METHOD FOR MANUFACTURING LAYERED-FILM-BEARING GLASS SUBSTRATE

Abstract
A method for manufacturing a laminated film-coated glass substrate in which a laminated film is formed on a glass ribbon by a CVD method by means of a plurality of injectors disposed in an annealing furnace and the glass ribbon is cut, wherein the laminated film is formed at Tg+50° C. or lower and at least two layers of the laminated film are formed in a temperature range of Tg+50° C. to Tg. In addition, a temperature drop K1 per unit length of the glass ribbon in a temperature range where all layers of the laminated film are formed is 0° C./m
Description
TECHNICAL FIELD

The present invention relates to a method for manufacturing a laminated film-coated glass substrate, in particular, a method for manufacturing a laminated film-coated glass substrate in which a laminated film is formed on a glass ribbon in an annealing furnace by an on-line CVD (chemical vapor deposition) method.


BACKGROUND ART

As methods for forming a film on a glass ribbon by an on-line CVD method, for example, the methods described in patent documents 1 to 3 are known.


Patent document 1 discloses a technique in which an oxide containing silicon and oxygen is deposited by a CVD method on a glass ribbon present in a float bath. The document discloses the feature of using an unsaturated hydrocarbon compound and carbon dioxide as an oxygen source in the deposition in order to prevent the molten metal within the float bath from being oxidized by oxygen gas.


Patent document 2 discloses a process in which a silicon dioxide coating film and a tin oxide coating film are successively formed on a glass ribbon by means of a coating station (injector) disposed in a float bath and a coating station disposed in an annealing furnace.


Patent document 3 discloses a process in which a nozzle (injector) is disposed in the region between the outlet of a float bath and the inlet of an annealing furnace to deposit a film on the glass ribbon.


PRIOR ART DOCUMENTS
Patent Documents



  • Patent Document 1: JP-A-1-201046

  • Patent Document 2: JP-A-3-33036

  • Patent Document 3: JP-B-4-35558



SUMMARY OF THE INVENTION
Problems that the Invention is to Solve

In general, a non-oxidizing atmosphere is used as the atmosphere surrounding the molten metal within the float bath in order to prevent the molten metal from being oxidized. Since the glass ribbon within the float bath is in a soft state, the glass ribbon is less apt to suffer warpage or cracking due to a temperature difference in the case where a deposition is conducted by a CVD method on the soft glass ribbon within the float bath.


Patent document 1 discloses the feature of using an unsaturated hydrocarbon compound and carbon dioxide as an oxygen gas source in order to prevent the molten metal within a float bath from being oxidized. This is because: an oxygen gas cannot be used for depositing an oxide in a non-oxidizing atmosphere and because it is therefore necessary to use a reactant gas which contains oxygen molecules. However, in the case where an oxide containing silicon and oxygen is deposited by this method, carbon (C) derived from the hydrocarbon or from the carbon dioxide comes into the oxide film. As a result, the film shows increased absorption and is a film deteriorated in transmittance as compared with carbon-free films.


Consequently, the oxide deposition by a CVD method in float baths has a problem that the film quality is deteriorated, and it is desired to conduct deposition outside the float bath.


Patent document 2 points out that in the case where a coating station is contained in an annealing furnace, the temperature conditions for deposition differ from the temperature conditions for annealing the glass ribbon, thereby posing a problem, and that in the case of forming a multilayer coating, the problem is further complicated.


Because of this, patent document 2 recommends that oxygen and a coating precursor which have been premixed with each other should be brought into contact with the surface of the glass ribbon in the float bath. In this method, however, sealing is necessary for confining the oxygen gas, rendering the apparatus complicated. In addition, in the case where a coating station is contained in the annealing furnace and a metal oxide coating film is formed on the glass ribbon, the glass ribbon is rapidly deprived of heat, as compared with the case where the annealing furnace contains no coating station, due to heat exchange between the glass ribbon and the injector, resulting in a possibility that the glass ribbon might deform or that scratches and cracks might generate. In particular, the larger the number of coating stations, the higher the possibility of generating scratches and cracks. There are cases where the warped glass ribbon comes into contact with the coating station to thereby generate scratches and cracks in the glass.


Patent document 2 hence discloses a problem that in the case where one or more coating stations are contained in the annealing furnace in order to form a multilayer coating, different temperature controls must be established. Despite this, the patent document discloses no specific method of suitable temperature control to be performed in the case where a plurality of coating stations have been disposed in the annealing furnace.


Patent document 3 discloses the feature of disposing a nozzle (injector) in the region between the outlet of a float bath and the inlet of an annealing furnace so as to cover the overall width of the glass. However, even though a conventional float manufacturing apparatus is desired to be utilized without changing, there is not a sufficient space for nozzle disposition between the float bath and the annealing furnace.


In addition, since no temperature control of the glass ribbon is being performed in the space between the float bath and the annealing furnace, deposition within the space between the float bath and the annealing furnace poses a problem that the glass ribbon is rapidly deprived of heat because of heat exchange between the nozzle and the glass ribbon.


