The present application is a 35 U.S.C. §371 national stage patent application of International patent application PCT/JP2012/002361, filed on Apr. 4, 2012, published as WO/2012/164803 on Dec. 6, 2012, the text of which is incorporated by reference, and claims the benefit of the filing date of Japanese application no. 2011-124439, filed on Jun. 2, 2011, the text of which is also incorporated by reference.
The present invention relates to a method for selecting a polycrystalline silicon rod to be used as a raw material for use in the production of single-crystalline silicon, and more specifically relates to a method for selecting a non-oriented polycrystalline silicon rod suitable for stably producing single-crystalline silicon.
Single-crystalline silicon essential for the production of devices such as semiconductor devices is grown as a crystal by the CZ method and the FZ method, and a polycrystalline silicon rod or a polycrystalline silicon block is used as the raw materials in such a case. Such a polycrystalline silicon material is produced in many cases by the Siemens method (see, for example, Patent Literature 1). The Siemens method is a method in which by bringing a gas of a silane raw material such as trichlorosilane or monosilane into contact with a heated silicon core wire, polycrystalline silicon is grown in the vapor phase (deposited) on the surface of the silicon core wire by the CVD (Chemical Vapor Deposition) method.
For example, when single-crystalline silicon is crystal-grown by the CZ method, a polycrystalline silicon block is charged in a quartz crucible and heated to be melted, a seed crystal is dipped in the resulting silicon melt to extinguish dislocation lines to be made free from dislocation, and then the crystal pulling up is performed while the crystal diameter is being slowly expanded until the diameter of the crystal reaches a predetermined diameter. In this case, when unmelted polycrystalline silicon remains in the silicon melt, the unmelted polycrystalline pieces drift in the vicinity of the solid-liquid interface by convection to induce the generation of dislocation, and thus the polycrystalline silicon remaining unmelted causes the crystal line to be extinguished.
The present inventors have obtained, in the course of the investigation of the quality improvement of polycrystalline silicon for the purpose of stably performing the production of single-crystalline silicon, findings such that, depending on the conditions at the time of the deposition of polycrystalline silicon, differences occur in the randomness of the orientation of the crystal grains in the polycrystalline silicon rod. In contrast to single-crystalline silicon, a polycrystalline silicon block includes a large number of crystal grains, and such a large number of crystal grains tend to be regarded as independently randomly oriented. However, according to the investigation performed by the present inventors, the crystal grains included in a polycrystalline silicon block are not necessarily completely randomly oriented.
In a powder sample obtained by pulverizing a polycrystalline silicon block, the individual crystal grains can be handled as completely randomly oriented. In fact, in an X-ray diffraction measurement performed with a powder sample, even when the powder sample is rotated arbitrarily in relation to the incident X-ray, no change is found in the chart obtained.
On the contrary, according to the results of the X-ray diffraction measurement performed by the present inventors by sampling plate-like samples, each having as a principal plane thereof a cross section perpendicular to the long axis direction of a polycrystalline silicon rod, from many different polycrystalline silicon rods grown by the deposition using a chemical vapor deposition method, and by performing X-ray diffraction measurement omnidirectionally in the plane of each of the plate-like samples, it has been revealed that a remarkable dependence on the X-ray incident direction is sometimes found in the diffraction intensity of any of the X-ray diffraction peaks from the crystal planes having the Miller indices of <111>, <220>, <311> and <400>.
Such a remarkable dependence on the X-ray incident direction means that the crystal grains included in the polycrystalline silicon block are not randomly oriented, and the crystal grains tend to align in the direction of the crystal plane having a specific Miller index.
It has also been revealed that when a polycrystalline silicon rod or a polycrystalline silicon block including crystal grains oriented in the direction of the crystal plane having a specific Miller index is used as a raw material for use in the production of single-crystalline silicon, portions remaining unmelted are sometimes locally caused, and such portions remaining unmelted induce the occurrence of the dislocations and can be a cause for the extinguishment of the crystal line.
The present invention has been achieved on the basis of a novel finding that differences are caused in the orientation randomness of the crystal grains in the polycrystalline silicon depending on the various conditions at the time of the deposition in the growth of the polycrystalline silicon rod by using a chemical vapor deposition method; and an object of the present invention is to provide a polycrystalline silicon material having a high random orientation property, namely, a non-oriented polycrystalline silicon rod and a non-oriented polycrystalline silicon block so as to contribute to the stable production of single-crystalline silicon.
