone to rapid degradation when exposed to moisture and oxygen. Conventional OLEDs are built on transparent glass substrates that provide a low transmission rate of oxygen and water vapor. Glass substrates, however, are most suitable for rigid applications. Applicants have found manufacturing processes involving glass substrates to be relatively slow and costly in some circumstances. While plastic substrates provide flexibility, they are not impervious to oxygen and water vapor, and, thus, have provided insufficient protection for OLEDs.
In order to improve the resistance of these substrates to oxygen and water vapor, alternating layers of organic and inorganic compositions, including polymeric and ceramic materials have been applied to a surface of a substrate. In such multilayer barriers, a polymeric layer decouples defects in adjacent ceramic layers to reduce the transmission rates of oxygen and/or water vapor through the channels made possible by the defects in the ceramic layer. The interface between layers, however, may be weak and prone to delaminate.
The alternating layers discussed above commonly have different indices of refraction, normally resulting in degradation in optical transmission through the multiple layers. Prior approaches have focused on engineering the thickness of the layers to improve light transmission efficiency by taking advantage of multiple-interference patterns. One has to retain certain thickness of the layers, however, in order to maintain performance as a barrier. Furthermore, in a mass production environment it is difficult to achieve exact thickness control of the layers. Thus, engineering the thickness to accommodate optical transmission has presented certain challenges.
Current methods use glass or metal can encapsulation or glass or metal substrates, in combination with multi-layer coatings. While these methods may give good barriers, they have limited ability to satisfy the varying requirements for manufacturing of electronic devices, particularly optoelectronic devices, including both passive and active matrix OLEDs, bottom and top emission OLEDs, and both rigid and flexible devices. For example, for optical or optoelectrical devices, the coated barrier may be required to transmit, reflect or absorb light in a predefined manner. The coated barrier may be required to have certain qualities, such as having a certain flexibility, thickness, or durability. The coated barriers may further be required to adapt to different manufacturing needs such as barrier, tact time, OLED compatibility and yield. Traditional barriers have had a limited ability to provide the versatility required.
There remains a need for barriers that, in various embodiments, ameliorate or improve upon one or more of the deficiencies of the prior art.
In a first aspect, an assembly and a method are disclosed that include a device and a graded-composition barrier coating that is disposed on a surface of the device. The coating includes a first zone defined by a first thickness having a first material and a second material wherein a composition of the first zone varies substantially continuously across the first thickness. The coating has a second zone defined by a second thickness which is substantially free of any of the first material.
In a second aspect, an assembly and a method are disclosed that include a substrate, an electronic device disposed on the substrate, and a graded-composition barrier coating disposed along a surface of the electronic device which is substantially transparent to visible light. The coating includes a first zone defined by a first thickness in which a composition of an inorganic material and a composition of an organic material each vary substantially continuously across the first thickness and wherein the first thickness is between approximately 5 nm and approximately 1000 nm. The coating further includes a second zone defined by a second thickness which is substantially free of any organic material. In one embodiment, the coating has an oxygen transmission rate less than approximately 0.01 cm3/(m2 day), as measured at 25° C. with a gas containing approximately 21 volume-percent oxygen and a water vapor transmission rate less than approximately 0.0001 g/(m2 day), as measured at 25° C. with a gas having approximately 100-percent relative humidity.
In a third aspect, an assembly and a method are disclosed that include a device and a graded-composition barrier coating disposed on a surface of the device. The coating includes a first zone defined by a first thickness comprising a first material and a second material wherein a composition of the first zone varies substantially continuously across the first thickness and wherein a first percent composition of the first material is greater than or equal to a first percent composition of the second material. The coating further includes a second zone defined by a second thickness comprising the first material and the second material wherein a composition of the second zone varies substantially continuously across the second thickness and wherein a second percent composition of the second material is greater than or equal to a second percent composition of the first material.
