The method makes use of a three-dimensionally structured resist layer having an opening with an overhanging or re-entrant sidewall profile, which can be produced according to standard methods of semiconductor technology, especially using a negative photoresist and photolithography. A negative photoresist is a type of photoresist in which the portion of the photoresist that is exposed to light becomes insoluble to the developer, so that only the unexposed portion of the photoresist is dissolved by the developer.
The material that is provided for the microlense is then deposited by an evaporation technique, a sputter process or any other process that is compatible with a lift-off process. A portion of the deposited lens material forms the microlens inside the opening. The remaining portion of the deposited lens material is removed together with the residual resist by a subsequent lift-off process.
The method comprises applying a resist layer on a carrier, forming an opening with an overhanging or re-entrant sidewall in the resist layer, the carrier being uncovered in the opening, depositing a lens material, thus forming a lens on the carrier in the opening, and removing the resist layer. The resist layer may especially comprise a negative photoresist.
In variants of the method, the overhanging or re-entrant sidewall is formed to comprise at least one step, which provides different widths of the opening in regions of different depths of the resist layer. The overhanging or re-entrant sidewall can especially be formed to comprise a plurality of steps. In other variants of the method, the overhanging or re-entrant sidewall is smooth.
In further variants of the method, the lens material is deposited by evaporation or by sputtering, especially reactive sputtering.
In a further variant the lens material is an inorganic material.
In a further variant the carrier comprises a semiconductor substrate and a dielectric on the semiconductor substrate, and the resist layer is applied on the dielectric. The dielectric may especially comprise an intermetal dielectric, in which metal layers are embedded. The dielectric may further comprise a passivation layer, which is formed on or in the intermetal dielectric, the lens being formed above an aperture of the passivation layer.
In a further variant the lens material comprises an oxide of a metal. In this variant the lens material may especially comprise at least one oxide selected from the group consisting of SiO2, HfO2, Nb2O5 and TiO2, for instance. Other oxides may be suitable as well. The lens material may instead be amorphous silicon or amorphous germanium, for instance.
The following is a detailed description of the method in conjunction with the appended figures. The definitions as described above also apply to the following description unless stated otherwise.
The overhanging or re-entrant sidewall may especially be formed with at least one step 4. In the example shown in
The resist layer 2 may especially comprise a negative photoresist. Various methods of structuring negative photoresists to form an opening with an overhanging or re-entrant sidewall are well known in semiconductor technology and need not be further described. Standard lithography can be employed in these methods, for instance.
The deposition can be controlled to achieve essentially isotropic deposition characteristics, in particular by setting the parameters for the sputter process, for instance. The different widths w1, w2, w3, w4 of the opening 3, which define different apertures for the deposition of the lens material 5 on the carrier 1, affect the shape of the lens 6 thus obtained, in particular the curvature of its surface. As more and more lens material 5 is deposited in the opening 3, a convex structure is built up according to the different apertures and the isotropic deposition process, until the desired shape of the lens 6 is finally obtained.
The diagram of
The lens 6 can be formed in a variety of geometrical shapes, depending on the patterning of the resist layer 2. The lens 6 can at least partly be spherical or cylindrical, for instance. The circumference of the lens 6 can be a circle or a polygon like a hexagon, for instance.
The optical properties of the lens 6 also depend on the lens material 5. SiO2 can be used as the lens material 5, for instance. Sputtered SiO2 has a refractive index of about 1.4, shows virtually no dispersion in the visible spectrum and is free of absorption down to 200 nm. Further suitable lens materials are HfO2, Nb2O5 and TiO2. HfO2 has a refractive index of about 2.0 and is transparent down to 250 nm. Nb2O5 is transparent in the visible and near-infrared spectra and has a refractive index of typically 2.4. The refractive index of TiO2 is even higher with values up to 2.5, thus providing rather short focal length even for moderately curved lenses. Refractive indices of 2.4 and higher are a prerequisite for use in a clear epoxy package with a refractive index of typically 1.55. The possibility of co-sputtering enables to deposit artificial materials having refractive indices that are not available with a single material. Amorphous silicon or amorphous germanium can also favourably be used for a lens 6 that has to be transparent in the infrared spectrum.
The described method has the advantage that it enables to manufacture microlenses from inorganic material in a relatively simple and cost effective way, which is compatible with standard CMOS processes. The method is suitable for the application of lens materials that cover a wide range of the electromagnetic spectrum and provide high refractive indices. Furthermore, the described method enables to produce lenses of different materials and shapes on the same substrate. Diameters of the lens can be in the range from a few microns to typically about 80 μm. Depending on the lens geometry, very small spacings between the lenses can be achieved, especially if a two-step method is used for the deposition. The alignment of the microlenses to the substrate is more accurate if the described method is applied instead of conventional methods of producing microlenses. The comparatively high integration density that is achieved by this method facilitates the additional deposition of coatings like anti-reflective coatings, for instance on a plurality of microlenses on the same substrate.
Number | Date | Country | Kind |
---|---|---|---|
17207092.2 | Dec 2017 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/083824 | 12/6/2018 | WO | 00 |