In order to solve the foregoing technical problem, the method for selecting a polycrystalline silicon rod according to the present invention is a method for selecting a polycrystalline silicon rod to be used as a raw material for use in the production of single-crystalline silicon, wherein the polycrystalline silicon rod is a product grown by the deposition using a chemical vapor deposition method; and plate-like samples each having as a principal plane thereof a cross section perpendicular to the long axis direction of the polycrystalline silicon rod are sampled; an X-ray diffraction measurement is performed omnidirectionally in the plane of each of the plate-like samples; and when none of the plate-like samples has any X-ray diffraction peak with a diffraction intensity deviating from the average value ±2×standard deviation (μ±2σ) found for any one of the Miller indices <111>, <220>, <311> and <400>, the polycrystalline silicon rod is selected as the raw material for use in the production of single-crystalline silicon.
The polycrystalline silicon rod thus selected or the polycrystalline silicon block obtained by pulverizing the polycrystalline silicon rod thus selected for any one of the Miller indices <111>, <220>, <311> and <400> is polycrystalline silicon having an orientation property such that no X-ray diffraction peak having a diffraction intensity deviating from the average value ±2×standard deviation (μ±2σ) is shown; and in the method for producing single-crystalline silicon according to the present invention, the polycrystalline silicon rod thus selected or the polycrystalline silicon block obtained by pulverizing the polycrystalline silicon rod thus selected is used as a raw material for use in the production of single-crystalline silicon.
The crystal growth performed with the polycrystalline silicon rod according to the present invention by the FZ method, or the crystal growth performed by the CZ method with the polycrystalline silicon block obtained by crushing the polycrystalline silicon rod suppresses the local occurrence of the portions remaining unmelted, and can contribute to the stable production of single-crystalline silicon.
Hereinafter, the embodiments of the present invention are described with reference to the accompanying drawings.
The diameter of the polycrystalline silicon rod 10 illustrated in
The case where the portions from which the rods 11 are sampled are the foregoing three portions satisfactorily represents the properties of the whole of the silicon rod 10; however, the sampled portions depend on the diameter of the silicon rod 10 or the diameters of the gouged rods 11, and hence the sampling is not required to be limited to the foregoing case, and may be performed from any portions as long as the properties of the whole of the silicon rod 10 can be rationally estimated. The length of each of the rods 11 may be appropriately determined in consideration of the factors such as workability. Further, the plate-like sample 20 may be sampled from any portion of each of the gouged rods 11.
The method for sampling the plate-like sample 20 is also not particularly limited.
As shown in
The diameter of the plate-like sample 20 of nearly 10 mm is just an illustrative example, and the diameter may be appropriately determined within a range causing no troubles in the X-ray diffraction measurement.
Such a profile measurement is performed by rotating with small rotational intervals the plate-like sample 20 in the YZ-plane, and a profile is obtained at every rotation angle (φ) in the YZ-plane. The below-described evaluation of the non-orientation property is performed on the basis of the radar chart obtained from the X-ray diffraction measurement carried out by rotating the plate-like sample 20 by 360 degrees in the YZ-plane, namely, the X-ray diffraction measurement carried out omnidirectionally (φ=0° to 360°) in the plane of the plate-like sample 20.
As described above, a sample prepared as a powder by pulverizing polycrystalline silicon can be handled as being perfectly randomly oriented, the X-ray diffraction chart obtained from such a powder sample comes to be a chart such as the chart shown in
The present inventors use the “circularity” of such a radar chart as a reference of the non-orientation property; the case showing no peaks deviating from the average value ±2×standard deviation (μ±2σ), to include 95% of the total data of the diffraction intensity, is defined as “non-oriented,” and the case showing peaks deviating from μ±2σ is evaluated as “oriented.”
According to the evaluation, performed by the present inventors, of a large number of the polycrystalline silicon rods different from each other in the production conditions, depending on the conditions such as the deposition conditions, differences are found in the degree of the orientation in terms of the above-described meaning; alternatively, it has been revealed that even in one and the same polycrystalline silicon rod, the portions close to the silicon core wire and the portions close to the side surface of the polycrystalline silicon rod are sometimes found to be different in the degree of the orientation. Within the range investigated by the present inventors, in the case of the “orientated” polycrystalline silicon rod, the samples sampled from the portions closer to the side surface of the polycrystalline silicon rod tend to have higher orientation property.