In one embodiment, the first material may be organic and the second material may be inorganic. Alternatively, both materials may be inorganic. In other embodiments, the first material may be different from the second material. The materials may comprise organic, inorganic, ceramic, and combinations thereof. In various embodiments, the inorganic and ceramic materials are selected from the group consisting of: oxide, nitride, carbide, boride, and combinations thereof of elements of Groups IIA, IIIA, IVA, VA, VIA, VIIA, IB, and IIB, metals of Groups IIIB, IVB, and VB, and rare-earth metals. The organic materials may include polymer, parylene, an acrylic, a siloxane, xylene, an alkene, styrene, an organosilane, an organosilazane, an organosilicone, and combinations thereof. The inorganic materials may include metal oxide, metal nitride, silicon oxide, silicon nitride, metal oxynitride, silicon oxynitride, and combinations thereof.
In one embodiment, the second zone may comprise the second material. A percent atomic Carbon in the first zone may preferably not exceed approximately 90%. A percent atomic Carbon in the second zone may preferably not exceed approximately 5%. The first thickness may be between approximately 5 nm and approximately 1000 nm. In further embodiments, the first zone and second zone may be contiguous.
In various embodiments, the device may be an electrochromic device, a liquid crystal display, an organic light emitting diode, a light emitting diode, a photovoltaic device, a radiation detector, an integrated circuit, a sensor, a component of a medical diagnostic system and combinations thereof. In one embodiment, the coating may be substantially transparent.
Several embodiments may include a substrate disposed on the device, on the coating, or on both. The substrate may be substantially flexible. The substrate may be substantially transparent. The substrate may comprise plastic, glass or metal. In various embodiments, the device is encapsulated by the coating or by the coating and the substrate.
In several embodiments, the coating may have an oxygen transmission rate less than approximately 0.01 cm3/(m2 day), as measured at 25° C. with a gas containing approximately 21 volume-percent oxygen. The coating may also have a water vapor transmission rate less than approximately 0.0001 g/(m2 day), as measured at 25° C. with a gas having approximately 100-percent relative humidity.
The graded-composition barrier coating may have a zone of continuously varying composition. The zone may preferably decouple defects in adjacent zones and may comprise an organic material. The organic zone may be fully graded to contribute to barrier enhancement. Disclosed embodiments may provide better control of gradation, thereby improving coating properties such as barrier performance, tact time, compatibility, adhesion, optics, process time, thickness or encapsulation. Such graded-composition barrier coatings may contain continuously graded zones that decouple defects while contribute to the performance of the coating.
Various embodiments of the present invention will now be described with reference to the figures. Like reference numerals refer to like elements. One of ordinary skill in the art will appreciate the applicability of the teachings of the detailed description to other embodiments falling within the scope of the appended claims and equivalents thereto.
The graded-composition barrier coatings of the present invention find utility in a variety of applications including coating on substrates and devices to protect from moisture or oxygen ingress. Organic light-emitting material and/or cathode materials in OLEDs are particularly susceptible to attack by reactive species existing in the environment, such as oxygen, water vapor, hydrogen sulfide, SOx, NOx, solvents, etc. Films having a graded-composition barrier coating are useful to extend the life of these devices and render them more commercially viable.
Continuously changing the composition of a first zone, for example an organic zone, could lead to substantial improvements in barriers. For example, fully organic layers or zones may not be necessary to achieve superior barrier performance. Rather, in some applications, organic layers or zones may have been excessively thick with limited benefit. By fully grading an organic zone, the thickness of a graded-composition barrier coating could be reduced without loss of certain performance in terms of decoupling of defects and overall barrier performance. By fully grading such a zone, the zone may provide barrier functionality in addition to decoupling defects of adjacent zones. For example, fully grading a first zone with SiOxCy allows for enhancements in barrier, adhesion, and optical performance, with potentially added benefit of reductions in process time due to a reduced thickness from conventional organic zones. Further advantages are obtainable as described below.
In
Due to the graded nature of the zones described herein, it will be appreciated that the terms “organic zone” or “inorganic zone” may refer to thicknesses of coating in which both organic and inorganic materials may be present. Generalizing the principles taught herein, a first zone need not be organic at all. For example, gradations of one inorganic material may be suitable to decouple the defects of gradations of another inorganic material. One inorganic material may contribute both to barrier performance and decoupling of defects in adjacent zones. One of ordinary skill will also appreciate that as a zone becomes more extensively graded, the zone may become less clearly organic or inorganic. The same is true of zones comprising other subcategories of materials, such as polymers and ceramics.
