METHOD FOR SIMULTANEOUS SEQUENCE-BASED TYPING OF 14 FUNCTIONAL KILLER CELL IMMUNOGLOBULIN-LIKE RECEPTOR (KIR) GENES

Abstract
Based on the structural features of KIR full genomic sequences, the distribution of single nucleotide polymorphisms in their coding regions and the length of flanking intronic sequence of each exon, a method for high-throughput simultaneous sequence-based typing of all the 14 functional killer cell immunoglobulin-like receptor (KIR) genes is disclosed including: developing a scientific and reasonable polymerase chain reaction (PCR) amplification strategy; simultaneously amplifying the complete coding sequence of each functional KIR gene using 3˜5 pairs of KIR gene-specific PCR primers that have similar annealing temperature; and determining the nucleotide sequences of the exons carried by each PCR amplicon in both directions using the forward and reverse sequencing primers, respectively, as shown in FIG. 1.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority to Chinese Patent Application No. 201710284545.3 filed on Apr. 25, 2017, the entire contents of which are incorporated herein by reference.


REFERENCE TO SEQUENCE LISTING

The Sequence Listing is submitted concurrently with the specification as an ASCII formatted text file via EFS-Web, with a file name of “Sequence listing.txt”, a creation date of Sep. 4, 2017, and a size of 61,660 bytes. The Sequence Listing filed via EFS-Web is part of the specification and is incorporated in its entirety by reference herein.


FIELD OF THE DISCLOSURE

The present disclosure is involved in biomedicine, and particularly gets involved in DNA sequence-based typing (SBT). The present disclosure provides a method for high-throughput simultaneous sequence-based typing of all the 14 functional killer cell immunoglobulin-like receptor (KIR) genes.


BACKGROUND OF THE DISCLOSURE

Killer cell immunoglobulin-like receptors (KIRs) belong to immunoglobulin superfamily and are expressed on both natural killer (NK) cells and a subset of T cells. Based on the number of extra-cellular domains, KIR genes are classified as KIR2D and KIR3D. Depending on the length of the cytoplasmic tail and the presence or absence of immunoreceptor tyrosine-based inhibitory motif (ITIM), KIRs can be functionally divided into inhibitory KIR (iKIR) and activating KIR (aKIR). KIR receptors regulate NK cell activities and convey activating or inhibitory signal through interaction with class I human leukocyte antigen (HLA) ligands, which play an important role in transplantation, elimination of tumor cells and resistance to viral infection through innate immune pathways.


The KIR gene cluster on human chromosome 19 consists of 14 functional KIR genes (KIR2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 3DL1, 3DL2, 3DL3, 3DS1) and two pseudogenes (KIR2DP1 and 3DP1) (1). The structure of KIR genes is extremely complicated. Except that KIR3DL3 lacks exon 6, other functional KIR3D genes including 3DL1, 3DL2, and 3DS1 possess 9 exons, 8 introns, a 5′-promoter region and a 3′-untranslated region (3′-UTR). Exons 1 and 2 encode leader peptide. Exons 3, 4 and 5 encode the extra-cellular domains D0, D1 and D2, respectively. Exon 6 encodes the stem. Exon 7 encodes the transmembrane region. Exons 8 and 9 encode the cytoplasmic region. Among the KIR2D genes, KIR2DL1-3 and 2DS1˜5 have an untranslated pseudoexon 3, which results in the absence of the corresponding extra-cellular domain D0. KIR2DL4 and 2DL5 are characterized by the complete absence of exon 4, and therefore their protein product has no extra-cellular domain D1.


The full genomic sequences for all the KIR alleles released in the IPD-KIR database varies from 9901 bp to 17009 bp in size (2). However, the coding sequences (CDS) of each functional KIR gene has a total length of only 915˜1368 bp (see Table 3), which imply that the non-coding sequence (8773˜15641 bp) accounts for the majority of full genomic sequences of KIR gene (see Table 4). Particularly, the length of introns 5 and 6 accounts for 44.0%˜61.2% of the full genomic sequence of corresponding KIR gene (also see Table 4).


Both exon 1 (either 34 or 40 bp) and exon 2 (36 bp) of each functional KIR gene are short in length and have limited single nucleotide polymorphism sites (SNPs). KIR2DL2, 2DL4 and 2DS4 lack SNPs in both exons 1 and 2, whereas other functional KIR genes possess 1-3 SNPs, respectively. Thus, routine sequence-based typing at exons 1 and 2 is not required for each KIR gene. In addition, intron 1, which is located between exon 1 and exon 2, is 199˜2280 bp in length. Polymerase chain reaction (PCR) amplificon covering the entire exon 1, exon 2 and the intervening intron 1 will be moderate in length for each KIR gene and can be amplified effectively.


Exon 3, exon 4 or exon 5 of each functional KIR gene is relatively long in length (282˜300 bp) and has much SNPs. Since pseudoexon 3 for KIR2DL1˜3 and 2DS1˜5 doesn't required to be detected, PCR amplification covering the entire exon 4, intron 4 and exon 5 can be achieved in a single amplicon using one pair of KIR gene-specific PCR primers, and then sequencing of exons 4 and 5 needs to be performed separately in both directions for these 8 functional KIR genes. Likewise, both KIR2DL4 and 2DL5 miss exon 4, PCR amplication covering the entire exon 3, intron 3/4 and exon 5 can be achieved in a single amplicon using one pair of KIR gene-specific PCR primers and then sequencing of exons 3 and 5 needs to be performed separately in both directions. As for the other four functional KIR genes (KIR3DS1, 3DL1˜3), which all possess exons 3, 4 and 5, the PCR amplication covering the entire exon 3, intron 3, exon 4, intron 4 and exon 5 can be achieved in a single amplicon using one pair of KIR gene-specific primers and then the sequencing of exons 3, 4 and 5 needs to be performed separately in both directions.


Apart from KIR3DL3 without exon 6, the exon 6 of all the other functional KIR genes is only 51 bp in length. According to the IPD-KIR Database (Release 2.6.0), KIR2DS4, 3DL1, 3DL2, and 3DS1 genes lack SNPs in exon 6, other functional KIR genes possess 1˜2 SNPs. The distribution of SNPs located in exon 6 of each KIR gene is limited. However, the flanking intronic sequences of exon 6 which include introns 5 and 6 have a total length of up to 4937˜9841 bp (see Table 4). To ensure the effective PCR amplication, the entire intronic sequences of intron 5 and/or intron 6 should be avoided in case of generating extreme long PCR amplicon. Thus, the target sequence of exon 6 for each KIR gene should be amplified separately in a single amplicon if necessary.


The length for exons 7, 8 and 9 of each functional KIR gene is 102˜105 bp, 51˜53 bp and 8˜270 bp, respectively. The length for introns 7 and 8 is 460˜462 bp and 98˜118 bp, respectively. Therefore, PCR amplification covering entire exon 7, intron 7, exon 8, intron 8, and exon 9 can be performed in a single amplicon and will not generate ultra-long PCR fragment.


The structural features of full genomic sequence for all functional KIR genes, the characteristic of SNPs distribution in coding sequence and the length of each exon and its flanking intronic sequence that we have mentioned above, are critical to develop a scientific and efficient PCR amplification strategy.


KIR genes exhibit extensive diversity in both haplotype content and allelic diversification. So far 698 KIR alleles including 7 null alleles have been released in the IPD-KIR Database (Release 2.6.0). Among the 14 functional KIR genes, KIR3DL2 exhibits the highest level of allelic diversity with 112 different identified alleles (see Table 5).


Identification of KIR alleles can carry functional significance. McErlean et al. (3) have found that mRNA expression level for the 14 functional KIR genes varies with the hierarchy KIR3DL2>KIR2DS2>KIR3DS1>KIR2DS5>KIR2DL5>KIR2DS3>KIR2DL1>KIR3DL1>KIR2DS1>KIR2DL2>KIR2DL4>KIR2DS4>KIR2DL3. Even within the same KIR gene, the expression level on NK cell surface, the affinity to cognate ligand and the capacity of medicated inhibition or activation can be influenced by different allele. It has been reported by Yawata et al. (4) that the expression levels of KIR3DL1 alleles were in the order of KIR3DL1*01502>*020>*001>*007>*005, whereas the levels of 3DL1-mediated NK cell inhibition were in the order of KIR3DL1*001>*005>*01502>*020>*007. KIR3DL1*005 combines low cell surface expression with a high inhibitory capacity. KIR3DL1*004, a most common KIR3DL1 allele in Caucasians, is poorly expressed at the cell surface (5). KIR2DS4*003, *004, *006, *007, *008, *009, *010, *012, and *013 alleles have a 22 bp deletion at coding sequence (CDS) nucleotide position nt454˜nt475 in exon 5, which causes a reading frame shift, yielding a truncated KIR2DS4 protein with loss of the transmembrane and cytoplasmic domains. These deleted variants of KIR2DS4 protein can't be anchored to the cell surface (6). Thus, it is critical important to identify allelic variation within the 14 functional KIR genes, especially those common null alleles. Since KIR allelic variation alters the level of protein expression and the affinity for cognate ligand as well as the mediated inhibitory/activating capacity, it is an urgent task to develop a low-cost, high-throughput, simultaneous sequence-based typing (SBT) method and apply the established SBT method in KIR-associated disease studies.


To date, the widely-used polymerase chain reaction-sequence specific primer (PCR-SSP) and PCR-sequence specific oligonucleotide probe (PCR-SSOP) commercial kits can only identify the presence or absence of KIR genes on low-resolution level, but can not identify all the KIR alleles at the allele level, especially for those null alleles.


Sequence-based typing is a powerful technique for KIR genotyping at allele level. However, there are no commercial KIR SBT kit and corresponding software for KIR allele assignment in worldwide until now. As KIR genes share extensive sequence homology, it is difficult to design KIR gene-specific primers for PCR amplification of target sequences. While summarizing the characteristic of the KIR SBT methods in the previously published literatures, several problems existed in: {circle around (1)} Only exons encoding extra-cellular domains and/or cytoplasmic region were sequenced for some KIR genes (7, 8, 9). Since the entire coding sequence was not sequenced and the diversity of each exon could not be allowed for analyzing, which led to being prone to generate ambiguous allele combination in SBT test. {circle around (2)} The PCR amplicons could cover the entire coding sequence of each KIR gene, however, the fragments size of PCR amplicon were extremely too long. For example, the KIR3DS1 amplicon covering exon 3 through 3′ untranslated region (3′-UTR) generated a fragment of approximate 12.2 kb in length, and PCR extension at 68V required up to 13 min in each cycle (10), as a result the total PCR amplification time exceeded 10 hours, more high requirement for DNA quality as well as the high-fidelity DNA polymerase were needed in PCR amplification. {circle around (3)} As KIR genes share extensive sequence homology, non-specific amplification or co-amplification occurred in PCR procedure. e.g., while amplifying the target sequence covering exon 1 through exon 5 of 2DL1 in a subject carrying both 2DL1 and 2DS1 genes, 2DS1 would also be co-amplified (11). To obtain 2DL1 specific PCR products, the secondary amplification needed to be carried out using nested PCR primers, which made the PCR procedure cumbersome. {circle around (4)} Due to the different annealing temperatures for PCR primers and varied extension time in each PCR cycling, PCR amplifications could not be carried out simultaneously under the same thermocycling parameters while amplifying the target sequences of 14 functional KIR genes (10, 11, 12, 13), which made PCR procedure more time-consuming and labour-consuming. {circle around (5)} Identification of the KIR alleles with one or more base pair insertion/deletion by traditional cloning and sequencing could not allow for the desired rapidity and simplicity in routine KIR genotyping.