Accordingly, in the present invention, for the purpose of stably performing the production of single-crystalline silicon by using a non-oriented polycrystalline silicon raw material, plate-like samples each having as a principal plane thereof a cross section perpendicular to the long axis direction of a polycrystalline silicon rod grown by the deposition using a chemical vapor deposition method are sampled; an X-ray diffraction measurement is performed omnidirectionally in the plane of each of the plate-like samples thus samples; and when none of the plate-like samples has any X-ray diffraction peak with a diffraction intensity deviating from the average value ±2×standard deviation (μ±2σ) for any one of the Miller indices <111>, <220>, <311> and <400>, the polycrystalline silicon rod is selected as the raw material for use in the production of single-crystalline silicon. For example, in the case where the plate-like samples 20 are sampled from three portions by the sampling method shown in
The polycrystalline silicon rod thus selected or the polycrystalline silicon block obtained by pulverizing the polycrystalline silicon rod thus selected for any one of the Miller indices <111>, <220>, <311> and <400> is polycrystalline silicon having an orientation property such that no X-ray diffraction peak having a diffraction intensity deviating from the average value ±2×standard deviation (μ±2σ) is shown; and in the method for producing single-crystalline silicon according to the present invention, the polycrystalline silicon rod thus selected or the polycrystalline silicon block obtained by pulverizing the polycrystalline silicon rod thus selected is used as a raw material for use in the production of single-crystalline silicon.
The crystal growth performed by the FZ method with the non-oriented polycrystalline silicon rod, or the crystal growth performed by the CZ method with the non-oriented polycrystalline silicon block obtained by crushing the non-oriented polycrystalline silicon rod suppresses the local occurrence of the portions remaining unmelted, and can contribute to the stable production of single-crystalline silicon.
Table 1 collectively shows the results of counting the X-ray diffraction peaks deviating from the average value ±2×standard deviation (μ±2σ) for each of the Miller indices <111>, <220>, <311> and <400> for each of the eight polycrystalline silicon rods grown by the deposition using a chemical vapor deposition method, wherein for each of the eight rods, the radar chart prepared according to the foregoing procedure for the 20 CTR of the three plate-like samples sampled by the method shown in
However, the diffraction intensity from the lattice plane of the Miller index <400> shows an extremely distorted shape, and in the profile measured at a rotation angle of φ=45°, an X-ray diffraction peak largely deviating from the average value ±2×standard deviation (μ±2σ) was found to appear.
However, the diffraction intensity from the lattice plane of the Miller index <111> shows an extremely distorted shape, and in the profile measured at a rotation angle of φ=270°, an X-ray diffraction peak largely deviating from the average value ±2×standard deviation (μ±2σ) was found to appear.
According to such a procedure as described above, the “non-oriented” polycrystalline silicon rods (Example) and the “oriented” polycrystalline silicon rods (Comparative Example) were classified, and the preparation experiments of the single-crystalline ingots were performed with the FZ method by using as the raw materials the respective polycrystalline silicon rods, and the occurrence/non-occurrence of the extinguishment of the crystal line was examined. The three polycrystalline silicon rods (non-oriented products) of Example and the three polycrystalline silicon rods (oriented products) of Comparative Example were used and the crystal growth conditions other than crystal growth conditions of the polycrystalline silicon rods were designed to be the same. The results thus obtained are collected in Table 2.
As can be clearly seen from the above-described results, the use of the polycrystalline silicon materials high in random orientation property, namely, the non-oriented polycrystalline silicon materials allows the rate of becoming free from dislocation to be 100% and thus allows single-crystalline silicon to be stably produced.
The present invention contributes to the stable production of single-crystalline silicon.
Number | Date | Country | Kind |
---|---|---|---|
2011-124439 | Jun 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/002361 | 4/4/2012 | WO | 00 | 10/14/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/164803 | 12/6/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5976481 | Kubota et al. | Nov 1999 | A |
20060211218 | Boyle et al. | Sep 2006 | A1 |
20080152805 | Boyle et al. | Jun 2008 | A1 |
20080286550 | Sofin et al. | Nov 2008 | A1 |
20100009123 | Boyle et al. | Jan 2010 | A1 |
20100077897 | Gurley | Apr 2010 | A1 |
20100219380 | Hertlein et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
10 2007 047 210 | Apr 2009 | DE |
1 992 593 | Nov 2008 | EP |
37 18861 | Jan 1961 | JP |
2006 89353 | Apr 2006 | JP |
2007-240192 | Sep 2007 | JP |
2010 540395 | Dec 2010 | JP |
97 44277 | Nov 1997 | WO |
Entry |
---|
International Search Report Issued Jun. 19, 2012 in PCT/JP12/002361 Filed Apr. 4, 2012. |
Extended European Search Report issued Sep. 4, 2014 in Patent Application No. 12791960.3. |
Number | Date | Country | |
---|---|---|---|
20140033966 A1 | Feb 2014 | US |