The present invention has been achieved in view of the problems described above. The present invention provides a method for manufacturing a laminated film-coated glass substrate in which suitable temperature control of a glass ribbon is performed in an on-line CVD method and a laminated film is formed on the glass ribbon using a plurality of injectors disposed in the annealing furnace.


Means for Solving the Problems

The present invention provides the following aspects.


(1) A method for manufacturing a laminated film-coated glass substrate in which a glass manufacturing apparatus comprising a melting furnace capable of melting a raw material for a glass, a float bath capable of floating a molten glass on a molten metal to form a glass ribbon, and an annealing furnace capable of annealing the glass ribbon is used to form a laminated film on the glass ribbon by a CVD method by means of a plurality of injectors disposed in the annealing furnace and the glass ribbon is cut, wherein:


if a glass transition temperature is expressed by Tg, the laminated film is formed at Tg+50° C. or lower and at least two layers of the laminated film are formed in a temperature range of Tg+50° C. to Tg, and


a temperature drop K1 per unit length of the glass ribbon in a temperature range where all layers of the laminated film are formed is 0° C./m<K1<10° C./m.


(2) The method for manufacturing a laminated film-coated glass substrate according to (1), wherein the temperature drop K1 per unit length of the glass ribbon is 1° C./m≦K1≦5° C./m.


(3) The method for manufacturing a laminated film-coated glass substrate according to (1) or (2), wherein if a glass strain temperature is expressed by Ts, all layers of the laminated film are formed in a temperature range of an inlet temperature of the annealing furnace to the glass strain temperature Ts.


(4) The method for manufacturing a laminated film-coated glass substrate according to (1) or (2), wherein all layers of the laminated film are formed in the temperature range of Tg+50° C. to Tg.


(5) The method for manufacturing a laminated film-coated glass substrate according to any one of (1) to (4), wherein if a glass strain temperature is expressed by Ts, a temperature drop per unit length in a temperature range of the glass strain temperature Ts to an outlet temperature of the annealing furnace is larger than the temperature drop per unit length of the glass ribbon in the temperature range where all layers of the laminated film are formed.


(6) The method for manufacturing a laminated film-coated glass substrate according to any one of (1) to (5), wherein a heater is disposed between the injectors disposed adjacently along a conveying direction of the glass ribbon.


(7) The method for manufacturing a laminated film-coated glass substrate according to (1), wherein


the temperature drop K1 per unit length of the glass ribbon in the temperature range where all layers of the laminated film are formed is 2° C./m≦K1≦4.5° C./m, and


if the number of the plurality of injectors disposed in the annealing furnace is expressed by NINJ, a center-to-center distance TINJ between the injectors disposed adjacently along a conveying direction is 1.0 m≦TINJ≦25/NINJ m.


(8) The method for manufacturing a laminated film-coated glass substrate according to any one of (1) to (7), wherein a distance between a lower surface of the injector and the glass ribbon is 30 mm or less.


Effects of the Invention

According to the method for manufacturing a laminated film-coated glass substrate of the present invention, a method for manufacturing a laminated film-coated glass substrate has been rendered possible in which suitable temperature control of a glass ribbon is performed in an on-line CVD method and a laminated film is formed on the glass ribbon using a plurality of injectors disposed in the annealing furnace.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatic view of a glass manufacturing apparatus.



FIG. 2 is a cross-sectional view of an injector.



FIG. 3 is a cross-sectional view of one embodiment of a transparent conductive substrate for solar cells which is produced by the method for manufacturing a laminated film-coated glass substrate of the present invention.



FIG. 4 is a graph which illustrates temperature control of a glass ribbon in an annealing furnace.





MODES FOR CARRYING OUT THE INVENTION

First, one embodiment of glass manufacturing apparatus for use in the method for manufacturing a laminated film-coated glass substrate of the present invention is explained by reference to FIG. 1. In the following explanations, there are cases where the formation of at least one of the layers of a laminated film is called deposition.


As shown in FIG. 1, a glass manufacturing apparatus 50 contains a melting furnace 51 capable of melting raw materials for glass, a float bath 52 capable of floating the molten glass obtained by the melting on molten tin to form a flat glass ribbon, and an annealing furnace 54 capable of annealing the glass ribbon by gradually lowering the temperature of the glass ribbon which has been pulled out from the float bath 52 with a lifting-out roll 53.


In the annealing furnace 54, heat is supplied to required positions in the annealing furnace by means of, for example, a combustion gas or an electric heater while controlling the output thereof, and the glass ribbon which is being conveyed with conveying rollers 55 is slowly cooled to a temperature range close to ordinary temperature. The annealing furnace 54 hence has the function of eliminating the residual stress present in the glass ribbon and inhibiting the glass ribbon from warping or cracking. A plurality of injectors 60 are disposed in the annealing furnace 54, and a laminated film is formed on the glass ribbon by a CVD method. The temperature of the glass ribbon at the time when the glass ribbon enters the annealing furnace 54 is frequently around 610° C. (Tg+50° C.) in the case of soda-lime silicate glasses.