With the elucidation of biological functions for KIR molecules, the clinical significance of the increasingly recognized KIR polymorphism and its role played in transplantation and disease associated studies have drawn extensive interest. Therefore, establishment of the method for high-throughput simultaneous sequence-based typing of 14 functional KIR genes, together with its commercialization and industrialization are currently urgent problems to be solved.


SUMMARY OF THE DISCLOSURE

The present disclosure aims to solve the problems mentioned above and for the first time provide a simultaneous sequence-based typing (SBT) method for all the 14 functional KIR genes. The established KIR SBT method can be widely-used in population genetics, tissue typing for bone marrow transplantation, disease-associated studies, and also lays the foundation for the commercialization of KIR SBT reagents, which change the current status that no available commercial KIR SBT reagents meet the marketing.


In order to achieve the above objective, the present disclosure adopts the following technical strategy:


I. Based on the structural features of KIR full genomic sequences, the distribution of single nucleotide polymorphisms in their coding regions and the length of flanking intronic sequence of each exon, a scientific and reasonable PCR amplification strategy has been developed in the present disclosure. The complete coding sequence of each functional KIR gene is simultaneously amplified under the same thermocycling parameters using 3˜5 pairs of KIR gene-specific PCR primers that have similar annealing temperature. The nucleotide sequences of the exons carried by each PCR amplicon were determined in both directions using the specific forward and reverse sequencing primers, respectively, as shown in FIG. 1.


The coding sequence of KIR2DL1 is amplified using 5 pairs of KIR2DL1 gene-specific PCR primers. In particular, the first pair of PCR primers is used to amplify the target sequence of KIR2DL1 covering exon 1, intron 1, exon 2, partial sequences of 5′-promoter region and intron 2/3; the second pair of PCR primers is used to amplify the target sequence of KIR2DL1 covering exon 4 and its partial flanking intronic sequences; the third pair of PCR primers is used to amplify the target sequence of KIR2DL1 covering exon 5 and its partial flanking intronic sequences; the fourth pair of PCR primers is used to amplify the target sequence of KIR2DL1 covering exon 6 and partial flanking intronic sequences; the fifth pair of PCR primers is used to amplify the target sequence of KIR2DL1 covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′-UTR region.


The coding sequences of KIR2DL2, 2DL3, 2DS1, 2DS2, 2DS3, 2DS4 and 2DS5 are amplified using 4 pairs of KIR gene-specific PCR primers, respectively. The first pair of PCR primers is used to amplify the target sequence of each KIR gene mentioned above covering exon 1, intron 1, exon 2, partial sequences of 5′-promoter region and intron 2/3 (since exon 3 is a pseudoexon, the sequence between exon 2 and exon 4 is referred as intron 2/3); the second pair of PCR primers is used to amplify the target sequence of each KIR gene mentioned above covering exon 4, intron 4, exon 5, partial sequences of intron 2/3 and intron 5; the third pair of PCR primers is used to amplify the target sequence of each KIR gene mentioned above covering exon 6 and partial flanking intronic sequences; the fourth pair of PCR primers is used to amplify the target sequence of each KIR gene mentioned above covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′-UTR region.


The coding sequences of KIR2DL4 and KIR2DL5 are amplified using 4 pairs of corresponding KIR gene-specific PCR primers, respectively. The first pair of PCR primers is used to amplify the target sequence of each KIR gene mentioned above covering exon 1, intron 1, exon 2, partial sequences of 5′-promoter region and intron 2; the second pair of PCR primers is used to amplify the target sequence of covering exon 3, intron 3/4 (since exon 4 is deleted, the sequence between exon 3 and exon 5 is referred to as intron 3/4), exon 5, partial sequences of intron 2 and intron 5; the third pair of PCR primers is used to amplify the target sequence of each KIR gene mentioned above covering exon 6 and partial flanking intronic sequences; the fourth pair of PCR primers is used to amplify the target sequence of each KIR gene mentioned above covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′-UTR region.


The coding sequences of KIR3DL1, 3DL2 and 3DS1 are amplified using 4 pairs of corresponding KIR gene-specific PCR primers, respectively. The first pair of PCR primers is used to amplify the target sequence of each KIR gene mentioned above covering exon 1, intron 1, exon 2, partial sequences of 5′-promoter region and intron 2; the second pair of PCR primers is used to amplify the target sequence of each KIR gene mentioned above covering exon 3, intron 3, exon 4, intron 4, exon 5, partial sequence of intron 2 and intron 5; the third pair of PCR primers is used to amplify the target sequence of each KIR gene mentioned above covering exon 6 and partial flanking intronic sequences; the fourth pair of PCR primers is used to amplify the target sequence of each KIR gene mentioned above covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′-UTR region.


Since KIR3DL3 lacks exon 6, only 3 pairs of KIR3DL3 specific PCR primers are used to amplify the coding sequence of KIR3DL3. The first pair of PCR primers is used to amplify the target sequence of KIR3DL3 covering exon 1, intron 1, exon 2, partial sequences of 5′-promoter and intron 2; the second pair of PCR primers is used to amplify the target sequence of KIR3DL3 covering exon 3, intron 3, exon 4, intron 4, exon 5, partial sequences of intron 2 and intron 5/6; the third pair of PCR primers is used to amplify the target sequence of KIR3DL3 covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 5/6 and 3′-UTR region.


II. The coding sequences of 14 functional KIR genes are amplified using a total of 56 pairs of KIR gene-specific PCR primers. Except that only three pairs of PCR primers are used for KIR3DL3 and five pairs of PCR primers are used for KIR2DL1, four pairs of KIR gene-specific PCR primers are used for each other functional KIR gene. All the PCR primers are designed using the Primer Premier 5.0 software and have been examined using NCBI BLAST to confirm homology with the expected KIR gene. The sequence of each PCR primer, its position in the full genomic sequence and the length of each PCR amplicon are illustrated in Table 1.









TABLE 1







KIR gene-specific PCR primers for 14 functional KIR genes



















Length of


KIR
PCR

SEQ

Position in the full
Amplicon


Gene
Primer Name
Direction
ID No
Primer Sequence (5′→3′)
genomic sequence
(bp)
















