The present invention relates to a method for manufacturing a package and structure thereof, particularly an integrated package comprising an embedded body and the structure thereof.
In recent years semiconductor package technology includes two-dimensional System on Chip (SoC) which aims to cluster electronic systems into integrated circuits formed on a single chip. It has many advantages such as lower power consumption, higher performance and smaller package area. But design of SoC takes a great deal of time, and packaging different elements on one IC still takes significant area on the produced IC, hence its range of application is limited.
System in Package (SiP) is a newly developed package technique which deploys all or most electronic functions of a system or sub-system in an integrated substrate. Compared with SoC it has many benefits such as smaller size, higher performance, shorter development cycle and lower cost. System in Package (SiP) includes many types of techniques, for example, three dimensional integration system-in-package, 3D IC and through silicon via (TSV).
However, through silicon via (TSV) technique has a much higher technical threshold and manufacturing cost, thus it is not widely adopted yet. At present other techniques such as Multi-chip Package (MCP), Stack Die, Package on Package (PoP), Package in Package (PiP) and Embedded Substrate are the main stream in the package industry.
The manufacturing methods of SiP adopted the technique of MCP and the like generally integrate a plurality of ICs into a package. However, the ICs before integration are usually not all known good dies. Hence before and after integration of ICs the problems of complex tests and heat dissipation are encountered. Moreover, in the event that any IC is damaged, the entire 3D IC has to be discarded.
Hence how to provide a solution to improve the SiP technology is a critical issue yet to be resolved.
The primary object of the present invention is to provide a package manufacturing method to facilitate assembly, expansion, test and replacement.
To achieve the foregoing object, the present invention provides a method for manufacturing an embedded package that comprises the steps of: coupling at least one first embedded body which includes at least one connection port with a first circuit substrate and packaging the first embedded body and the first circuit substrate to form a package; and cutting the package to expose the connection port of the first embedded body at an outer side of the package.
The invention also provides an embedded package structure which includes at least one package includes a first circuit substrate and at least one first embedded body to couple with the first circuit substrate. The first embedded body includes at least one connection port open at an outside of the package.
By means of the techniques set forth above, the invention improves the shortcoming of conventional techniques that packages the entire IC in one package to result in discard of the entire IC chip when a single IC is failure. Moreover, the package can be made with high pin count to serve as a carrier and the peripheral IC can be inserted into the connection port, thus the peripheral IC, module and controller can be inserted and coupled according to different requirements, or other systems or equipments also can be connected with the package through flat cables.
In short, the method for manufacturing an embedded package and structure thereof according to the invention provides many advantages, notably:
1. Easier in assembly, expansion, test and replacement of IC components;
2. Shorter manufacturing time;
3. Reduce heat accumulation;
4. Reduce cost; and
5. Improve production yield.
The foregoing features and advantages of the invention will be more readily apparent from the following detailed description, which proceeds with reference to the accompanying drawings.
Please refer to
Step 1: Referring to
Step 2: Cutting one side (indicated by arrows) of the package 3 where the first embedded body 1 is located to expose the connection ports 11 as shown in
It should be noted that at step 2, the connection ports 11 and 11a can also be exposed and open at the outer side of the package 3 through positioning of the first embedded body 1 (or the first embedded body 1a) at selected positions to save the cutting process.
Thus, please refer to
The package 3 at step 1 as previously discussed can further be implemented in another embodiment that a package 3z including a plurality of terminals p, as shown in
At present the general multi-chip package (MCP) technology integrates and packages two or more memory chips in a same Ball Grid Array (BGA) package through horizontal positioning and/or vertical stacking manner. A second embodiment of the invention also provides a novel application for the MCP technology. Please referring to
Step 1: coupling a plurality of first embedded bodies 1b each includes a plurality of connection ports 11b with a first circuit substrate 2b including multiple chips c or electronic elements d, and packaging them to form a package 3b which can be a BGA or Land Grid Array (LGA) with high pin count. In this embodiment a BGA package 3b is used. The first circuit substrate 2b has pins extended to each side thereof so that the first embedded bodies 1b can be positioned at four sides of the first circuit substrate 2b.