The injectors 60 are composed of six injectors 60a to 60f and form a laminated film on the glass ribbon which is being conveyed. Electric heaters 56 have been disposed between the injectors. The number of the injectors 60 is not limited to that number, and is preferably in the range of 2 to 9. The number of the electric heaters also can be increased or reduced according to need. By means of the electric heaters, the temperature of the glass ribbon is prevented from becoming too low during the conveyance from the inlet to the outlet of the annealing furnace. Meanwhile, the heaters disposed between the injectors can heat the glass ribbon present between the position for injectors but do not heat the glass ribbon present under the injectors. Consequently, the disposition of these heaters exerts no influence on the temperature change of the glass ribbon which is cooled during the conveyance from the inlet to the outlet of the injectors.


The injectors 60 (60a to 60f) are disposed on the opposite side of the glass ribbon 70 from the conveying rollers 55, i.e., disposed above the glass ribbon 70, as shown in FIG. 2. Each injector is provided with a inlet slot 61 in substantially the central part of the lower surface 65 thereof, the inlet slot 61 having a slit shape which is elongated in the direction perpendicular to the conveying direction of the glass ribbon, and with an exhaust slot 62 on each of both sides of the inlet slot 61, i.e., before and after the inlet slot 61, each exhaust slot 62 extending parallel with the inlet slot 61.


A first orifice 61a which is located at the center and second and third orifices 61b and 61c which are located respectively on both sides of the first orifice 61a, i.e., before and after the first orifice 61a, are open in the inlet slot 61, the second and third orifices 61b and 61c each having been configured so as to form a channel that is inclined from a raw-material gas supply source toward the first orifice 61a. The width of the inlet slot 61 and exhaust slots 62 is set so as to be equal to or larger than the width of the glass ribbon 70. Signs 66a and 66b denote cooling ducts, through which a cooling medium such as a cooling gas or oil is circulated to keep the injector 60 at an optimal temperature, e.g., 100 to 220° C. (measured on the lower surface of the injector). The lower surface of the injector 60 is a surface which comes into contact with raw-material gases, and in case where the temperature thereof is too high, the raw-material gases which have come into contact with the lower surface of the injector 60 undergo a reaction due to the heat and adhere thereto to deposit an unnecessary film. Because of this, as the upper limit thereof, it is preferably 250° C. or lower. Meanwhile, too low temperatures thereof result in an increased amount of heat exchange with the glass ribbon to cause a rapid temperature drop of the glass ribbon. Consequently, as the lower limit thereof, it is preferably 100° C. or higher.


The injectors 60 are disposed over the glass ribbon 70 at a distance of 3 to 30 mm therefrom. Consequently, the injectors 60 are disposed so that the lower surfaces 65 thereof face the glass ribbon 70 which is being conveyed in the annealing furnace 54, through a space of 3 to 30 mm. Smaller sizes of the space are preferred from the standpoints of film thickness, film quality, and deposition rate during deposition.


However, in the case where the size of the space fluctuates due to the warpage or vibration of the glass ribbon, a greater influence is imposed on film thickness and film quality. In the case where the space is large, a decrease in raw-material efficiency during deposition is caused. When the film thickness, film quality, and deposition rate are taken into account, the space is preferably 4 to 12 mm, and more preferably 5 to 10 mm.


Through the first orifice 61a, a gas containing a main raw material for a compound for forming an oxide film is introduced. Through the second and third orifices 61b and 61c, a reactant gas (gas serving as an oxygen source) for forming the oxide film is introduced. Through the exhaust slots 62, the excess gases remaining after the CVD reaction are discharged.


The composition of the glass ribbon can be suitably selected so long as forming by a float process is possible. Examples thereof include soda-lime silicate glasses, aluminosilicate glasses, lithium aluminosilicate glasses, borosilicate glasses, and alkali-free glasses. Of these, soda-lime silicate glasses are preferred from the standpoint that soda-lime silicate glasses are colorless and transparent, are inexpensive, and are easily available on the market in specified forms with respect to area, shape, plate thickness, etc.


The thickness of the glass ribbon can be suitably selected, and it is preferred that the glass thickness should be 0.1 to 6.0 mm. Thin glasses are less apt to have a temperature difference between the front and the back and are hence less prone to warp toward the injector side. However, since the glasses themselves are lightweight, the glass which has once warped toward the injector side does not recover from the warpage even with the aid of its own weight. Meanwhile, thick glasses are prone to have a temperature difference between the front and the back. However, force which reduces warpage is exerted thereon because of their own weight. Consequently, even when the glass thickness varies from 0.1 mm to 6.0 mm, the amount of warpage itself does not change considerably.


The kind, configuration, or the like of the laminated film to be deposited are not particularly limited, and can be suitably selected. The following explanation is given using examples in which a transparent conductive film for solar cells is formed. Examples of applications other than transparent conductive films for solar cells include antireflection films, heat-reflecting films and the like.