2DL1
2DL1_PCR_
Forward
  1
GTTCGGGAGGTTGGATCTC
nt-268~nt-250
1618



Ex12_F








2DL1_PCR_
Reverse
  2
CACACTGCAGCCCCTACCG
nt1332~nt1350




Ex12_R








2DL1_PCR_
Forward
  3
TGATTCTCCTGAGTCTCCAGAG
nt2501~NT2523
2810



Ex4_F


G





2DL1_PCR_
Reverse
  4
TGGAAGGAGAAGAGGCAGTTTC
nt5288~nt5310




Ex4_R


C





2DL1_PCR_
Forward
  5
CTGGCAGGGACCTACAGATGC
nt3692~nt3712
1937



Ex5_F








2DL1_PCR_
Reverse
  6
GGACAGCCATGGGCTTTCCTC
nt5608~nt5628




Ex5_R








2DL1_PCR_
Forward
  7
TCCTGATTGTGAGTTCTTGGC
nt8082~nt9301
1220



Ex6_F


AT





2DL1_PCR_
Reverse
  8
TGAGTCAGTSAGTCGAARTGT
nt9279~nt9301




Ex6_R


GC





2DL1_PCR_
Forward
  9
CCTCAGCACGTTCTATGGTTA
nt12880~nt12902
1392



Ex789_F


CT





2DL1_PCR_
Reverse
 10
TGTGATTGCAGCCTCAAGTAG
nt14249~nt14271




Ex789_R


AC







2DL2
2DL2_PCR_
Forward
 11
AGAGGTTGGATCTGAGACGTC
nt-263~nt-243
3873



Ex12_F








2DL2_PCR_
Reverse
 12
GGACCGATGGAGAAGTTGGCT
nt3590~nt3610




Ex12_R








2DL2_PCR_
Forward
 13
GAGGCTACTAGAGACAGAGGGA
nt3207~nt3229
2431



Ex45_F


C





2DL2_PCR_
Reverse
 14
CCCAAGCTTCGTCTTCTCTCT
nt5617~nt5637




Ex45_R








2DL2_PCR_
Forward
 15
CATGCCAACATCATGCTGTC
nt8530~nt8549
1370



Ex6_F








2DL2_PCR_
Reverse
 16
TCCCTGTCCTAGCCTCCATAC
nt9879~nt9899




Ex6_R








2DL2_PCR_
Forward
 17
GAAGTTCCACTTGCCAAGGAAT
nt9210~nt9232
4882



Ex789_F


G





2DL2_PCR_
Reverse
 18
CAGCTGCTGGTACATGGGAGC
nt14071~nt14091




Ex789_R










2DL3
2DL3_PCR_
Forward
 19
GGCYGMCTGTCTGCACAGA
nt-26~nt-8
2606



Ex12_F








2DL3_PCR_
Reverse
 20
GGTTTCCTGTTGCTGCTGTAG
nt2560~nt2580




Ex12_R








2DL3_PCR_
Forward
 21
AGAGAAGAGGGAGGGAGACAGA
nt3231~nt3253
2439



Ex45_F


T





2DL3_PCR_
Reverse
 22
GCCATCCTGTGCCCTGATC
nt5651~nt5669




Ex45_R








2DL3_PCR_
Forward
 23
CCCACCTCAGGCTCTCAAAGG
nt7497~nt7517
1432



Ex6_F








2DL3_PCR_
Reverse
 24
GGCGTACAATGTCAGAGCTGC
nt8908~nt8928




Ex6_R








2DL3_PCR_
Forward
 25
ACTGAGAAAGCAGGAGAAAGCT
nt12934~nt12956
1150



Ex789_F


G





2DL3_PCR_
Reverse
 26
CCTTCAGATTCCAGCTGCTGG
nt14063~nt14083




Ex789_R










2DL4
2DL4_PCR_
Forward
 27
GTGGTCAATGTGTCAACTGCAC
nt-99~nt-77
1760



Ex12_F


G





2DL4_PCR_
Reverse
 28
CACAGGCTCCAAGGATTACAAT
nt1639~nt1661




Ex12_R


G





2DL4_PCR_
Forward
 29
CTTTCTTCCCCATGGCTGAGTT
nt571~nt593
3300



Ex35_F


G





2DL4_PCR_
Reverse
 30
CTTGGGCAACAAGAGTGAAACG
nt3848~nt3870




Ex35_R


C





2DL4_PCR_
Forward
 31
AACCTCTACCTCCAGGATTCAA
nt3904~nt3926
1857



Ex6_F


G





2DL4_PCR_
Reverse
 32
GTAAGTGGAAGTGTCATGTGCA
nt5738~nt5760




Ex6_R


C





2DL4_PCR_
Forward
 33
CCAAGAAATGAGAGACAATCCA
nt9442~nt9464
1119



Ex789_F


C





2DL4_PCR_
Reverse
 34
AGGCACCAGATTTGTGGTGTG
nt10540~nt10560




Ex789_R










2DL5
2DL5_PCR_
Forward
 35
TCATAGTGAAGGACGYGAGGTG
nt-230~nt-208
1490



Ex12_F


C





2DL5_PCR_
Reverse
 36
AGCCAATGTGTGAACCACAATA
nt1238~nt1260




Ex12_R


C





2DL5_PCR_
Forward
 37
CAGGACAAGCCCTTGCTGTCT
nt1571~nt1591
1445



Ex35_F








2DL5_PCR_
Reverse
 38
GACAGAAACAAGCAGTGGGTCA
nt2993~nt3015




Ex35_R


C





2DL5_PCR_
Forward
 39
CATTTCCTCACCTCTCTCCTGT
nt5158~nt5182
1216



Ex6_F


CCT





2DL5_PCR_
Reverse
 40
AAGAGCAGAGGCCAAATGCATC
nt6451~nt6373




Ex6_R


G





2DL5_PCR_
Forward
 41
CAGATGTTGTATGTGCTTAGCT
nt7907~nt7929
1053



Ex789_F


G





2DL5_PCR_
Reverse
 42
GGTTTTGAGACAGGGCTGTTGT
nt8937~nt8959




Ex789_R


C







2DS1
2DS1_PCR_
Forward
 43
CATAGTGAAGGACGCTAGGTGT
nt-229~nt-207
2284



Ex12_F


A





2DS1_PCR_
Reverse
 44
GAGCCCTCTGACCTGTGACCG
nt2035~nt2055




Ex12_R








2DS1_PCR_
Forward
 45
GTTCCTCTTCCACCCCCACAC
nt3175~nt3195
2595



Ex45_F








2DS1_PCR_
Reverse
 46
GAGGGTTTGGAGGTGCCCTGTC
nt5747~nt5769




Ex45_R


G





2DS1_PCR_
Forward
 47
TCCTGATTGTGAGTTCTTGGCA
nt8078~nt8100
2687



Ex6_F


T





2DS1_PCR_
Reverse
 48
GTCTCCTAGATTCCAGTTACGC
nt10742~nt10764




Ex6_R


C





2DS1_PCR_
Forward
 49
CGTGGAAAAGGCAATTCCCGA
nt10765~nt10785
3586



Ex789_F








2DS1_PCR_
Reverse
 50
GGAGGTGGAACAGCACGTGTC
nt14330~nt14350




Ex789_R










2DS2
2DS2_PCR_
Forward
 51
TGAGAGGTTGGATCTGAGACGT
nt-265~nt-243
3243



Ex12_F


C





2DS2_PCR_
Reverse
 52
ACATCCAGGCTCTTATCAGCCT
nt2956~nt2978




Ex12_R


T





2DS2_PCR_
Forward
 53
GCTTCCATGCTTCTGATAATTT
nt2420~nt2443
3240



Ex45_F


TG





2DS2_PCR_
Reverse
 54
CTCTGGGTCTCTCCTGACCGT
nt5639~nt5659




Ex45_R








2DS2_PCR_
Forward
 55
CATTCTGCTCCGTTGTTCTATG
nt8282~nt8305
 765



Ex6_F


TC





2DS2_PCR_
Reverse
 56
GCCAGGGTTGCTTCATGACCTA
nt9024~nt9046




Ex6_R


T





2DS2_PCR_
Forward
 57
GATAGGCCATGGGGAGGTAAAT
nt11463~nt11485
2811



Ex789_F


T





2DS2_PCR_
Reverse
 58
GGGCAGACATGTTTATTTGAAG
nt14250~nt14273




Ex789_R


GC







2DS3
2DS3_PCR_
Forward
 59
TGTAAACTGCATGGGCAGGGA
nt-90~nt-70
2480



Ex12_F








2DS3_PCR_
Reverse
 60
CTCTGACCTGTGACCATGATCA
nt2368~nt2390




Ex12_R


G





2DS3_PCR_
Forward
 61
CTGAGCCCAGCGGCAAGGC
nt3586~nt3604
2474



Ex45_F








2DS3_PCR_
Reverse
 62
ATCCCTCCCTCACACCGAGGA
nt6039~nt6059




Ex45_R








2DS3_PCR_
Forward
 63
TACCAGGGTTCTCCTTTCTCTA
nt7491~nt7513
2406



Ex6_F


G





2DS3_PCR_
Reverse
 64
AGGAAGGGGACCAGGAGCG
nt9878~nt9896




Ex6_R








2DS3_PCR_
Forward
 65
TGATGTTGAAGGAAGAGGCTCT
nt10853~nt10875
3859



Ex789_F


T





2DS3_PCR_
Reverse
 66
GATAGTCTGAGGGGAGGTGGAA
nt14688~nt14711




Ex789_R


CT







2DS4
2DS4_PCR_
Forward
 67
ACCATGTCGCTCATGGTCATCA
nt3~nt20
3093



Ex12_F


T





2DS4_PCR_
Reverse
 68
TTGTCCTGACCACCTTGGGGT
nt3070~3090




Ex12_R








2DS4_PCR_
Forward
 69
TCAGTTCATACCTCCTGCCAAG
nt4419~nt4441
3213



Ex45_F


G





2DS4_PCR_
Reverse
 70
CGTGGTCAGGAGTTCCAGAGC
nt7611~nt7631




Ex45_R








2DS4_PCR_
Forward
 71
CTGGACTCCCAGGGCCCAATG
nt10004~nt10024
 229



Ex6_F








2DS4_PCR_
Reverse
 72
AAGGTTTCCACCTCCCCAGGG
nt10212~nt10232




Ex6_R








2DS4_PCR_
Forward
 73
GAAAGCCCGCTGAATCCTC
nt12884~nt12902
2865



Ex789_F








2DS4_PCR_
Reverse
 74
GCAGAAGGCTGAAAGATAGTCT
nt15726~nt15748




Ex789_R


G







2ds5
2DS5_PCR_
Forward
 75
TGAGAACAATTTCCAGGAAGCC
nt-199~nt-177
3089



Ex12_F


G





2DS5_PCR_
Reverse
 76
CCTTTCCTGTGGACACTTGTC
nt2870~nt2890




Ex12_R








2DS5_PCR_
Forward
 77
TCCTGCCAAGGATTCCAATTCG
nt3609~nt3631
2595



Ex45_F


A





2DS5_PCR_
Reverse
 78
TCTGTCCATGCTTCTCTCCATC
nt6181~nt6203




Ex45_R


C





2DS5_PCR_
Forward
 79
CTTGAAGTCTCAAGACAGTGGG
nt9083~nt9105
 863



Ex6_F


T





2DS5_PCR_
Reverse
 80
ATGCACTTCATACTTTGAGCTA
nt9923~nt9945




Ex6_R


G





2DS5_PCR_
Forward
 81
TGATGTKGAAGGAAGAGGCTCT
nt11029~nt11051
3851



Ex789_F


G





2DS5_PCR_
Reverse
 82
AGGGGAGGTGGAACTGCATGAG
nt14857~nt14879




Ex789_R


A







3DL1
3DL1_PCR_
Forward
 83
CGAGGTGTCAATTCTAGTGAGA
nt-215~nt-193
2922



Ex12_F


G





3DL1_PCR_
Reverse
 84
TACCACAAACATGGCAGCG
nt2689~nt2707




Ex12_R








3DL1_PCR_
Forward
 85
CACCCAGGTGTGGTAGGAGCC
nt1700~nt1720
4007



Ex45_F








3DL1_PCR_
Reverse
 86
CTCTGTGTGGGTGAGAGGCCAT
nt5684~nt5706




Ex45_R


G





3DL1_PCR_
Forward
 87
GCCTGTAATACCACTACTCGGG
nt8050~nt8072
 892



Ex6_F


T





3DL1_PCR_
Reverse
 88
CTAAAACACCTCGCCCTCATC
nt8921~nt8941




Ex6_R








3DL1_PCR_
Forward
 89
GCTATAACTGAGAAAGCAGGAG
nt12700~nt12722
1496



Ex789_F


G





3DL1_PCR_
Reverse
 90
CTGGAAAATAGTCCGAAGAAAG
nt14173~nt14195




Ex789_R


G







3DL2
3DL2_PCR_
Forward
 91
TGCAAGGTGGCAATTGTAGTCA
nt-217~nt-195
1827



Ex12_F


C





3DL2_PCR_
Reverse
 92
CGACGATAGTGACACTGAAGAG
nt1588~nt1610




Ex12_R


C





3DL2_PCR_
Forward
 93
CCTCCTCTCTAAGGCAGTGCCT
nt1477~nt1510
3964



Ex45_F


C





3DL2_PCR_
Reverse
 94
CGGGTTTTCCTCACCTGTGACA
nt5429~nt5451




Ex45_R


G





3DL2_PCR_
Forward
 95
GACAGGGCACCTCCAAACCCTC
nt5584~nt5606
3721



Ex6_F


T





3DL2_PCR_
Reverse
 96
ATTTTAGCCCAGTGACATGCAC
nt9282~nt9304




Ex6_R


G





3DL2_PCR_
Forward
 97
GCAGGAGAAAGCTGGGTCTCC
nt15186~nt15206
1099



Ex789_F








3DL2_PCR_
Reverse
 98
CTGGTTTTGAGACAGGGCTGTT
nt16262~nt16284




Ex789_R


G







3DL3
3DL3_PCR_
Forward
 99
ACAACATCCTGTGTGCTGCTGA
nt-63~nt-41
 898



Ex12_F


A





3DL3_PCR_
Reverse
100
GTCAACCCCCTGTGTCGCCTG
nt815~nt835




Ex12_R








3DL3_PCR_
Forward
101
GGAACCACAGTCATGACCCTGA
nt1156~nt1178
4475



Ex345_F


C





3DL3_PCR_
Reverse
102
AAAGGGTGTAGGCGTTGCTGG
nt5608~nt5630




Ex345_R








3DL3_PCR_
Forward
103
TGAGCCAGTCCCTCAAGGCTC
nt9865~nt9885
2165



Ex789_F








3DL3_PCR_
Reverse
104
GTTTTACTGCTGACAGAAGGCT
nt12007~nt12029




Ex789_R


G







3DS1
3DS1_PCR_
Forward
105
CGAGGTGTCAATTCTAGTGAGA
nt-215~nt-193
2314



Ex12_F


G





3DS1_PCR_
Reverse
106
CCTGTGACCATGATCACCAT
nt2080~nt2099




Ex12_R








3DS1_PCR_
Forward
107
CAGCTGACACTTGTTGTAGGGA
nt1634~nt1656
4859



Ex345_F


G





3DS1_PCR_
Reverse
108
AGTGGCATGATCTCGGCTCAG
nt6472~nt6492




Ex345_R








3DS1_PCR_
Forward
109
TGATCCGCCCACCTCCGCT
nt7633~nt7651
1436



Ex6_F








3DS1_PCR_
Reverse
110
GCTGGGAGGTTTGAGCCAACG
nt9048~nt9068




Ex6_R








3DS1_PCR_
Forward
111
GCTATAACTGAGAAAGCAGGAG
nt13101~nt13123
1484



Ex789_F


G





3DS1_PCR_
Reverse
112
GAAGGCTGAAAGCTAGTCTGAG
nt14562~nt14584




Ex789_R


G









(1) The first pair of 2DL1 specific PCR primers includes a forward primer 2DL1_PCR_Ex12_F (sequence: 5′-GTTCGGGAGGTTGGATCTC-3′, its position in the full genomic sequence: nt-268˜nt-250, SEQ ID No: 1) and a reverse primer 2DL1_PCR_Ex12_R (5′-CACACTGCAGCCCCTACCG-3′, nt1332˜nt1350, SEQ ID No: 2), which is used for amplifying the target sequence of KIR2DL1 covering exon 1, intron 1, exon 2, partial sequences of 5′-promoter region and intron 2/3, the target amplicon is 1618 bp in length. The second pair of 2DL1 specific PCR primers includes a forward primer 2DL1_PCR_Ex4_F (5′-TGATTCTCCTGAGTCTCCAGAGG-3′, nt2501˜nt2523, SEQ ID No: 3) and a reverse primer 2DL1_PCR_Ex4_R (5′-TGGAAGGAGAAGAGGCAGTTTCC-3′, nt5288˜nt5310, SEQ ID No: 4), which is used for amplifying the target sequence of KIR2DL1 covering exon 4 and its partial flanking intronic sequences, the target amplicon is 2810 bp in length. The third pair of 2DL1 specific PCR primers includes a forward primer 2DL1_PCR_Ex5_F (5′-CTGGCAGGGACCTACAGATGC-3′, nt3692˜nt3712, SEQ ID No: 5) and a reverse primer 2DL1_PCR_Ex5_R (5′-GGACAGCCATGGGCTTTCCTC-3′, nt5608˜nt5628, SEQ ID No: 6), which is used for amplifying the target sequence of KIR2DL1 covering exon 5 and its partial flanking intronic sequences, the target amplicon is 1937 bp in length. The fourth pair of 2DL1 specific PCR primers includes a forward primer 2DL1_PCR_Ex6_F (5′-TCCTGATTGTGAGTTCTTGGCAT-3′, nt8082˜nt8104, SEQ ID No: 7) and a reverse primer 2DL1_PCR_Ex6_R (5′-TGAGTCAGTSAGTCGAARTGTGC-3′, nt9279˜nt9301, SEQ ID No: 8), which is used for amplifying the target sequence of KIR2DL1 covering exon 6 and its partial flanking intronic sequences, the target amplicon is 1220 bp in length. The fifth pair of 2DL1 specific PCR primers includes a forward primer 2DL1_PCR_Ex789_F (5′-CCTCAGCACGTTCTATGGTTACT-3′, nt12880˜nt12902, SEQ ID No: 9) and a reverse primer 2DL1_PCR_Ex789_R (5′-TGTGATTGCAGCCTCAAGTAGAC-3′, nt14249˜nt14271, SEQ ID No: 10), which is used for amplifying the target sequence of KIR2DL1 covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′-UTR region, the target amplicon is 1392 bp in length.