Indeed, any suitable first and second material may be selected, so long as their compositions are different and varied as described herein to form a graded-composition barrier coating. Examples of such differing materials are described below. Typically the materials may be selected and the zones graded such that one of the zones provides superior barrier performance while the other zone both decouples the defects of the adjacent zones and contributes to barrier performance. One of ordinary skill will also appreciate that while reference is typically made to two materials and two zones here, the invention is not so limited. For example, see
The term “composition” appears in various contexts. For example, the Silicon Oxycarbide represented in
With reference to
The rate of introduction of a given precursor 50 into the chamber may be controlled automatically by a controller 53 not shown. Any controller that can control simultaneous predetermined changes in the rate of introduction of a plurality of precursors is suitable.
For example, silicon carbide can be deposited onto a substrate from plasmas generated from silane (SiH4) and an organic material, such as methane or xylene. Silicon oxycarbide can be deposited from plasmas generated from silane, methane, and oxygen or silane and propylene oxide. Silicon oxycarbide also can be deposited from plasmas generated from organosilicone precursors, such as tetraethoxysilane (TEOS), vinyl trimethylsilane (VTMS), hexamethyldisiloxane (HMDSO), hexamethyldisilazane (HMDSN), or octamethylcyclotetrasiloxane (D4). Silicon nitride can be deposited from plasmas generated from silane and ammonia. Aluminum oxycarbonitride can be deposited from a plasma generated from a mixture of aluminum tartrate and ammonia. Other combinations of reactants may be chosen to obtain a desired coating composition. Following the teachings of the present application, the choice of the particular reactants is within the skill of the ordinary artisan.
In
As shown by
Referring now to
The resulting graded-composition barrier coating can provide improved resistance to delamination. The presence of SiNx in the SiOxCy zone provides the SiOxCy zone with barrier properties in addition to decoupling defects of the SiNx zones. The continuously changing composition of the SiOxCy zone may allow improved adaptation for structural requirements such as optics, flexibility, thickness, and processing time.
Testing of a five zone version of the three zone graded-composition barrier coating depicted in
Referring to
Note that in several of the XPS figures, including
Referring to
Referring to
In the embodiment illustrated by step 1224, the percent atomic Carbon in the first zone does not exceed 90%. Organic materials may be similarly limited in the first zone. As shown in 1232, the second zone may further comprise the second material. For example, the second zone may be predominantly made of a barrier material, such as an inorganic material. As shown in step 1234, a percent atomic Carbon in the second zone does not exceed approximately 5% in one embodiment.
Referring to step 1312 in
Further techniques may find utility in accordance with the teachings of the present invention. For example, the coating may be formed by radio-frequency plasma-enhanced chemical-vapor deposition (“RFPECVD”), expanding thermal-plasma chemical-vapor deposition (“ETPCVD”), sputtering, reactive sputtering, electron-cyclotron-resonance plasma-enhanced chemical-vapor deposition (“ECRPECVD”), inductively coupled plasma-enhanced chemical-vapor deposition (“ICPECVD”), microwave plasma enhanced chemical vapor deposition, or combinations thereof.
In the ETPCVD technique, the plasma is typically generated at a high pressure compared to the regular PECVD technique.
In the ECRPECVD technique a low pressure is used, typically less than about 0.5 mm Hg, and typically without electrodes. Instead of electrodes, microwave energy generates a discharge. A magnetic field may be used to create the resonance condition of the electron gas, which results in a very high degree of ionization due to electron acceleration at a distance away from the substrate. The low pressure preserves a high number density of free radicals until the plasma reaches the substrate and prevents normally undesirable severe bombardment thereof.
ICPECVD is another electrodeless deposition technique that can create high-density plasma at low pressure. A plasma is generated by an electromagnetic field generated by a concentric induction coil disposed outside one end of the deposition chamber. The substrate is disposed in the deposition chamber at the opposite end. Deposition can typically be carried out at a pressure much less than 0.5 mm Hg.