FIG. 3 is a cross-sectional view of one embodiment of a transparent conductive substrate for solar cells which is produced by the method for manufacturing a laminated film-coated glass substrate of the present invention. The transparent conductive substrate for solar cells is shown so that the light incidence-side surface thereof is located on the lower side in FIG. 3.


As shown in FIG. 3, the transparent conductive substrate 10 for solar cells includes, on/above a substrate 12, a titanium oxide layer 14, a silicon oxide layer 16, a first tin oxide layer 18, and a second tin oxide layer 20, as a laminated film 13, in this order from the substrate 12 side.


The material of the substrate 12 is not particularly limited, and examples thereof include soda-lime silicate glasses, aluminosilicate glasses, lithium aluminosilicate glasses, borosilicate glasses, and alkali-free glasses. Of these, soda-lime silicate glasses are preferred from the standpoint that soda-lime silicate glasses are colorless and transparent, are inexpensive, and are easily available on the market in specified forms with respect to area, shape, plate thickness, etc.


It is preferred that the thickness of the substrate 12 should be 0.2 to 6.0 mm. The substrate 12 having a thickness within this range has an excellent balance between mechanical strength and light-transmitting properties.


In FIG. 3, a titanium oxide layer 14 has been formed on the substrate 12. In the present invention, the embodiment which has a titanium oxide layer 14 between the substrate 12 and the silicon oxide layer 16 is one of suitable embodiments because the reflection which is caused at the interface between the substrate 12 and the tin oxide layers 18 and 20 by a difference in refractive index between the substrate 12 and the tin oxide layers 18 and 20 can be inhibited.


In order to form the laminated film 13 of this transparent conductive substrate 10 for solar cells by a CVD method in the annealing furnace 54 of the glass manufacturing apparatus 50 shown in FIG. 1, a titanium oxide layer 14 is formed on a glass ribbon, for example, with the first injector 60a, a silicon oxide layer 16 is formed with the second injector 60b, a first tin oxide layer 18 is formed with the third injector 60c, and a second tin oxide layer 20 is formed with the fourth to the sixth injectors 60d to 60f.


In this case, at the inlet slot 61 of the first injector 60a, vaporized tetraisopropoxytitanium is blown from the first orifice 61a and nitrogen gas is blown from the second and third orifices 61b and 61c. As a result, the tetraisopropoxytitanium undergoes a pyrolysis reaction on the glass ribbon to form a titanium oxide layer 14 on the surface of the glass ribbon which is being conveyed.


At the inlet slot 61 of the second injector 60b, silane gas is blown from the first orifice 61a and oxygen gas is blown from the second and third orifices 61b and 61c. As a result, the silane gas and the oxygen gas are mixed and reacted with each other on the titanium oxide 14 layer of the glass ribbon to form a silicon oxide layer 16 on the surface of the titanium oxide layer 14 of the glass ribbon which is being conveyed.


At the inlet slot 61 of the third injector 60c, tin tetrachloride is blown from the first orifice 61a and water vapor is blown from the second and third orifices 61b and 61c. As a result, the tin tetrachloride and the water are mixed and reacted with each other on the silicon oxide layer 16 of the glass ribbon to form a first tin oxide layer 18, which has not been doped with fluorine, on the surface of the silicon oxide layer 16 of the glass ribbon that is being conveyed.


At the inlet slots 61 of the fourth to sixth injectors 60d to 60f, tin tetrachloride is blown from the first orifices 61a and water vapor and vaporized hydrogen fluoride are blown from the second and third orifices 61b and 61c. As a result, the tin tetrachloride, the water, and the hydrogen fluoride are mixed and reacted with each other on the first tin oxide layer 18 of the glass ribbon to form a second tin oxide layer 20, which has been doped with fluorine, on the surface of the first tin oxide layer 18 of the glass ribbon that is being conveyed.


The glass ribbon above which the second tin oxide layer 20 has been formed is discharged, while being conveyed, from the annealing furnace 54, cooled to around room temperature, cut into a desired size, and carried out as transparent conductive substrates 10 for solar cells.


It is preferred in the deposition in the annealing furnace that oxide materials such as titanium oxide, silicon oxide, and tin oxide should be deposited as described above. The atmosphere in the annealing furnace is air, because it is easy to supply oxygen molecules, e.g., oxygen gas, when oxides are formed.


Here, the temperature control of the glass ribbon during deposition is explained while referring also to FIG. 4.


If the surface temperature of the glass ribbon at the time when the glass ribbon passes through the inlet of the annealing furnace 54 is expressed by Tin, the surface temperature of the glass ribbon at the time when the glass ribbon passes through the outlet of the annealing furnace 54 is expressed by Tout, the glass transition temperature is expressed by Tg, and the glass strain temperature is expressed by Ts, then the surface temperature of the glass ribbon on which deposition is to be performed is Tg+50° C. or lower but not lower than Ts. In the case where the glass ribbon has a surface temperature higher than Tg+50° C., this glass ribbon is prone to suffer “stamping flaws” or surface defects. In the case where the surface temperature thereof is lower than Ts, the raw-material gases undergo insufficient reaction due to heat.