(2) The first pair of 2DL2 specific PCR primers includes a forward primer 2DL2_PCR_Ex12_F (5′-AGAGGTTGGATCTGAGACGTC-3′, nt-263˜nt-243, SEQ ID No: 11) and a reverse primer 2DL2_PCR_Ex12_R (5′-GGACCGATGGAGAAGTTGGCT-3′, nt3590˜nt3610, SEQ ID No: 12), which is used for amplifying the target sequence of KIR2DL2 covering exon 1, intron 1, exon 2, intron 2/3, partial sequences of the 5′-promoter region and exon 4, the target amplicon is 3873 bp in length. The second pair of 2DL2 specific PCR primers includes a forward primer 2DL2_PCR_Ex45_F (5′-GAGGCTACTAGAGACAGAGGGAC-3′, nt3207˜nt3229, SEQ ID No: 13) and a reverse primer 2DL2_PCR_Ex45_R (5′-CCCAAGCTTCGTCTTCTCTCT-3′, nt5617˜nt5637, SEQ ID No: 14), which is used for amplifying the target sequence of KIR2DL2 covering exon 4, intron 4, exon 5, partial sequences of intron 2/3 and intron 5, the target amplicon is 2431 bp in length. The third pair of 2DL2 specific PCR primers includes a forward primer 2DL2_PCR_Ex6_F (5′-CATGCCAACATCATGCTGTC-3′, nt8530˜nt8549, SEQ ID No: 15) and a reverse primer 2DL2_PCR_Ex6_R (5′-TCCCTGTCCTAGCCTCCATAC-3′, nt9879˜nt9899, SEQ ID No: 16), which is used for amplifying the target sequence of KIR2DL2 covering exon 6 and its partial flanking intronic sequences, the target amplicon is 1370 bp in length. The fourth pair of 2DL2 specific PCR primers includes a forward primer 2DL2_PCR_Ex789_F (5′-GAAGTTCCACTTGCCAAGGAATG-3′, nt9210˜nt9232, SEQ ID No: 17) and a reverse primer 2DL2_PCR_Ex789_R (5′-CAGCTGCTGGTACATGGGAGC-3′, nt14071˜nt14091, SEQ ID No: 18), which is used for amplifying the target sequence of KIR2DL2 covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′-UTR region, the target amplicon is 4882 bp in length.


(3) The first pair of 2DL3 specific PCR primers includes a forward primer 2DL3_PCR_Ex12_F (5′-GGCYGMCTGTCTGCACAGA-3′, nt-26˜nt-8, SEQ ID No: 19) and a reverse primer 2DL3_PCR_Ex12_R (5′-GGTTTCCTGTTGCTGCTGTAG-3′, nt2560˜nt2580, SEQ ID No: 20), which is used for amplifying the target sequence of KIR2DL3 covering exon 1, intron 1, exon 2, partial sequences of the 5′-promoter region and intron 2/3, the target amplicon is 2606 bp in length. The second pair of 2DL3 specific PCR primers includes a forward primer 2DL3_PCR_Ex45_F (5′-AGAGAAGAGGGAGGGAGACAGAT-3′, nt3231˜nt3253, SEQ ID No: 21) and a reverse primer 2DL3_PCR_Ex45_R (5′-GCCATCCTGTGCCCTGATC-3′, nt5651˜nt5669, SEQ ID No: 22), which is used for amplifying the target sequences of KIR2DL3 covering exon 4, intron 4, exon 5, partial sequences of intron 2/3 and intron 5, the target amplicon is 2439 bp in length. The third pair of 2DL3 specific PCR primers includes a forward primer 2DL3_PCR_Ex6_F (5′-CCCACCTCAGGCTCTCAAAGG-3′, nt7497˜nt7517, SEQ ID No: 23) and a reverse primer 2DL3_PCR_Ex6_R (5′-GGCGTACAATGTCAGAGCTGC-3′, nt8908˜nt8928, SEQ ID No: 24), which is used for amplifying the target sequence of KIR2DL3 covering exon 6 and its partial fanking sequences, the target amplicon is 1432 bp in length. The fourth pair of 2DL3 specific PCR primers includes a forward primer 2DL3_PCR_Ex789_F (5′-ACTGAGAAAGCAGGAGAAAGCTG-3′, nt12934˜nt12956, SEQ ID No: 25) and a reverse primer 2DL3_PCR_Ex789_R (5′-CCTTCAGATTCCAGCTGCTGG-3′, nt14063˜nt14083, SEQ ID No: 26), which is used for amplifying the target sequence of KIR2DL3 covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′-UTR region, the target amplicon is 1150 bp in length.


(4) The first pair of 2DL4 specific PCR primers includes a forward primer 2DL4_PCR_Ex12_F (5′-GTGGTCAATGTGTCAACTGCACG-3′, nt-99˜nt-77, SEQ ID No: 27) and a reverse primer 2DL4_PCR_Ex12_R (5′-CACAGGCTCCAAGGATTACAATG-3′, nt1639˜nt1661, SEQ ID No: 28), which is used for amplifying the target sequence of KIR2DL4 covering exon 1, intron 1, exon 2, intron 2, exon 3, partial sequences of 5′-promoter region and intron 3/4, the target amplicon is 1760 bp in length. The second pair of 2DL4 specific PCR primers includes a forward primer 2DL4_PCR_Ex35_F (5′-CTTTCTTCCCCATGGCTGAGTTG-3′, nt571˜nt593, SEQ ID No: 29) and a reverse primer 2DL4_PCR_Ex35_R (5′-CTTGGGCAACAAGAGTGAAACGC-3′, nt3848˜nt3870, SEQ ID No: 30), which is used for amplifying the target sequence of KIR2DL4 covering exon 3, intron 3/4, exon 5, partial sequences of intron 2 and intron 5, the target amplicon is 3300 bp in length. The third pair of 2DL4 specific PCR primers includes a forward primer 2DL4_PCR_Ex6_F (5′-AACCTCTACCTCCAGGATTCAAG-3′, nt3904˜nt3926, SEQ ID No: 31) and a reverse primer 2DL4_PCR_Ex6_R (5′-GTAAGTGGAAGTGTCATGTGCAC-3′, nt5738˜nt5760, SEQ ID No: 32), which is used for amplifying the target sequence of KIR2DL4 covering exon 6 and its partial flanking sequences, the target amplicon is 1857 bp in length. The fourth pair of 2DL4 specific PCR primers includes a forward primer 2DL4_PCR_Ex789_F (5′-CCAAGAAATGAGAGACAATCCAC-3′, nt9442˜nt9464, SEQ ID No: 33) and a reverse primer 2DL4_PCR_Ex789_R (5′-AGGCACCAGATTTGTGGTGTG-3′, nt10540˜nt10560, SEQ ID No: 34), which is used for amplifying the target sequence of KIR2DL4 covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′UTR region, the target amplicon is 1119 bp in length.


(5) The first pair of 2DL5 specific PCR primers includes a forward primer 2DL5_PCR_Ex12_F (5′-TCATAGTGAAGGACGYGAGGTGC-3′, nt-230˜nt-208, SEQ ID No: 35) and a reverse primer 2DL5_PCR_Ex12_R (5′-AGCCAATGTGTGAACCACAATAC-3′, nt1238˜nt1260, SEQ ID No: 36), which is used for amplifying the target sequence of KIR2DL5 covering exon 1, intron 1, exon 2, partial sequences of 5′-promoter region and intron 2, the target amplicon is 1490 bp in length. The second pair of 2DL5 specific PCR primers includes a forward primer 2DL5_PCR_Ex35_F (5′-CAGGACAAGCCCTTGCTGTCT-3′, nt1571˜nt1591, SEQ ID No: 37) and a reverse primer 2DL5_PCR_Ex35_R (5′-GACAGAAACAAGCAGTGGGTCAC-3′, nt2993˜nt3015, SEQ ID No: 38), which is used for amplifying the target sequence of KIR2DL5 covering exon 3, intron 3/4, exon 5, the target amplicon is 1445 bp in length. The third pair of 2DL5 specific PCR primers includes a forward primer 2DL5_PCR_Ex6_F (5′-CATTTCCTCACCTCTCTCCTGTCCT-3′, nt5158˜nt5182, SEQ ID No: 39) and a reverse primer 2DL5_PCR_Ex6_R (5′-AAGAGCAGAGGCCAAATGCATCG-3′, nt6351˜nt6373, SEQ ID No: 40), which is used for amplifying the target sequence of KIR2DL5 covering exon 6 and its partial flanking sequences, the target amplicon is 1216 bp in length. The fourth pair of 2DL5 specific PCR primers includes a forward primer 2DL5_PCR_Ex789_F (5′-CAGATGTTGTATGTGCTTAGCTG-3′, nt7907˜nt7929, SEQ ID No: 41) and a reverse primer 2DL5_PCR_Ex789_R (5′-GGTTTTGAGACAGGGCTGTTGTC-3′, nt8937˜nt8959, SEQ ID No: 42), which is used for amplifying the target sequence of KIR2DL5 covering exon 7, intron 7, exon 8, intron 8, exon 9 and partial sequences of intron 6, the target amplicon is 1053 bp in length.


(6) The first pair of 2DS1 specific PCR primers includes a forward primer 2DS1_PCR_Ex12_F (5′-CATAGTGAAGGACGCTAGGTGTA-3′, nt-229˜nt-207, SEQ ID No: 43) and a reverse primer 2DS1_PCR_Ex12_R (5′-GAGCCCTCTGACCTGTGACCG-3′, nt2035˜nt2055, SEQ ID No: 44), which is used for amplifying the target sequence of KIR2DS1 covering exon 1, intron 1, exon 2, partial sequences of 5′-promoter region and intron 2/3, the target amplicon is 2284 bp in length. The second pair of 2DS1 specific PCR primers includes a forward primer 2DS1_PCR_Ex45_F (5′-GTTCCTCTTCCACCCCCACAC-3′, nt3175˜nt3195, SEQ ID No: 45) and a reverse primer 2DS1_PCR_Ex45_R (5′-GAGGGTTTGGAGGTGCCCTGTCG-3′, nt5747˜nt5769, SEQ ID No: 46), which is used for amplifying the target sequence of KIR2DS1 covering exon 4, intron 4, exon 5, partial sequences of intron 2/3 and intron 5, the target amplicon is 2595 bp in length. The third pair of 2DS1 specific PCR primers includes a forward primer 2DS1_PCR_Ex6_F (5′-TCCTGATTGTGAGTTCTTGGCAT-3′, nt8078˜nt8100, SEQ ID No: 47) and a reverse primer 2DS1_PCR_Ex6_R (5′-GTCTCCTAGATTCCAGTTACGCC-3′, nt10742˜nt10764, SEQ ID No: 48), which is used for amplifying the target sequence of KIR2DS1 covering exon 6 and its partial flanking sequences, the target amplicon is 2687 bp in length. The fourth pair of 2DS1 specific PCR primers includes a forward primer 2DS1_PCR_Ex789_F (5′-CGTGGAAAAGGCAATTCCCGA-3′, nt10765˜nt10785, SEQ ID No: 49) and a reverse primer 2DS1_PCR_Ex789_R (5′-GGAGGTGGAACAGCACGTGTC-3′, nt14330˜nt14350, SEQ ID No: 50), which is used for amplifying the sequence of KIR2DS1 covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′-UTR region, the target amplicon is 3586 bp in length.