In
Here, “substantially perpendicular” means within about 15 degrees either side of a perpendicular to a tangent drawn at any point on the surface. In a preferred embodiment, the substantially uniform optical properties provides for a coating with a substantially uniform refractive index. “Substantially uniform refractive index” means the refractive index of any zone in the coating is within about 10% of any other zone in the coating for a selected wavelength. The graded-composition barrier coating preserves color neutrality by exhibiting substantially uniform light transmission. “Substantially uniform light transmission” means at any selected wavelength in a selected wavelength range, the transmission is within about 10% of the average light transmission for the wavelength range, in other words, the barrier coating does not substantially differentially attenuate wavelengths within the selected wavelength range.
The optical losses due to interference resulting from differing refractive indices of the zones of various compositions may be overcome by depositing substantially uniform refractive-index materials. The desired transmission may be achieved by matching the refractive indices of zones in the coating.
In step 1418, the graded-composition barrier coating may be formed to be substantially transparent. In optoelectronic devices one performance parameter is optical efficiency. Therefore it is desirable in certain embodiments that a coating does not overly compromise the optical efficiency due to light absorption or other factors. Therefore, in one embodiment, it may be important that barrier coatings be substantially transparent. The term “substantially transparent” means allowing a total transmission of at least about 50 percent, preferably at least about 80 percent, and more preferably at least 90 percent, of light in a selected wavelength range. The selected wavelength range can be in the visible region, the infrared region, the ultraviolet region or combinations thereof. In certain aspects, graded-composition barrier coatings as taught herein allow for thinner coatings, whereby transparency may be improved.
In step 1536 of
Referring to
In step 1617, the organic material may be a polymer, an acrylic, a siloxane, xylene, an alkene, styrene, an organosilane, an organosilazane, an organosilicone, and combinations thereof. Organic coating materials typically comprise carbon, hydrogen, oxygen, and optionally other minor elements, such as sulfur, nitrogen, silicon, etc., depending on the types of reactants. Suitable reactants that result in organic compositions in the coating are straight or branched alkanes, alkenes, alkynes, alcohols, aldehydes, ethers, alkylene oxides, aromatics, etc., having up to 15 carbon atoms.
In step 1613, the inorganic and ceramic coating materials typically comprise oxide; nitride; carbide; boride; or combinations thereof of elements of Groups IIA, IIIA, IVA, VA, VIA, VIIA, IB, and IIB; metals of Groups IIIB, IVB, and VB; and rare-earth metals. In step 1615, the inorganic materials may further be metal oxide, metal nitride, silicon oxide, silicon nitride, metal oxynitride, silicon oxynitride, and combinations thereof.
It may further be desired to choose a coating thickness that does not impede the transmission of light through the substrate. Such a graded-composition barrier coated substrate finds use in providing protection to many devices or components; e.g., electronic devices, that are susceptible to reactive chemical species normally encountered in the environment. In another example, such a substrate or film having a graded-composition barrier coating may advantageously be used in packaging of materials that corrode or degrade by chemical or biological agents normally existing in the environment. The term “device” as used herein is intended to encompass all of these variations, as appropriate in a given context.
Examples of substrate materials that may benefit from having a graded-composition transmission-barrier coating are organic polymeric materials, which may be substantially transparent. The materials may optionally be electrically insulating. Suitable polymerics include polyethyleneterephthalate (“PET”); polyacrylates; polycarbonate; silicone; epoxy resins; silicone-functionalized epoxy resins; polyester such as Mylar (made by E. I. du Pont de Nemours & Co.); polyimide such as Kapton H or Kapton E (made by du Pont), Apical AV (made by Kanegafugi Chemical Industry Company), Upilex (made by UBE Industries, Ltd.); polyethersulfones (“PES”), (made by Sumitomo); polyetherimide such as Ultem (made by General Electric Company); polyethylenenaphthalene (“PEN”); polynorbonenes; and poly(cyclic olefins). Further examples include polyacrylates such as polymers or copolymers of acrylic acid, methacrylic acid, esters of these acids, or acylonitrile; poly(vinyl fluoride); poly(vinylidene chloride); poly(vinyl alcohol); copolymer of vinyl alcohol and glyoxal (also known as ethanedial or oxaaldehyde); polyethyleneterephthalate, parylene (thermoplastic polymer based on p-xylene), and polymers derived from cycloolefins and their derivatives (such as poly(arylcyclobutene) disclosed in U.S. Pat. Nos. 4,540,763 and 5,185,391 which are incorporated herein by reference.