The laminated film 13 described above which is composed of the titanium oxide layer 14, silicon oxide layer 16, first tin oxide layer 18, and second tin oxide layer 20 is formed at temperatures not higher than Tg+50° C. The laminated film 13 is formed preferably in the range of Tg+50° C. to Ts, more preferably in the temperature range of Tg+50° C. to Tg (or in the temperature range of Tin to Tg in the case where Tin is lower than Tg+50° C.).


In the case where the temperature of the glass ribbon declines to below Tg, there is a possibility that the glass ribbon might suffer considerable fluttering due to the contraction which accompanies a viscosity change of the glass. It is therefore preferred that all layers should be formed in the temperature range of Tg+50° C. to Tg. Thus, the fluttering of the glass ribbon can be inhibited regardless of the viscosity of the glass. In the case where deposition is conducted also in the temperature range of Tg to Ts, the number of layers to be formed in the temperature range of Tg to Ts is preferably 3 or less, more preferably 2 or less.


At temperatures not lower than Tg+50° C., the glass ribbon is soft and deposition on this glass ribbon is less apt to result in warpage or cracking of the glass ribbon.


The injectors 60 are kept at a temperature lower than that of the glass ribbon. Because of this, heat exchange with the injectors 60 occurs during the deposition to lower the temperature of the glass ribbon.


If the “temperature drop per unit length of the glass ribbon in a temperature range where the whole laminated film is formed” is called K1 (hereinafter also referred to simply as temperature drop K1), K1 is set so that 0° C./m<K1<10° C./m, preferably 1° C./m≦K1≦5° C./m, more preferably 2° C./m≦K1≦3.0° C./m. The temperature drop K1 is a value obtained by dividing “the temperature difference between the temperature of the glass ribbon at the inlet of the first injector in laminated film formation and the temperature of the glass ribbon at the outlet of the last injector” in the temperature range where the laminated film is formed by “the difference in distance between the position of the inlet of the first injector for laminated film formation and the position of the outlet of the last injector”. In the case where the temperature drop K1 is 10° C./m or larger, there is a possibility that the glass ribbon might deform considerably and a contact between the injector and the glass ribbon might occur, resulting in scratches and cracks of the glass ribbon. In the case where the temperature drop K1 is 0° C./m, this means that the glass ribbon is not annealed in the annealing furnace 54 during the deposition and is annealed after the deposition, resulting in the necessity of prolonging the annealing furnace 54.


The glass ribbon, the temperature of which has been lowered by the injectors 60, may be heated with, for example, electric heaters 56 disposed between the injectors 60 disposed adjacently along the conveying direction of the glass ribbon, thereby rendering the temperature drop K1 gentle. Furthermore, since the quantity of heat removed by the injectors 60 depends also on the area of the lower surfaces 65 of the injectors 60 which face the glass ribbon, the area of the lower surfaces 65 may be reduced beforehand in order to lessen the quantity of heat to be removed.


The temperatures of the glass ribbon which are used for calculating the temperature drop K1 are temperatures of the upper surface (deposition side) of the glass ribbon. It is preferred that during the deposition, the difference in temperature between the upper surface of the glass ribbon and the lower surface thereof in the same position should be 10° C. or less. By regulating the difference in temperature between the upper surface of the glass ribbon and the lower surface thereof in the same position to 10° C. or less, the glass ribbon is further inhibited from warping below the injectors and contacts between the injectors and the glass ribbon are more reliably inhibited.


In the case where the temperature range where the whole laminated film is formed is within the temperature range of Tg+50° C. to Tg and the temperature drop K1 in the range of Tg+50° C. to Tg is 2° C./m to 4.5° C./m, then the distance L which is required for the temperature of the glass ribbon to decline from Tg+50° C. to Tg is 11.1 m≦L≦25 m. It is desirable to minimize the overall length of the annealing furnace, and if the number of the injectors disposed in the annealing furnace is expressed by NINJ, the center-to-center distance TINJ between the injectors disposed adjacently along the conveying direction of the glass ribbon is 1.0 m≦TINJ≦25/NINJ m. The reason why the center-to-center distance TINJ between the adjacent injectors is set to 1.0 m or longer is that in the case where the center-to-center distance TINJ is shorter than 1.0 m, there is a possibility that adjacent injectors might be influenced by each other. In the example described above, since the number of the injectors disposed in the annealing furnace is 6, the center-to-center distance TINJ between the injectors is set at 1.0 m≦TINJ≦4.17 m. If the conveying-direction length of each injector is expressed by LINJ, then the length of the space between the adjacent injectors, in other words, the length Lh over which a heater can be disposed, is such that 1.0-LINJ m≦Lh≦4.17-LINJ m.


It is necessary that during the deposition, the space between the lower surfaces 65 of the injectors 60 and the glass ribbon should be stable. However, in the case where the glass ribbon is warped, the space between the lower surfaces 65 of the injectors 60 and the glass ribbon fluctuates and this is apt to result in unevenness in film thickness or film quality during the deposition. Especially in the case of depositing a film having a large thickness (e.g., 600 nm or larger), film stress generates and, hence, the glass ribbon which has undergone the deposition is prone to warp to a higher degree. It is therefore preferred that all layers should be formed in the temperature range of Tg+50° C. to Tg especially in the case of depositing a film having a large thickness.