(7) The first pair of 2DS2 specific PCR primers includes a forward primer 2DS2_PCR_Ex12_F (5′-TGAGAGGTTGGATCTGAGACGTC-3′, nt-265˜nt-243, SEQ ID No: 51) and a reverse primer 2DS2_PCR_Ex12_R (5′-ACATCCAGGCTCTTATCAGCCTT-3′, nt2956˜nt2978, SEQ ID No: 52), which is used for amplifying the target sequence of KIR2DS2 covering exon 1, intron 1, exon 2, partial sequences of 5′-promoter region and intron 2/3, the target amplicon is 3243 bp in length. The second pair of 2DS2 specific PCR primers includes a forward primer 2DS2_PCR_Ex45_F (5′-GCTTCCATGCTTCTGATAATTTTG-3′, nt2420˜nt2443, SEQ ID No: 53) and a reverse primer 2DS2_PCR_Ex45_R (5′-CTCTGGGTCTCTCCTGACCGT-3′, nt5639˜nt5659, SEQ ID No: 54), which is used for amplifying the sequence of KIR2DS2 covering exon 4, intron 4, exon 5, partial sequences of intron 2/3 and intron 5, the target amplicon is 3240 bp in length. The third pair of 2DS2 specific PCR primers includes a forward primer 2DS2_PCR_Ex6_F (5′-CATTCTGCTCCGTTGTTCTATGTC-3′, nt8282˜nt8305, SEQ ID No: 55) and a reverse primer 2DS2_PCR_Ex6_R (5′-GCCAGGGTTGCTTCATGACCTAT-3′, nt9024˜nt9046, SEQ ID No: 56), which is used for amplifying the sequence of KIR2DS2 covering exon 6 and its partial flanking sequences, the target amplicon is 765 bp in length. The fourth pair of 2DS2 specific PCR primers includes a forward primer 2DS2_PCR_Ex789_F (5′-GATAGGCCATGGGGAGGTAAATT-3′, nt11463˜nt11485, SEQ ID No: 57) and a reverse primer 2DS2_PCR_Ex789_R (5′-GGGCAGACATGTTTATTTGAAGGC-3′, nt14250˜nt14273, SEQ ID No: 58), which is used for amplifying the sequence of KIR2DS2 covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′-UTR region, the target amplicon is 2811 bp in length.


(8) The first pair of 2DS3 specific PCR primers includes a forward primer 2DS3_PCR_Ex12_F (5′-TGTAAACTGCATGGGCAGGGA-3′, nt-90˜nt-70, SEQ ID No: 59) and a reverse primer 2DS3_PCR_Ex12_R (5′-CTCTGACCTGTGACCATGATCAG-3′, nt2368˜nt2390, SEQ ID No: 60), which is used for amplifying the target sequence of KIR2DS3 covering exon 1, intron 1, exon 2, partial sequences of 5′-promoter region and intron 2/3, the target amplicon is 2480 bp in length. The second pair of 2DS3 specific PCR primers includes a forward 2DS3_PCR_Ex45_F (5′-CTGAGCCCAGCGGCAAGGC-3′, nt3586˜nt3604, SEQ ID No: 61) and a reverse primer 2DS3_PCR_Ex45_R (5′-ATCCCTCCCTCACACCGAGGA-3′, nt6039˜nt6059, SEQ ID No: 62), which is used for amplifying the sequence of KIR2DS3 covering exon 4, intron 4, exon 5, partial sequences of intron 2/3 and intron 5, the target amplicon is 2474 bp in length. The third pair of 2DS3 specific PCR primers includes a forward primer 2DS3_PCR_Ex6_F (5′-TACCAGGGTTCTCCTTTCTCTAG-3′, nt7491˜nt7513, SEQ ID No: 63) and a reverse primer 2DS3_PCR_Ex6_R (5′-AGGAAGGGGACCAGGAGCG-3′, nt9878˜nt9896, SEQ ID No: 64), which is used for amplifying the sequence of KIR2DS3 covering exon 6 and its partial flanking sequences, the target amplicon is 2406 bp in length. The fourth pair of 2DS3 specific PCR primers includes a forward primer 2DS3_PCR_Ex789_F (5′-TGATGTTGAAGGAAGAGGCTCTT-3′, nt10853˜nt10875, SEQ ID No: 65) and a reverse primer 2DS3_PCR_Ex789_R (5′-GATAGTCTGAGGGGAGGTGGAACT-3′, nt14688˜nt14711, SEQ ID No: 66), which is used for amplifying the sequence of KIR2DS3 covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′-UTR region, the target amplicon is 3859 bp in length.


(9) The first pair of 2DS4 specific PCR primers includes a forward primer 2DS4_PCR_Ex12_F (5′-ACCATGTCGCTCATGGTCATCAT-3′, nt-3˜nt20, SEQ ID No: 67) and a reverse primer 2DS4_PCR_Ex12_R (5′-TTGTCCTGACCACCTTGGGGT-3′, nt3070˜nt3090, SEQ ID No: 68), which is used for amplifying the target sequence of KIR2DS4 covering exon 1, intron 1, exon 2, partial sequences of 5′-promoter region and intron 2/3, the target amplicon is 3093 bp in length. The second pair of 2DS4 specific PCR primers includes a forward primer 2DS4_PCR_Ex45_F (5′-TCAGTTCATACCTCCTGCCAAGG-3′, nt4419˜nt4441, SEQ ID No: 69) and a reverse primer 2DS4_PCR_Ex45_R (5′-CGTGGTCAGGAGTTCCAGAGC-3′, nt7611˜nt7631, SEQ ID No: 70), which is used for amplifying the target sequence of KIR2DS4 covering exon 4, intron 4, exon 5, partial sequences of intron 2/3 and intron 5, the target amplicon is 3213 bp in length. The third pair of 2DS4 specific PCR primers includes a forward primer 2DS4_PCR_Ex6_F (5′-CTGGACTCCCAGGGCCCAATG-3′, nt10004˜nt10024, SEQ ID No: 71) and a reverse primer 2DS4_PCR_Ex6_R (5′-AAGGTTTCCACCTCCCCAGGG-3′, nt10212˜nt10232, SEQ ID No: 72), which is used for amplifying the target sequence of KIR2DS4 covering exon 6 and its partial flanking sequences, the target amplicon is 229 bp in length. The fourth pair of 2DS4 specific PCR primers includes a forward primer 2DS4_PCR_Ex789_F (5′-GAAAGCCCGCTGAATCCTC-3′, nt12884˜nt12902, SEQ ID No: 73) and a reverse primer 2DS4_PCR_Ex789_R (5′-GCAGAAGGCTGAAAGATAGTCTG-3′, nt15726˜nt15748, SEQ ID No: 74), which is used for amplifying the target sequence of KIR2DS4 covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′-UTR region, the target amplicon is 2865 bp in length.


(10) The first pair of 2DS5 specific PCR primers includes a forward primer 2DS5_PCR_Ex12_F (5′-TGAGAACAATTTCCAGGAAGCCG-3′, nt-199˜nt-177, SEQ ID No: 75) and a reverse primer 2DS5_PCR_Ex12_R (5′-CCTTTCCTGTGGACACTTGTC-3′, nt2870˜nt2890, SEQ ID No: 76), which is used for amplifying the sequence of KIR2DS5 covering exon 1, intron 1, exon 2, partial sequences of 5′-promoter region and intron 2/3, the target amplicon is 3089 bp in length. The second pair of 2DS5 specific PCR primers includes a forward primer 2DS5_PCR_Ex45_F (5′-TCCTGCCAAGGATTCCAATTCGA-3′, nt3609˜nt3631, SEQ ID No: 77) and a reverse primer 2DS5_PCR_Ex45_R (5′-TCTGTCCATGCTTCTCTCCATCC-3′, nt6181˜nt6203, SEQ ID No: 78), which is used for amplifying the sequence of KIR2DS5 covering exon 4, intron 4, exon 5, partial of intron 2/3 and intron 5, the target amplicon is 2595 bp in length. The third pair of 2DS5 specific PCR primers includes a forward primer 2DS5_PCR_Ex6_F (5′-CTTGAAGTCTCAAGACAGTGGGT-3′, nt9083˜nt9105, SEQ ID No: 79) and a reverse primer 2DS5_PCR_Ex6_R (5′-ATGCACTTCATACTTTGAGCTAG-3′, nt9923˜nt9945, SEQ ID No: 80), which is used for amplifying the target sequence of KIR2DS5 covering exon 6 and its partial flanking sequences, the target amplicon is 863 bp in length. The fourth pair of 2DS5 specific PCR primers includes a forward primer 2DS5_PCR_Ex789_F (5′-TGATGTKGAAGGAAGAGGCTCTG-3′, nt11029˜nt11051, SEQ ID No: 81) and a reverse primer 2DS5_PCR_Ex789_R (5′-AGGGGAGGTGGAACTGCATGAGA-3′, nt14857˜nt14879, SEQ ID No: 82), which is used for amplifying the target sequence of KIR2DS5 covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′-UTR region, the target amplicon is 3851 bp in length.


(11) The first pair of 3DL1 specific PCR primers includes a forward primer 3DL1_PCR_Ex12_F (5′-CGAGGTGTCAATTCTAGTGAGAG-3′, nt-215˜nt-193, SEQ ID No: 83) and a reverse primer 3DL1_PCR_Ex12_R (5′-TACCACAAACATGGCAGCG-3′, nt2689˜nt2707, SEQ ID No: 84), which is used for amplifying the target sequence of KIR3DL1 covering exon 1, intron 1, exon 2, intron 2, exon 3, partial sequences of 5′-promoter region and intron 3, the target amplicon is 2922 bp in length. The second pair of 3DL1 specific PCR primers includes a forward primer 3DL1_PCR_Ex345_F (5′-CACCCAGGTGTGGTAGGAGCC-3′, nt1700˜nt1720, SEQ ID No: 85) and a reverse primer 3DL1_PCR_Ex345_R (5′-CTCTGTGTGGGTGAGAGGCCATG-3′, nt5684˜nt5706, SEQ ID No: 86), which is used for amplifying the target sequence of KIR3DL1 covering exon 3, intron 3, exon 4, intron 4, exon 5, partial sequences of intron 2 and intron 5, the target amplicon is 4007 bp in length. The third pair of 3DL1 specific PCR primers includes a forward primer 3DL1_PCR_Ex6_F (5′-GCCTGTAATACCACTACTCGGGT-3′, nt8050˜nt8072, SEQ ID No: 87) and a reverse primer 3DL1_PCR_Ex6_R (5′-CTAAAACACCTCGCCCTCATC-3′, nt8921˜nt8941, SEQ ID No: 88), which is used for amplifying the sequence of KIR3DL1 covering exon 6 and its partial flanking sequences, the target amplicon is 892 bp in length. The fourth pair of 3DL1 specific PCR primers includes a forward primer 3DL1_PCR_Ex789_F (5′-GCTATAACTGAGAAAGCAGGAGG-3′, nt12700˜nt12722, SEQ ID No: 89) and a reverse primer 3DL1_PCR_Ex789_R (5′-CTGGAAAATAGTCCGAAGAAAGG-3′, nt14173˜nt14195, SEQ ID No: 90), which is used for amplifying the target sequence of KIR3DL1 covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′-UTR region, the target amplicon is 1496 bp in length.