A plastic substrate coated with a graded-composition coating, which is formed by any method disclosed above can be advantageously used to produce flexible light sources based on organic light-emitting materials. The term “flexible” means being capable of being bent into a shape having a radius of curvature of less than about 100 cm. The term “substantially transparent” means allowing a total transmission of at least about 50 percent, preferably at least about 80 percent, and more preferably at least 90 percent, of light in a selected wavelength range. Preferably, the selected wavelength range is the visible range, i.e., about 400 nm to about 700 nm.
In
The demarcation of zones in all of the figures are identified for illustrative purposes only, and one of ordinary skill will appreciate that further intermediate areas or zones may be present. For example,
In
In
Referring to
Referring to
Multiple advantages can be realized by one or more of the embodiments of the present invention. In one embodiment, barrier enhancements were achieved by making graded-composition barrier coatings without a monotonous composition of organic material. A graded-composition barrier coating was described with a first zone, for example an organic zone, having a continuously changing composition. In a further aspect, a second zone had a composition that continuously varied. Barrier enhancements were achieved in the examples of a fully graded SiOxCy zone. Better control of gradation has been achieved by using XPS to map film composition to precursor gas flows thus allowing automatic programmed control of the rate of supplying precursors into a process chamber. The resulting improvements in graded-composition barrier coatings include properties such as thickness, flexibility, adhesion, optics, barrier, and reductions in tact time.
While preferred embodiments of the present invention have been described in detail, it is to be understood that the embodiments described are illustrative only. From this specification, those skilled in the art will appreciate numerous and varied other embodiments within the spirit and scope of the invention. The scope of the invention is to be defined not by the preferred embodiments, but solely by the appended claims and equivalents thereof.
The present application is a continuation in part and claims priority benefit to copending and commonly assigned U.S. patent application Ser. No. 12/124,548 to Kim et al., filed May 21, 2008, entitled “Barrier Coatings”, which is a continuation of U.S. patent application Ser. No. 10/879,468 to Kim et al., filed Jun. 30, 2004, now U.S. Pat. No. 7,449,246, each of which are hereby incorporated by reference. The present application is related to commonly assigned U.S. patent application Ser. No. 12/325,905, filed herewith, entitled “System and Method for Making a Graded Barrier Coating”; to U.S. Pat. No. 7,015,640 to Schaepkens et al., filed Sep. 11, 2002, entitled “Diffusion barrier coatings having graded compositions and devices incorporating the same;” and to U.S. patent application Ser. No. 10/988,481 to Kim et al., filed Nov. 15, 2004, entitled “High integrity protective coatings”, each of which are hereby incorporated by reference.