In a range of temperatures lower than Ts, limited influences are exerted on glass warpage and, hence, the glass ribbon can be cooled at a rate higher than the temperature drop of the glass ribbon in the temperature range where all layers of the laminated film 13 are formed.


EXAMPLES

Examples of the present invention are explained below.


In the Examples explained below, temperature measurements were made with contact type thermocouple Type K (sensor; 213K-TC1-ASP, manufactured by Anritsu Meter Co., Ltd.).


Example 1

In this Example, six injectors 60a to 60f were disposed in an annealing furnace and electric heaters 56 were disposed between the injectors, as shown in FIG. 1, in the production of a soda-lime glass. A titanium oxide layer 14 was formed on a glass ribbon with the first injector 60a, a silicon oxide layer 16 was formed thereon with the second injector 60b, a first tin oxide layer 18 was formed thereon with the third injector 60c, and a second tin oxide layer 20 was formed thereon with the fourth to sixth injectors 60d to 60f. Thereafter, the glass ribbon was cut into a desired size to form the transparent conductive film 10 for solar cells which is shown in FIG. 3. The gases introduced from the injectors 60a to 60f are as described above. In particular, since oxygen gas was able to be used for silicon oxide formation, the film was free from deterioration in film quality and showed little absorption. The space between the lower surfaces of the injectors and the glass ribbon was regulated to 7 mm±1 mm.


The glass ribbon temperature at the inlet of the annealing furnace was regulated to 610° C., and the glass ribbon temperature at the outlet of the annealing furnace was regulated to 250° C. With respect to the soda-lime glass which had a glass transition temperature Tg of 560° C. and a glass strain temperature Ts of 510° C., three injectors were disposed for the temperature range of Tg+50° C. to Tg, i.e., the temperature range of 610° C. to 560° C., to form three layers in the temperature range of Tg+50° C. to Tg. Furthermore, three injectors were disposed for the temperature range of 560° C. to 510° C. to form three layers in the temperature range of Tg to Ts. During this operation, the glass ribbon was heated with the electric heaters to thereby keep the temperature drop per unit length in the temperature range of Tg+50° C. to Tg at 2° C./m to 3° C./m and at 2.5° C./m on average. The temperature drop per unit length in the temperature range of Tg to Ts was kept also at 2° C./m to 3° C./m, and the temperature drop K1 per unit length of the glass ribbon in the temperature range where the whole laminated film was formed was 2.5° C./m. In this operation, the temperature by which the glass ribbon was cooled during conveyance from the inlet of each injector, Iin, to the outlet thereof, Iout, was 2 to 8° C. From the glass strain temperature of 510° C. to 250° C., which was the outlet temperature, the glass ribbon was annealed at the temperature drop per unit length of 10° C./m to 14° C./m and at 13° C./m on average. During the deposition of the laminated film by the CVD method, the glass ribbon suffered neither cracking nor warpage. After having been cooled, the glass ribbon was cut into a desired size to obtain a transparent conductive film-coated substrate for solar cells.


The warpage of the transparent conductive substrate for solar cells thus produced was measured. As a result, the warpage thereof was found to be 0.3 mm, which was within an acceptable range (1 mm). Neither scratches nor cracks, etc. occurred. The warpage measurement was made by the following method. Both ends of the transparent conductive substrate for solar cells which had a product size (1,100 mm×1,400 mm) were supported horizontally, and the distance from the sensor to the front surface of the transparent conductive substrate for solar cells was measured. Furthermore, the transparent conductive substrate for solar cells was turned over, and the distance from the sensor to the back surface of the transparent conductive substrate for solar cells was measured. The influence of the deflection due to the own weight of the substrate was excluded.


Example 2

In order to produce a similar transparent conductive film-coated substrate for solar cells, the output of the glass ribbon and the conditions of heating with the heaters were changed and a similar laminated film was formed with six injectors. The six injectors were disposed at regular intervals so that the center-to-center distance between the injectors was 2 m. The output P of the glass ribbon was 500 tons/day, and the area S of the lower surface of injector was 1.76 m2.


Use was made of a soda-lime glass having a glass transition temperature Tg of 560° C., a glass strain temperature Ts of 510° C., and a plate thickness of 3.2 to 3.9 mm. The glass ribbon temperature was determining by measuring the temperature of the upper surface of the glass ribbon with the contact type thermocouple Type K.


The temperature of the glass ribbon was measured before and after the injector. The distance between the measuring points was 2 m. The temperature of the glass ribbon surface which underlay the center of the injector was determined by a calculation. Since the main factor which contributes to the decrease of the temperature of the glass ribbon is cooling due to radiation to the injectors, the average of the temperatures measured before and after the injector was taken as the temperature of the glass ribbon surface underlying the center of the injector. The temperature measurement positions during the deposition of a transparent conductive film using the six injectors and the temperatures of the glass ribbon at the centers of the injectors are shown in Table 1.