(12) The first pair of 3DL2 specific PCR primers includes a forward primer 3DL2_PCR_Ex12_F (5′-TGCAAGGTGGCAATTGTAGTCAC-3′, nt-217˜nt-195, SEQ ID No: 91) and a reverse primer 3DL2_PCR_Ex12_R (5′-CGACGATAGTGACACTGAAGAGC-3′, nt1588˜nt1610, SEQ ID No: 92), which is used for amplifying the target sequence of KIR3DL2 covering exon 1, intron 1, exon 2, intron 2, partial sequences of 5′-promoter region and exon 3, the target amplicon is 1827 bp in length. The second pair of 3DL2 specific PCR primers includes a forward primer 3DL2_PCR_Ex345_F (5′-CCTCCTCTCTAAGGCAGTGCCTC-3′, nt1488˜nt1510, SEQ ID No: 93) and a reverse primer 3DL2_PCR_Ex345_R (5′-CGGGTTTTCCTCACCTGTGACAG-3′, nt5429˜nt5451, SEQ ID No: 94), which is used for amplifying the target sequence of KIR3DL2 covering exon 3, intron 3, exon 4, intron 4, exon 5, partial sequences of intron 2 and intron 5, the target amplicon is 3964 bp in length. The third pair of 3DL2 specific PCR primers includes a forward primer 3DL2_PCR_Ex6_F (5′-GACAGGGCACCTCCAAACCCTCT-3′, nt5584˜nt5606, SEQ ID No: 95) and a reverse primer 3DL2_PCR_Ex6_R (5′-ATTTTAGCCCAGTGACATGCACG-3′, nt9282˜nt9304, SEQ ID No: 96), which is used for amplifying the target sequence of KIR3DL2 covering exon 6 and its partial flanking sequences, the target amplicon is 3721 bp in length. The fourth pair of 3DL2 specific PCR primers includes a forward primer 3DL2_PCR_Ex789_F (5′-GCAGGAGAAAGCTGGGTCTCC-3′, nt15186˜nt15206, SEQ ID No: 97) and a reverse primer 3DL2_PCR_Ex789_R (5′-CTGGTTTTGAGACAGGGCTGTTG-3′, nt16262˜nt16284, SEQ ID No: 98), which is used for amplifying the target sequence of KIR3DL2 covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′-UTR region, the target amplicon is 1099 bp in length.


(13) The first pair of 3DL3 specific PCR primers includes a forward primer 3DL3_PCR_Ex12_F (5′-ACAACATCCTGTGTGCTGCTGAA-3′, nt-63˜nt-41, SEQ ID No: 99) and a reverse primer 3DL3_PCR_Ex12_R (5′-GTCAACCCCCTGTGTCGCCTG-3′, nt815˜nt835, SEQ ID No: 100), which is used for amplifying the target sequence of KIR3DL3 covering exon 1, intron 1, exon 2, partial sequences of 5′-promoter region and intron 2, the target amplicon is 898 bp in length. The second pair of 3DL3 specific PCR primers includes a forward primer 3DL3_PCR_Ex345_F (5′-GGAACCACAGTCATGACCCTGAC-3′, nt1156˜nt1178, SEQ ID No: 101) and a reverse primer 3DL3_PCR_Ex345_R (5′-AAAGGGTGTAGGCGTTGCTGG-3′, nt5608˜nt5630, SEQ ID No: 102), which is used for amplifying the target sequence of KIR3DL3 covering exon 3, intron 3, exon 4, intron 4, exon 5, partial sequences of intron 2 and intron 5/6, the target amplicon is 4475 bp. The third pair of 3DL3 specific PCR primers includes a forward primer 3DL3_PCR_Ex789_F (5′-TGAGCCAGTCCCTCAAGGCTC-3′, nt9865˜nt9885, SEQ ID No: 103) and a reverse primer 3DL3_PCR_Ex789_R (5′-GTTTTACTGCTGACAGAAGGCTG-3′, nt12007˜nt12029, SEQ ID No: 104), which is used for amplifying the target sequence of KIR3DL3 covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 5/6 and 3′-UTR region, the target amplicon is 2165 bp in length.


(14) The first pair of 3DS1 specific PCR primers includes a forward primer 3DS1_PCR_Ex12_F (5′-CGAGGTGTCAATTCTAGTGAGAG-3′, nt-215˜nt-193, SEQ ID No: 105) and a reverse primer 3DS1_PCR_Ex12_R (5′-CCTGTGACCATGATCACCAT-3′, nt2080˜nt2099, SEQ ID No: 106), which is used for amplifying the target sequence of KIR3DS1 covering exon 1, intron 1, exon 2, intron 2, partial sequences of 5′-promoter region and exon 3, the target amplicon is 2314 bp in length. The second pair of 3DS1 specific PCR primers includes a forward primer 3DS1_PCR_Ex345_F (5′-CAGCTGACACTTGTTGTAGGGAG-3′, nt1634˜nt1656, SEQ ID No: 107) and a reverse primer 3DS1_PCR_Ex345_R (5′-AGTGGCATGATCTCGGCTCAG-3′, nt6472˜nt6492, SEQ ID No: 108), which is used for amplifying the target sequence of KIR3DS1 covering exon 3, intron 3, exon 4, intron 4, exon 5, partial sequences of intron 2 and intron 5, the target amplicon is 4859 bp in length. The third pair of 3DS1 specific PCR primers includes a forward primer 3DS1_PCR_Ex6_F (5′-TGATCCGCCCACCTCCGCT-3′, nt7633˜nt7651, SEQ ID No: 109) and a reverse primer 3DS1_PCR_Ex6_R (5′-GCTGGGAGGTTTGAGCCAACG-3′, nt9048˜nt9068, SEQ ID No: 110), which is used for amplifying exon 6 and its partial flanking sequences, the target amplicon is 1436 bp in length. The fourth pair of 3DS1 specific PCR primers includes a forward primer 3DS1_PCR_Ex789_F (5′-GCTATAACTGAGAAAGCAGGAGG-3′, nt13101˜nt13123, SEQ ID No: 111) and a reverse primer 3DS1_PCR_Ex789_R (5′-GAAGGCTGAAAGCTAGTCTGAGG-3′, nt14562˜nt14584, SEQ ID No: 112), which is used for amplifying the target sequence of KIR3DS1 covering exon 7, intron 7, exon 8, intron 8, exon 9, partial sequences of intron 6 and 3′-UTR region, the target amplicon is 1484 bp in length.


III. All the PCR amplifications can be carried out in a volume of 10 μL containing:


















10 × PCR Buffer (without MgCl2)
1.0 μL,



2.5 mM dNTP
0.8 μL,



5.0 mM MgCl2
3.0 μL,



10 μM each PCR Primer
0.4 μL,



50~100 ng/μL Genomic DNA
2.0 μL,



5 U/μL Taq DNA Polymerase
0.1 μL,



Add ddH2O to
10.0 μL. 










IV. PCR amplifications can be conducted simultaneously under the same thermocycling parameters, and the thermocycling parameters are described below:



















95° C.
3
min;



95° C.
15
Sec,



68° C.
15
Sec,










72° C.
3.5 min, 35 cycles;











72° C.
7
min;










 4° C.
Infinite.










V. Purification of PCR products can be carried out using the purification system described below:



















1 U/μL Thermosensitive Alkaline Phosphatase
1
μL,



20 U/μL Exonuclease I
0.25
μL,



10 × Reaction Buffer
3
μL,



PCR Products
10
μL.










VI. Purification of PCR products can be carried out under the same thermocycling parameters, and the thermocycling parameters are described below:


















37° C.
45 min,



85° C.
15 min,



 4° C.
Infinite.










VII. The nucleotide sequences of each exon carried by purified PCR amplicons are determined in both directions using the forward and reverse sequencing primers. As for KIR2DL1˜5, 2DS1˜5 and KIR3DL3 genes, each KIR gene is sequenced by sixteen specific sequencing primers, respectively. For KIR3DL1˜2 and KIR3DS1 genes, each KIR gene is sequenced by eighteen specific sequencing primers, respectively. A total number of 230 KIR gene-specific forward and reverse sequencing primers for all the 14 functional KIR genes are shown in the following Table 2:









TABLE 2







KIR Gene-specific Forward and Reverse Sequencing


Primers for All 14 Functional KIR Genes












KIR
Sequencing

SEQ

Position in Full


Gene
Primer Name
Direction
ID No
Primer Sequence (5′→3′)
Genomic Sequence





2DL1
2DL1_SBT_Ex1_F
Forward
113
CGTGTTCCGCTCTTGAGCG
nt-177~nt-159



2DL1_SBT_Ex1_R
Reverse
114
TCACTCCCTCCCTCTATTG
nt50~nt68



2DL1_SBT_Ex2_F
Forward
115
TTCTTGGGTGCAGGTAGGC
nt855~nt873



2DL1_SBT_Ex2_R
Reverse
116
ACCCTGGTCCCCACAGAAC
nt1210~nt1228



2DL1_SBT_Ex4_F
Forward
117
AAGGGGAAGCCTGACTCAA
nt3400~nt3418



2DL1_SBT_Ex4_R
Reverse
118
CCAATTCCTGGATCATTCAC
nt3827~nt3846



2DL1_SBT_Ex5_F
Forward
119
GTTCTCAGCTCAGGTGAAG
nt5420~nt5258



2DL1_SBT_Ex5_R
Reverse
120
AAACAAGCAGTGGGTCACTTGAC
nt5574~nt5596



2DL1_SBT_Ex6_F
Forward
121
TTTCCACTGAGTGGAGGAC
nt8698~nt8716



2DL1_SBT_Ex6_R
Reverse
122
TGGAGTTCGGAGATGGTGG
nt8920~nt8938



2DL1_SBT_Ex7_F
Forward
123
ATGTGGTTACCTGTCAATC
nt12979~nt12997



2DL1_SBT_Ex7_R
Reverse
124
TCCTGCTTCCCCACATGGC
nt13207~nt13225



2DL1_SBT_Ex8_F
Forward
125
CTCAGCCACCTATGGTCTC
nt13533~nt13551



2DL1_SBT_Ex8_R
Reverse
126
TCTCTGTGTGAAAACGCAG
nt13835~nt13853



2DL1_SBT_Ex9_F
Forward
127
ACAGAACAGCGAATAGCGA
nt13667~nt13685



2DL1_SBT_Ex9_R
Reverse
128
TAAGATGCAGACTCATGCC
nt14060~nt14078





2DL2
2DL2_SBT_Ex1_F
Forward
129
AGAGGTTGGATCTGAGACGTC
nt-263~nt-243



2DL2_SBT_Ex1_R
Reverse
130
TCTCCAACTCTGGGCCCCG
nt81~nt99



2DL2_SBT_Ex2_F
Forward
131
TTCTTGGGTGCAGGTAGGC
nt799~nt817



2DL2_SBT_Ex2_R
Reverse
132
CCCAGTCTAACCCTGGTCC
nt1163~nt1181



2DL2_SBT_Ex4_F
Forward
133
AAGGGGAAGCCTCACTCAT
nt3332~nt3350



2DL2_SBT_Ex4_R
Reverse
134
GGCCCCTGTGTCTGTCCTC
nt3900~nt3918



2DL2_SBT_Ex5_F
Forward
135
GCTGTGACAAGGAAGATCC
nt5179~nt5197



2DL2_SBT_Ex5_R
Reverse
136
AAGCTCCTCAGCTAAGGCT
nt5564~nt5582



2DL2_SBT_Ex6_F
Forward
137
ATCCCAGGACTCCCAGGGC
nt8669~nt8687



2DL2_SBT_Ex6_R
Reverse
138
GGCGTACAATGTCAGAGCTGC
nt8928~nt8948



2DL2_SBT_Ex7_F
Forward
139
ATCTGGGTGCTTGTCCTAA
nt12990~nt13008



2DL2_SBT_Ex7_R
Reverse
140
CCTCTGCTTCGTGAGACTTAC
nt13213~nt13233



2DL2_SBT_Ex8_F
Forward
141
CCCAGAAGTGCCCTCCGAG
nt13628~nt13646



2DL2_SBT_Ex8_R
Reverse
142
TCTCTGTGTGAAAACGCAG
nt13876~nt13894



2DL2_SBT_Ex9_F
Forward
143
ACAGAACAGCGAATAGCGA
nt13708~nt13726



2DL2_SBT_Ex9_R
Reverse
144
GGCTGTTGTCTCCCTAGAAGACG






2DL3
2DL3_SBT_Ex1_F
Forward
145
CYGMCTGTCTGCACAGA
nt-24~nt-8



2DL3_SBT_Ex1_R
Reverse
146
TCTCCAACTCTGGGCCCCG
nt81~nt99



2DL3_SBT_Ex2_F
Forward
147
TTCTTGGGTGCAGGTAGGC
nt799~nt817



2DL3_SBT_Ex2_R
Reverse
148
ACCCTGGTCCCCACAGAAC
nt1154~nt1172



2DL3_SBT_Ex4_F
Forward
149
CAGCAAGGGGAAGCCTCA
nt3329~nt3346



2DL3_SBT_Ex4_R
Reverse
150
GGCCCCTGTGTCTGTCCTC
nt3901~nt3919



2DL3_SBT_Ex5_F
Forward
151
GAGCATTAGGTCATAGAGC
nt5131~nt5149



2DL3_SBT_Ex5_R
Reverse
152
CTCTCTGCATCTGTCCATGCTTC
nt5602~nt5624



2DL3_SBT_Ex6_F
Forward
153
TACTCAGGAGTTTGAGGCC
nt8310~nt8328



2DL3_SBT_Ex6_R
Reverse
154
GGCGTACAATGTCAGAGCTGC
nt8908~nt8928



2DL3_SBT_Ex7_F
Forward
155
TCTGGGTGCTTGTCCTAAAGG
nt12969~nt12989



2DL3_SBT_Ex7_R
Reverse
156
CAGGCAATGGTCTGTGAGC
nt13361~nt13379



2DL3_SBT_Ex8_F
Forward
157
CTTCATCGCTGGTGCTG
nt13166~nt13182



2DL3_SBT_Ex8_R
Reverse
158
GCTGAGTGAGGGAGGGTGC
nt13772~nt13790



2DL3_SBT_Ex9_F
Forward
159
CCCAGCCTCGTGGCTAG
nt13724~nt13740



2DL3_SBT_Ex9_R
Reverse
160
GGCAGGAGACAACTTTGGATCW
nt13957~nt13978





2DL4
2DL4_SBT_Ex1_F
Forward
161
GTGGTCAATGTGTCAACTGCACG
nt-99~nt-77



2DL4_SBT_Ex1_R
Reverse
162
CCTGAGCCACTGGGCGCCA
nt166~nt184



2DL4_SBT_Ex2_F
Forward
163
GAGCCATGTTCTGAAGCAAGT
nt111~nt131



2DL4_SBT_Ex2_R
Reverse
164
CACCCTCTGTGCTGCCTCC
nt345~nt363



2DL4_SBT_Ex4_F
Forward
165
TACTCCTCTCTGAGGCGGC
nt1140~nt1158



2DL4_SBT_Ex4_R
Reverse
166
CCAGAAGCTCTGGGACTCA
nt1502~nt1520



2DL4_SBT_Ex5_F
Forward
167
GGGAGGGGAGCTGTGACA
nt2275~nt2293



2DL4_SBT_Ex5_R
Reverse
168
GCTTCTCTCCATCATCAGC
nt2691~nt2709



2DL4_SBT_Ex6_F
Forward
169
CAGGCATCCTCATTGCCAC
nt5179~nt5197



2DL4_SBT_Ex6_R
Reverse
170
TGGCAGGTGCTGAGCCAAC
nt5341~nt5359



2DL4_SBT_Ex7_F
Forward
171
TCGCCAGACACCTGCATGC
nt9519~nt9537



2DL4_SBT_Ex7_R
Reverse
172
TTTGGAGCACCAGC
nt9600~nt9613



2DL4_SBT_Ex8_F
Forward
173
GAGGACCCAGAAGTGCCCT
nt10030~nt10048



2DL4_SBT_Ex8_R
Reverse
174
CTGGAGAGAGGGAAATCCT
nt10215~nt10233



2DL4_SBT_Ex9_F
Forward
175
CCAGCCTCATGGATACAGTCT
nt10150~nt10233



2DL4_SBT_Ex9_R
Reverse
176
GGAAGAGTGATGCTCTAAGATGG
nt10516~nt10538





2DL5
2DL5_SBT_Ex1_F
Forward
177
CCAAATAACATCCTGTGCGCT
nt-67~nt-47



2DL5_SBT_Ex1_R
Reverse
178
AGATCTCCATCCCCGCACT
nt64~nt82



2DL5_SBT_Ex2_F
Forward
179
CAGCAAGGGCCTGGCTACC
nt668~nt686



2DL5_SBT_Ex2_R
Reverse
180
GAAAATCCCCCACCGGGCT
nt872~nt890



2DL5_SBT_Ex4_F
Forward
181
ACAAGCCCTTGCTGTCTGCCT
nt1575~nt1595



2DL5_SBT_Ex4_R
Reverse
182
CAGATGCTCTGGGATTCAG
nt1891~nt1909



2DL5_SBT_Ex5_F
Forward
183
CAGGTGTGAGGGGAGCTGT
nt2665~nt2683



2DL5_SBT_Ex5_R
Reverse
184
CGGGTCTGACCACTCATAGGGT
nt2970~nt2991



2DL5_SBT_Ex6_F
Forward
185
TCACCTCTCTCCTGTCCTGTGT
nt5165~nt5186



2DL5_SBT_Ex6_R
Reverse
186
TGAGCCAATGCTTGAATCCAAGA
nt5295~nt5317



2DL5_SBT_Ex7_F
Forward
187
ATCCATAAAGAGGAACTGCTATA
nt7951~nt7973



2DL5_SBT_Ex7_R
Reverse
188
CCTTGGTCCAGGGACCATC
nt8201~nt8219



2DL5_SBT_Ex8_F
Forward
189
CACCTACGGCCTCCCGCTG
nt8480~nt8498



2DL5_SBT_Ex8_R
Reverse
190
GAGGGTGCTCACATTCTTCAA
nt8680~nt8700



2DL5_SBT_Ex9_F
Forward
191
TGCCGGGGACAGAACAGTG
nt8600~nt8618



2DL5_SBT_Ex9_R
Reverse
192
CTCAAGGCCTGACTGTGGTGCTT
nt8899~nt8921





2DS1
2DS1_SBT_Ex1_F
Forward
193
CTCCCATGATGTGGTCAAC
nt-109~nt-91



2DS1_SBT_Ex1_R
Reverse
194
TCTCCAACCCCACACTCCC
nt61~nt79



2DS1_SBT_Ex2_F
Forward
195
TTCTTGGGTGCAGGTAGGC
nt855~nt873



2DS1_SBT_Ex2_R
Reverse
196
CTGCCAAGGGAATGAAAGG
nt1185~nt1203



2DS1_SBT_Ex4_F
Forward
197
GGTGCCATGGATGGGATGA
nt3423~nt3441



2DS1_SBT_Ex4_R
Reverse
198
CAAGTCCTGGATCATTCAC
nt3827~nt3845



2DS1_SBT_Ex5_F
Forward
199
AGAGCAGGGGAGTGAGTTC
nt5221~nt5239



2DS1_SBT_Ex5_R
Reverse
200
GGCTCTAGGATCATAGGAC
nt5628~nt5646



2DS1_SBT_Ex6_F
Forward
201
TCCTCAAAGATTTCCACTGAGTG
nt8694~nt8706



2DS1_SBT_Ex6_R
Reverse
202
GTGAGATGCTGAGTCAACGC
nt8871~nt8890



2DS1_SBT_Ex7_F
Forward
203
GTGGTTACCTGCCAATCAAG
nt12981~nt13000



2DS1_SBT_Ex7_R
Reverse
204
TGAGGAACACACATCCGCGT
nt13236~nt13255



2DS1_SBT_Ex8_F
Forward
205
ATGGCCTCCCCCTGTTTGT
nt13547~nt13565



2DS1_SBT_Ex8_R
Reverse
206
GGGAATAAGACTAGCCACG
nt13713~nt13731



2DS1_SBT_Ex9_F
Forward
207
CTCCTCGGCCCAGCCTCGT
nt13697~nt13715



2DS1_SBT_Ex9_R
Reverse
208
TCCCCTCAAGGCCTGACTG
nt13971~nt13989





2DS2
2DS2_SBT_Ex1_F
Forward
209
ATAACATCCTGTGCGCTGC
nt-63~nt-45



2DS2_SBT_Ex1_R
Reverse
210
CCAACTCTGGGCCCCGATC
nt78~nt96



2DS2_SBT_Ex2_F
Forward
211
AAGGGAGTCCTGGTTTGCC
nt772~nt790



2DS2_SBT_Ex2_R
Reverse
212
GTCAGAAATGTGGGCCGAG
nt981~nt999



2DS2_SBT_Ex4_F
Forward
213
CACCTTCTAAACTCACAACC
nt3268~nt3287



2DS2_SBT_Ex4_R
Reverse
214
CACTCTGCAGCCCAATGAC
nt3624~nt3642



2DS2_SBT_Ex5_F
Forward
215
AGAGCAGGGGAGTGAGTTC
nt5030~nt5048



2DS2_SBT_Ex5_R
Reverse
216