Step 2: cutting the four sides of the package 3b to expose the connection ports 11b and make them open at four sides of the package 3b.
Step 3: stacking a bonding intermediate layer 4 and an first electronic carrier 5 on one side of the package 3b formed at the step 2. The intermediate layer 4 can be thermal grease, a silicon substrate, a washer, a metal layer, a dielectric layer or a thin film. The first electronic carrier 5 can be a circuit substrate, a chip, an electronic element or any package elements. In this embodiment the intermediate layer 4 and the first electronic carrier 5 are respectively thermal grease and a LGA package as shown in
Furthermore, the package 3b at the step 3 mentioned above can be connected with at least one second electronic carrier 7 with a pin thereon. The second electronic carrier 7 can be another circuit board, a chip, an electronic element, a package element or a line connector for transmission, such as a peripheral IC, a controller, a LGA or BGA package, a flat cable, a signal line, or a transmission line (not shown in the drawings). Therefore the second electronic carrier 7 can be inserted into the connection ports 11b of the package 3b formed at the step 2 to form a SiP product which includes a stacked embedded package inserted by the peripheral IC.
Please refer to
Thus, in this embodiment after stacking of the package 3b and the first electronic carrier 5a, at least one second electronic carrier 7 with the pin thereon or the transmission line (such as flat cable) can be inserted into the connection port 11b of the package 3b (like in the second embodiment). Or, the second electronic carrier 7 with the pin thereon or the transmission line can also be inserted into the connection port 11c of the electronic carrier 5a stacked above the package 3b.
In addition, in the event that the second electronic carrier 7 horizontally inserted into the first electronic carrier 5a also includes the connection ports 11y, the second electronic carrier 7 also can be horizontally inserted by a third electronic carrier 8 with a pin thereon to enhance expandability, as shown in
Moreover, the structure made via the embedded package manufacturing method of the invention can be illustrated by referring to
Furthermore, when the embodiments previously discussed are cut at the step 2, the multiple first embedded bodies including the connection ports that are coupled on the same circuit substrate can be arranged and packaged according to a predetermined layout to form a package. While packaging is finished, each package is cut in an array fashion according to a predetermined path to form a plurality of separated package elements to save manufacturing time.
For instance, please referring to
Similarly, as shown in
The method of positioning the first embedded bodies and performing cutting after packaging them (not limited to the drawings or description depicted above) as discussed above can further reduce manufacturing time and improve production efficiency.
It is to be noted that the first circuit substrates 2, 2b, 2d, 2e and 2f discussed in the previous embodiments can also be implemented like a package loading board with a separable metal layer disclosed in R.O.C. patent 1421958 (illustrated in
In short, when the invention is implemented according to the manufacturing process of the first embodiment, it is applicable for production of an embedded package structure like a USB flash drive. Details are omitted herein. When the invention is implemented through the manufacturing process of the second embodiment, a stacked structure can be formed by coupling individual packages through intermediate layers, and the corresponding connection ports of the packages can be connected electrically through a connection element to finish the embedded package structure used in SiP.
When the invention is practically adopted on products, the same type of products can be coupled together, such as stacking of flash memories. In addition, products with thousands of high pin count or high complexity or high frequency application (such as products of 3D packaging, MCP, or eMCP) can be used as carriers (such as a wireless communication module), then be coupled in series with other peripheral IC package bodies (such as coupled in series with a GPS module and a multimedia module).
As a conclusion, the invention can be applied on SiP, such as 3D IC, through vertical stacking, horizontal insertion, mixed coupling through stacking and insertion, stacking and insertion after horizontal insertion or the like to get improved applicability. The method of the invention not only can overcome the drawbacks of the conventional techniques that integrate all ICs on the same stack, also can improve yield rate, save time and make assembly and test easier.
While the preferred embodiments of the invention have been set forth for the purpose of disclosure, they are not the limitation of the invention, modifications of the disclosed embodiments of the invention as well as other embodiments thereof may occur to those skilled in the art. Accordingly, the appended claims are intended to cover all embodiments which do not depart from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
102124848 | Jul 2013 | TW | national |
102133054 | Sep 2013 | TW | national |