TABLE 1









Glass ribbon




temperature










Position

Calcu-
Temperature











Dis-

Measured
lated
change with


tance

temperature
value
one injector


(m)
Position name
(° C.)
(° C.)
(° C.)














0
Temperature measurement
600





position 1



Position of injector 1

595
10° C. 


2
Temperature measurement
590



position 2



Position of injector 2

586
8° C.


4
Temperature measurement
582



position 3



Position of injector 3

578
8° C.


6
Temperature measurement
574



position 4



Position of injector 4

569.5
9° C.


8
Temperature measurement
565



position 5



Position of injector 5

561
8° C.


10
Temperature measurement
557



position 6



Position of injector 6

553.5
7° C.


12
Temperature measurement
550



position 7









As apparent from Table 1, the temperature by which the glass ribbon was cooled during conveyance from the inlet to the outlet of each injector was 10° C. or less.


The temperature difference between the temperature at the inlet of the first injector and the temperature at the outlet of the last injector was determined from Table 1, and this temperature difference was divided by the difference in distance between the position of the inlet of the first injector and the position of the outlet of the last injector, i.e., 10.5 m. The thus-determined temperature drop K1 per unit length in the temperature range where all layers were formed is shown in Table 2.










TABLE 2







Temperature drop K1 per unit length in the temperature range
4.8° C./m


where all layers were formed









As shown in Table 2, the temperature drop K1 per unit length in the temperature range where all layers were formed was 4.8° C./m.


In also the thus-produced transparent conductive substrate for solar cells, the deposition with six injectors in the annealing furnace was able to be carried out without causing the problem that a contact between the injector and the glass ribbon caused scratches and cracks to the glass ribbon. From the glass strain temperature of 510° C. to 250° C., which was the outlet temperature, the glass ribbon was annealed at the temperature drop per unit length of 10° C./m to 14° C./m and at 13° C./m on average. After having been cooled, the glass ribbon was cut into a desired size to obtain a transparent conductive film-coated substrate for solar cells.


Example 3

Deposition was conducted using six injectors while cooling a soda-lime glass in an annealing furnace in the same manner as in Example 2, except that the output and plate thickness of the glass ribbon, and conditions for heating with the heaters were changed. The soda-lime glass used here had a Tg of 560° C. and a Ts of 510° C. The output P of the glass ribbon was 640 tons/day, the plate thickness was 2.2 mm, and the area S of the lower surface of the injector was 1.76 m2.


As in Example 2, the temperature measurement positions during the deposition of a transparent conductive film using the six injectors and the temperatures of the glass ribbon at the centers of the injectors are shown in Table 3.












TABLE 3









Glass ribbon




temperature










Position

Calcu-
Temperature











Dis-

Measured
lated
change with


tance

temperature
value
one injector


(m)
Position name
(° C.)
(° C.)
(° C.)














0
Temperature measurement
577





position 1



Position of injector 1

573.5
7° C.


2
Temperature measurement
570



position 2



Position of injector 2

567
6° C.


4
Temperature measurement
564



position 3



Position of injector 3

561
6° C.


6
Temperature measurement
558



position 4



Position of injector 4

555
6° C.


8
Temperature measurement
552



position 5



Position of injector 5

549
6° C.


10
Temperature measurement
546



position 6



Position of injector 6

543.5
5° C.


12
Temperature measurement
541



position 7









As apparent from Table 3, the temperature by which the glass ribbon was cooled during conveyance from the inlet to the outlet of each injector was 10° C. or less.


The temperature difference between the temperature at the inlet of the first injector and the temperature at the outlet of the last injector was determined from Table 3, and this temperature difference was divided by the difference in distance between the position of the inlet of the first injector and the position of the outlet of the last injector, i.e., 10.5 m. The thus-determined temperature drop K1 per unit length in the temperature range where all layers were formed is shown in Table 4.










TABLE 4







Temperature drop K1 per unit length in the temperature range
3.4° C./m


where all layers were formed









As shown in Table 4, the temperature drop K1 per unit length in the temperature range where all layers were formed was 3.4° C./m.


Furthermore, the temperature drop K1 per unit length of the glass ribbon in the temperature range where all layers were formed was 2° C./m≦K1≦4.5° C./m. Moreover, the number of the plurality of injectors (NINJ) was 6, and the center-to-center distance (TINJ) between the injectors disposed adjacently along the conveying direction was 2 m, and satisfied 1.0 m≦TINJ≦25/NINJ m.


In the thus-produced transparent conductive substrate for solar cells also, the deposition with six injectors in the annealing furnace was able to be carried out without causing the problem that a contact between the injector and the glass ribbon caused scratches and cracks to the glass ribbon. From the glass strain temperature of 510° C. to 250° C., which was the outlet temperature, the glass ribbon was annealed at the temperature drop per unit length of 10° C./m to 14° C./m and at 13° C./m on average. After having been cooled, the glass ribbon was cut into a desired size to obtain a transparent conductive film-coated substrate for solar cells.


