The present application claims priority under 35 U.S.C. §119 to Korean Patent Application No. 10-2007-0103369 (filed on Oct. 15, 2008), which is hereby incorporated by reference in its entirety.
In developing logic products of 130 nm or less, a dual damascene process, in which copper with low electric conductivity and resistance is used as a wire material, has been mostly applied to a back end of line (BEOL) process. In the dual damascene process, there is a via first method to etch a via hole and then form a trench line. When the dual damascene is formed using the via first method, the inside of the via hole is filled with the same material as a bottom anti-reflection coating (BARC) film in order to prevent a lower metal from opening when the trench line is formed after the via hole is etched. Thereafter, a process for forming a trench pattern is performed in a state that a predetermined amount of the BARC film remains in the via hole through a recess process. The trench etch process uses a low-k material which includes a lot of carbon in order to lower the k value, such that the low-k material reacts with the etching gas to generate a great amount of reaction by-products. As oxide-based IMD material and material filled in the via hole are etched simultaneously, different materials are etched simultaneously to cause differences between the generated reaction by-products. As illustrated in example
Embodiments relate to a method for manufacturing a semiconductor device which prevents generation of fence defects when a dual damascene process according to a via first method is performed.
Embodiments relate to a method for manufacturing a semiconductor device that may include at least one of the following: forming an interlayer insulating layer on and/or over a substrate; and then forming a via hole by etching the interlayer insulating layer; and then filling the via hole with a first material; and then removing a portion of the first material; and then filling the via hole on and/or over the remaining first material with an oxide film; and then forming a trench photoresist pattern on and/or over the substrate filled with the oxide film; and then forming a trench line by etching the interlayer insulating layer and the oxide film using the trench photoresist pattern using an etching mask; and then opening the via hole by removing the first material filled in the via hole; and then filling the opened via hole and trench line with metal.
Embodiments relate to a method that may include at least one of the following: forming a lower wire over a substrate; and then forming a bottom anti-reflection coating over the substrate including the lower wire; and then forming a first oxide film over the substrate including the bottom anti-reflection coating; and then forming a via hole in the first oxide film to expose a portion of the bottom anti-reflection coating; and then filling the via hole with a first material; and then removing a portion of the first material to a predetermined level; and then forming a second oxide layer having a void over the first material to refill the via hole; and then forming a trench exposing first material; and then removing the first material from the via hole; and then forming a metal layer in the via hole and the trench.
Embodiments relate to a method that may include at least one of the following: forming a lower metal wire over a substrate; and then forming a first bottom anti-reflection coating over the lower wire; and then forming a first oxide layer over the first bottom anti-reflection coating; and then forming a first photoresist pattern over the first oxide layer; and then forming a via hole exposing the first bottom anti-reflection coating by performing a first etching process on the first oxide layer using the first photoresist pattern as a mask and then removing the first photoresist pattern; and then filling the via hole with one of a photoresist and a second bottom anti-reflection coating; and then removing a portion of the one of photoresist and the second bottom anti-reflection coating; and then refilling the via hole by forming a second oxide layer having a void over the one of photoresist and the second bottom anti-reflection coating; and then forming a second photoresist pattern over the second oxide layer; and then forming a trench exposing the one of the photoresist and the second bottom anti-reflection coating by performing a second etching process on the first oxide layer and the second oxide layer using the second photoresist pattern as an etching mask and then removing the second photoresist pattern; and then removing the one of photoresist and the second bottom anti-reflection coating from the via hole; and then exposing the lower metal wire by performing a third etching process on the first bottom anti-reflection coating; and then forming a metal layer in the via hole and the trench
Example
Example
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying example drawing figures. Wherever possible, the same reference numbers will be used throughout the example drawing figures to refer to the same or like parts.
As illustrated in example
As illustrated in example
As illustrated in example
As illustrated in example
As illustrated in example
With a method for manufacturing a semiconductor device in accordance with embodiments, a via hole is filled with bottom anti-reflection coating (BARC) material or photoresist (PR) material after a via hole is formed and then the via hole is recessed by ½ or more of its depth. Thereafter, an oxide film such as a low temperature oxide (LTO) is deposited in the via hole. The width of the via hole is 150 nm or less, so that the inside of the via hole is completely filled with the LTO film such that the LTO film is formed on and/or over the uppermost surface of the interlayer insulating layer, thereby forming one or more voids in the LTO film. Etching gas thereby etches only the interlayer layer and the LTO while a trench etching is performed, not forming fences around the via hole. Because the LTO has a void, the amount of reaction by-products is reduced when etching the interlayer insulating film and the LTO film to form the trench line. Also, since the LTO has a void, when forming the trench line, a corner edge 222 of the trench line is formed having a round cross-section, making it possible to more prevent the via hole from forming fences. Accordingly, the method for manufacturing a semiconductor device in accordance with embodiments prevents fences of reaction by-products formed around chain holes during a dual damascene process, so subsequent metal gap fill defects are prevented, making it possible to prevent device failure.
Although embodiments have been described herein, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2007-0103369 | Oct 2007 | KR | national |