This invention was made with Government support under contract number RFP01-63GE awarded by United States Display Consortium and Army Research Laboratory. The Government may have certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3932693 | Shaw et al. | Jan 1976 | A |
4540763 | Kirchhoff | Sep 1985 | A |
4552791 | Hahn | Nov 1985 | A |
4861671 | Muchnik et al. | Aug 1989 | A |
5051308 | Reed et al. | Sep 1991 | A |
5185391 | Stokich | Feb 1993 | A |
5462779 | Misiano et al. | Oct 1995 | A |
5654084 | Egert | Aug 1997 | A |
5683757 | Iskanderova et al. | Nov 1997 | A |
5714838 | Haight et al. | Feb 1998 | A |
5736207 | Walther et al. | Apr 1998 | A |
5757126 | Harvey et al. | May 1998 | A |
5922481 | Etzbach et al. | Jul 1999 | A |
5923970 | Kirlin | Jul 1999 | A |
5998803 | Forrest et al. | Dec 1999 | A |
6023371 | Onitsuka et al. | Feb 2000 | A |
6097147 | Baldo et al. | Aug 2000 | A |
6198217 | Suzuki et al. | Mar 2001 | B1 |
6268695 | Affinito | Jul 2001 | B1 |
6291116 | Wolk et al. | Sep 2001 | B1 |
6395341 | Arakawa et al. | May 2002 | B1 |
6413645 | Graff et al. | Jul 2002 | B1 |
6521916 | Roberts et al. | Feb 2003 | B2 |
6522067 | Graff et al. | Feb 2003 | B1 |
6558219 | Burroughes et al. | May 2003 | B1 |
6576351 | Silvernail | Jun 2003 | B2 |
6624568 | Silvernail | Sep 2003 | B2 |
6642092 | Voutsas et al. | Nov 2003 | B1 |
6642652 | Collins, III et al. | Nov 2003 | B2 |
6703780 | Shiang | Mar 2004 | B2 |
6777871 | Duggal et al. | Aug 2004 | B2 |
6815887 | Lee et al. | Nov 2004 | B2 |
6872114 | Chung et al. | Mar 2005 | B2 |
6892011 | Walker et al. | May 2005 | B2 |
6923702 | Graff et al. | Aug 2005 | B2 |
6949389 | Pichler et al. | Sep 2005 | B2 |
7015640 | Schaepkens et al. | Mar 2006 | B2 |
7077935 | Ziegler et al. | Jul 2006 | B2 |
7154220 | Schaepkens et al. | Dec 2006 | B2 |
7166366 | Moser | Jan 2007 | B2 |
7199518 | Couillard | Apr 2007 | B2 |
7223515 | Wolk et al. | May 2007 | B1 |
7413982 | Levy | Aug 2008 | B2 |
7740960 | Zhu et al. | Jun 2010 | B1 |
20020142583 | Chopra | Oct 2002 | A1 |
20030020085 | Bour et al. | Jan 2003 | A1 |
20030194497 | Takada et al. | Oct 2003 | A1 |
20040046497 | Schaepkens et al. | Mar 2004 | A1 |
20040058157 | Ishikawa | Mar 2004 | A1 |
20040219380 | Naruse et al. | Nov 2004 | A1 |
20050051763 | Affinito et al. | Mar 2005 | A1 |
20050082971 | Couillard | Apr 2005 | A1 |
20050253509 | Schaepkens et al. | Nov 2005 | A1 |
20050260395 | Schaepkens et al. | Nov 2005 | A1 |
20060132032 | Schaepkens et al. | Jun 2006 | A1 |
20060181669 | Schaepkens et al. | Aug 2006 | A1 |
20060208634 | Schaepkens et al. | Sep 2006 | A1 |
20060216410 | Schaepkens et al. | Sep 2006 | A1 |
20070036887 | Haase et al. | Feb 2007 | A1 |
20070077850 | Couillard | Apr 2007 | A1 |
20070238311 | Levy | Oct 2007 | A1 |
20080132050 | Lavoie | Jun 2008 | A1 |
20090127462 | Gunapala et al. | May 2009 | A1 |
Number | Date | Country |
---|---|---|
0026973 | May 2000 | EP |
0181649 | Nov 2001 | EP |
0182336 | Nov 2001 | EP |
1062844 | Oct 2003 | EP |
2348316 | Sep 2000 | GB |
2003231765 | Aug 2003 | JP |
2004098525 | Apr 2004 | JP |
9839497 | Sep 1998 | WO |
2004025749 | Mar 2004 | WO |
2004073046 | Aug 2004 | WO |
2005025853 | Mar 2005 | WO |
2005043585 | May 2005 | WO |
2005051525 | Jun 2005 | WO |
2005122293 | Dec 2005 | WO |
2006016153 | Feb 2006 | WO |
2006071938 | Jul 2006 | WO |
2007021544 | Feb 2007 | WO |
2007109482 | Sep 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090297813 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10879468 | Jun 2004 | US |
Child | 12124548 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12124548 | May 2008 | US |
Child | 12325827 | US |