Reference Examples

Furthermore, when a transparent conductive film for solar cells was deposited in the production process of the present invention, the temperature of the lower surface of the glass ribbon was measured at each of the positions where the temperatures of the upper surface of the glass ribbon were 590° C., 560° C., and 550° C.


Temperature of the lower surface of the glass ribbon at the position where the temperature of the upper surface was 590° C.: 580° C.


Temperature of the lower surface of the glass ribbon at the position where the temperature of the upper surface was 560° C.: 560° C.


Temperature of the lower surface of the glass ribbon at the position where the temperature of the upper surface was 550° C.: 550° C.


The temperature differences in the thickness direction of the glass ribbon were 10° C. or less.


It can be seen from the results that in the production process of the present invention, the glass ribbon has a narrow temperature distribution in the thickness direction, and it is presumed that the glass ribbon warps little.


As explained above, according to the method for manufacturing the glass substrate shown as the present embodiments, a contact between the injector and the glass ribbon can be avoided and the glass ribbon can be inhibited from suffering scratches or cracks, when a laminated film is formed on the glass ribbon in the annealing furnace by an on-line CVD method, by forming the laminated film at Tg+50° C. or lower and forming at least two of the layers of the laminated film in the temperature range of Tg+50° C. to Tg and by regulating the temperature drop of the glass ribbon in the temperature range where all layers of the laminated film are formed to 0° C./m<K1<10° C./m.


Furthermore, by forming all layers of the laminated film in the temperature range of Tg+50° C. to Tg, the fluttering of the glass ribbon due to the contraction of the glass ribbon can be avoided.


The present invention is not limited to the above-described embodiments, and will be carried out with various modifications without departing from the spirit and scope thereof.


For example, although the electric heaters are exemplified as a heater, any heating means can be used without limiting thereto.


This application is based on Japanese Patent Application No. 2011-154314 filed on Jul. 12, 2011, the entire subject matters of which are incorporated herein by reference.


DESCRIPTION OF REFERENCE NUMERALS


10 Transparent conductive substrate for solar cell



13 Laminated film



50 Glass manufacturing apparatus



51 Melting furnace



52 Float bath



54 Annealing furnace



56 Electric heater



60 Injector



70 Glass ribbon

Claims
  • 1. A method for manufacturing a laminated film-coated glass substrate in which a glass manufacturing apparatus comprising a melting furnace capable of melting a raw material for a glass, a float bath capable of floating a molten glass on a molten metal to form a glass ribbon, and an annealing furnace capable of annealing the glass ribbon is used to form a laminated film on the glass ribbon by a CVD method by means of a plurality of injectors disposed in the annealing furnace and the glass ribbon is cut, wherein: if a glass transition temperature is expressed by Tg, the laminated film is formed at Tg+50° C. or lower and at least two layers of the laminated film are formed in a temperature range of Tg+50° C. to Tg, anda temperature drop K1 per unit length of the glass ribbon in a temperature range where all layers of the laminated film are formed is 0° C./m<K1<10° C./m.
  • 2. The method for manufacturing a laminated film-coated glass substrate according to claim 1, wherein the temperature drop K1 per unit length of the glass ribbon is 1° C./m≦K1≦5° C./m.
  • 3. The method for manufacturing a laminated film-coated glass substrate according to claim 1, wherein if a glass strain temperature is expressed by Ts, all layers of the laminated film are formed in a temperature range of an inlet temperature of the annealing furnace to the glass strain temperature Ts.
  • 4. The method for manufacturing a laminated film-coated glass substrate according to claim 1, wherein all layers of the laminated film are formed in the temperature range of Tg+50° C. to Tg.
  • 5. The method for manufacturing a laminated film-coated glass substrate according to claim 1, wherein if a glass strain temperature is expressed by Ts, a temperature drop per unit length in a temperature range of the glass strain temperature Ts to an outlet temperature of the annealing furnace is larger than the temperature drop per unit length of the glass ribbon in the temperature range where all layers of the laminated film are formed.
  • 6. The method for manufacturing a laminated film-coated glass substrate according to claim 1, wherein a heater is disposed between the injectors disposed adjacently along a conveying direction of the glass ribbon.
  • 7. The method for manufacturing a laminated film-coated glass substrate according to claim 1, wherein: the temperature drop K1 per unit length of the glass ribbon in the temperature range where all layers of the laminated film are formed is 2° C./m≦K1≦4.5° C./m, andif the number of the plurality of injectors disposed in the annealing furnace is expressed by NINJ, a center-to-center distance TINJ between the injectors disposed adjacently along a conveying direction is 1.0 m≦TINJ≦25/NINJ m.
  • 8. The method for manufacturing a laminated film-coated glass substrate according to claim 1, wherein a distance between a lower surface of the injector and the glass ribbon is 30 mm or less.
Priority Claims (1)
Number Date Country Kind
2011-154314 Jul 2011 JP national
Continuations (1)
Number Date Country
Parent PCT/JP2012/067866 Jul 2012 US
Child 14152056 US