GAAGCTCCTCAGCTAAGGC
nt5453~nt5471



2DS2_SBT_Ex6_F
Forward
217
CCAGGGCCCAATATTAGAT
nt8465~nt8483



2DS2_SBT_Ex6_R
Reverse
218
TGAGTCAACGCCTGAATCC
nt8686~nt8704



2DS2_SBT_Ex7_F
Forward
219
GCCAATCAAGAAATGCGAG
nt12815~nt12833



2DS2_SBT_Ex7_R
Reverse
220
GTCCTGCCTCTGTGGCTCC
nt13108~nt13126



2DS2_SBT_Ex8_F
Forward
221
ATGAGGACCCAGAAGTGCC
nt13407~nt13425



2DS2_SBT_Ex8_R
Reverse
222
CCTCCTGATGGTCTTGTTC
nt13621~nt13639



2DS2_SBT_Ex9_F
Forward
223
AGGTAGGTGCTCCTCGGCC
nt13512~nt13530



2DS2_SBT_Ex9_R
Reverse
224
AGAAGATCCCCTCAAGGCC
nt13801~nt13819





2DS3
2DS3_SBT_Ex1_F
Forward
225
CAGGGAGCCAAATAACATC
nt-75~nt-57



2DS3_SBT_Ex1_R
Reverse
226
CGCTCCCTCCCTCTATTCC
nt49~nt67



2DS3_SBT_Ex2_F
Forward
227
GCCGAGAGCCCTGTTCTTG
nt1182~nt1200



2DS3_SBT_Ex2_R
Reverse
228
ACAGGACTTCCCTCCCGTT
nt1432~nt1450



2DS3_SBT_Ex4_F
Forward
229
AGAGAGACACCTTCTAAAT
nt3780~nt3798



2DS3_SBT_Ex4_R
Reverse
230
ATCATTCACTCTGTGTCCG
nt4152~nt4170



2DS3_SBT_Ex5_F
Forward
231
AGGAAGATCCTCCATAAGG
nt5596~nt5614



2DS3_SBT_Ex5_R
Reverse
232
GGCTCTAGGATCATAGGAC
nt5957~nt5975



2DS3_SBT_Ex6_F
Forward
233
TCCCAGGGCCCAATATTAG
nt8968~nt8986



2DS3_SBT_Ex6_R
Reverse
234
CACTGAGCCCTGTGTTGGG
nt9291~nt9309



2DS3_SBT_Ex7_F
Forward
235
GTGCTTGTCCTAAAGAGACGT
nt13284~nt13304



2DS3_SBT_Ex7_R
Reverse
236
TGAGTGGCTGCAGGGGACG
nt13709~nt13727



2DS3_SBT_Ex8_F
Forward
237
GACCTCAGGCACCTATGGC
nt13862~nt13880



2DS3_SBT_Ex8_R
Reverse
238
GCTGAGTGAGGGAGGGTGC
nt14082~nt14100



2DS3_SBT_Ex9_F
Forward
239
CGGCCCAGCCTCGTGGCTA
nt14031~nt14049



2DS3_SBT_Ex9_R
Reverse
240
TGTCTTGGGCCTCTGAGAAGGGG
nt14196~nt14218





2DS4
2DS4_SBT_Ex1_F
Forward
241
ACCATGTCGCTCATGGTC
nt-3~nt15



2DS4_SBT_Ex1_R
Reverse
242
GGCTCATCACTCCATCTCT
nt148~nt166



2DS4_SBT_Ex2_F
Forward
243
GAAGGGGCTGGCTATCAAG
nt2218~nt2236



2DS4_SBT_Ex2_R
Reverse
244
GACTTCCCTCCCGTTTCAG
nt2404~nt2422



2DS4_SBT_Ex4_F
Forward
245
AGAGAGACACCTTCTAAAC
nt4774~nt4792



2DS4_SBT_Ex4_R
Reverse
246
CACCTGGGTCTCCAAGTCC
nt5168~nt5186



2DS4_SBT_Ex5_F
Forward
247
AGTTCTCAGGTCAGGTGTG
nt6589~nt6607



2DS4_SBT_Ex5_R
Reverse
248
GGAAGCTCCTCAGCTAAGG
nt7001~nt7019



2DS4_SBT_Ex6_F
Forward
249
CTGGACTCCCAGGGCCCAATG
nt10004~nt10024



2DS4_SBT_Ex6_R
Reverse
250
TTCCACCTCCCCAGGGTTC
nt10209~nt10227



2DS4_SBT_Ex7_F
Forward
251
CGCCATTTGGGTGCTTGTC
nt14317~nt14335



2DS4_SBT_Ex7_R
Reverse
252
GGTGAGGAACACACATCCG
nt14611~nt14629



2DS4_SBT_Ex8_F
Forward
253
AGTCTGCTGTTGGCAACTG
nt14883~nt14901



2DS4_SBT_Ex8_R
Reverse
254
CCTCCTGATGGTCTTGTTC
nt15169~nt15187



2DS4_SBT_Ex9_F
Forward
255
CTCGGCCCAGCCTCGTGGC
nt15072~nt15090



2DS4_SBT_Ex9_R
Reverse
256
CAACTTTGGATCTGGGCTC
nt15304~nt15322





2DS5
2DS5_SBT_Ex1_F
Forward
257
GGCGCCAAATAACATCCTG
nt-72~nt-54



2DS5_SBT_Ex1_R
Reverse
258
GCCCAGATCTCCATCCCCG
nt68~nt86



2DS5_SBT_Ex2_F
Forward
259
GGCACTGAGKGTGAGTTTC
nt1383~nt1401



2DS5_SBT_Ex2_R
Reverse
260
TGACAGGACTTCCCTCCCG
nt1606~nt1624



2DS5_SBT_Ex4_F
Forward
261
GACACCTTCTAAATTCACAAAC
nt3958~nt3979



2DS5_SBT_Ex4_R
Reverse
262
CTCTGCATCCCAATGACAATG
nt4315~nt4335



2DS5_SBT_Ex5_F
Forward
263
CCTCCCTGAGGAAAATGCC
nt5786~nt5804



2DS5_SBT_Ex5_R
Reverse
264
TCATAGGACATGGGACAGC
nt6192~nt6147



2DS5_SBT_Ex6_F
Forward
265
CAGGGCCCAATATTAGATAAC
nt9147~nt9167



2DS5_SBT_Ex6_R
Reverse
266
GGAGTATCTGGAGTTCGGAGA
nt9426~nt9446



2DS5_SBT_Ex7_F
Forward
267
CTGTCAATCAAGAAATGCGAG
nt13495~nt13515



2DS5_SBT_Ex7_R
Reverse
268
GGAACACACACCCGCGTGC
nt13740~nt13758



2DS5_SBT_Ex8_F
Forward
269
AGATAGAATGTCTGAGTCTGC
nt14003~nt14023



2DS5_SBT_Ex8_R
Reverse
270
ACACAGTGATCCAATTATGCG
nt14329~nt14349



2DS5_SBT_Ex9_F
Forward
271
GGTAGGTGCTCCTCGGCCC
nt14195~nt14213



2DS5_SBT_Ex9_R
Reverse
272
ATGGGAGCTGGCAACCCGG
nt14528~nt14546





3DL1
3DL1_SBT_Ex1_F
Forward
273
CAGGGCGCCAAATAACATC
nt-74~nt-56



3DL1_SBT_Ex1_R
Reverse
274
CAGATCTCCATCCCCGCAC
nt65~nt83



3DL1_SBT_Ex2_F
Forward
275
AGGGCCTGGCTGCCAAGAC
nt940~nt958



3DL1_SBT_Ex2_R
Reverse
276
AATGTGGGCCGAGCATCCG
nt1182~nt1200



3DL1_SBT_Ex3_F
Forward
277
GGGGAGAATCTTCTGGGCACT
nt1736~nt1756



3DL1_SBT_Ex3_R
Reverse
278
TGATGGGACCCTGACGGAC
nt2167~nt2185



3DL1_SBT_Ex4_F
Forward
279
TGGAGGCACCTGCACCAGG
nt3052~nt3070



3DL1_SBT_Ex4_R
Reverse
280
TGGTACAGACCTCACCAAG
nt3633~nt3651



3DL1_SBT_Ex5_F
Forward
281
CAGGTATGAGGGGAGCTATG
nt5001~nt5020



3DL1_SBT_Ex5_R
Reverse
282
CCTGTCTGCCATCCTGCGC
nt5490~nt5508



3DL1_SBT_Ex6_F
Forward
283
AAGCACCCTCATTTCCTCAC
nt8485~nt8504



3DL1_SBT_Ex6_R
Reverse
284
CAACACTTGCATCCAAGGC
nt8631~nt8649



3DL1_SBT_Ex7_F
Forward
285
CCCGCCATCTGGGTGCTTG
nt12734~nt12752



3DL1_SBT_Ex7_R
Reverse
286
TCCTGCTTCCCCACATGGC
nt13001~nt13019



3DL1_SBT_Ex8_F
Forward
287
CCAGAAGTGCCCTCCGAGC
nt13882~nt13400



3DL1_SBT_Ex8_R
Reverse
288
TGTTTGGGAATAACACTAGCC
nt13507~13527



3DL1_SBT_Ex9_F
Forward
289
CGTGGCTAGTGTTATTCCC
nt13504~nt13522



3DL1_SBT_Ex9_R
Reverse
290
ATGGGAGCTGGCAACTCGG
nt13833~nt13851





3DL2
3DL2_SBT_Ex1_F
Forward
291
GCCAAATAACATCCTGTGCGC
nt-68~nt-48



3DL2_SBT_Ex1_R
Reverse
292
TAGGCCGAGATCTCCATCC
nt71~nt89



3DL2_SBT_Ex2_F
Forward
293
GAGGCTAAGTTTACCTTCAGC
nt624~nt644



3DL2_SBT_Ex2_R
Reverse
294
GACTTCCCTCCTGTTTCAG
nt834~nt852



3DL2_SBT_Ex3_F
Forward
295
GGCCCAGCACTGTGGTGCC
nt1553~nt1571



3DL2_SBT_Ex3_R
Reverse
296
GCCCATTTCCCCTGTATTC
nt1930~nt1948



3DL2_SBT_Ex4_F
Forward
297
GAGAGATGCCTTCTAAACT
nt3235~nt3253



3DL2_SBT_Ex4_R
Reverse
298
TCTCCATAAGAATCCCACGCT
nt3663~nt3683



3DL2_SBT_Ex5_F
Forward
299
CCTCCCTGAGGAAACTGCC
nt5111~nt5129



3DL2_SBT_Ex5_R
Reverse
300
GAAAGAGCCGAAGCATCTG
nt5361~nt5379



3DL2_SBT_Ex6_F
Forward
301
CAACCTCAAAGATTTCCATTG
nt8530~nt8550



3DL2_SBT_Ex6_R
Reverse
302
CAACACTTGCATCCAAGGC
nt8707~nt8725



3DL2_SBT_Ex7_F
Forward
303
GAGATGTTCCATGTGGTTACC
nt15231~nt15251



3DL2_SBT_Ex7_R
Reverse
304
GGAACACACACCCGCGTGC
nt15494~nt15512



3DL2_SBT_Ex8_F
Forward
305
TCTGAGTCTGGATGTTGGC
nt15764~nt15782



3DL2_SBT_Ex8_R
Reverse
306
GGGTCTTGTTCATCAGAGTCC
nt16046~nt16066



3DL2_SBT_Ex9_F
Forward
307
CCTCGGCCCAGCCTCACGG
nt15957~nt15975



3DL2_SBT_Ex9_R
Reverse
308
GACTGTGGTGCTCGTGGGC
nt16216~nt16234





3DL3
3DL3_SBT_Ex1_F
Forward
309
ACAACATCCTGTGTGCTGCTGAA
nt-63~nt-41



3DL3_SBT_Ex1_R
Reverse
310
TCCCTCCCTCGATTCCCTT
nt46~nt64



3DL3_SBT_Ex2_F
Forward
311
GATGTACAGATGGATCATC
nt672~nt690



3DL3_SBT_Ex2_R
Reverse
312
GTCAACCCCCTGTGTCGCCTG
nt815~nt835



3DL3_SBT_Ex3_F
Forward
313
GCTCCACATCCTCCTCTCT
nt1474~nt1492



3DL3_SBT_Ex3_R
Reverse
314
ATCCCCCTTTACCCCAAAT
nt1905~nt1923



3DL3_SBT_Ex4_F
Forward
315
GGGAAGCCTCACTTATTTCAG
nt2996~nt3016



3DL3_SBT_Ex4_R
Reverse
316
ACCTGGGGCTTCCAGTCCT
nt3431~nt3449



3DL3_SBT_Ex5_F
Forward
317
GAGAGCTGTGACAASGAAG
nt4900~nt4918



3DL3_SBT_Ex5_R
Reverse
318
GCAGGAAGCTCCTCAGCTA
nt5294~nt5312



3DL3_SBT_Ex7_F
Forward
319
GTGAGACAATTCATATAGA
nt10650~nt10668



3DL3_SBT_Ex7_R
Reverse
320
TGCTTCCCCACATGGCCCT
nt10852~nt10870



3DL3_SBT_Ex8_F
Forward
321
GACCTCAGGCACCTATGGC
nt11178~nt11196



3DL3_SBT_Ex8_R
Reverse
322
GAGTGAGGGAGGGTGCTCA
nt11395~nt11413



3DL3_SBT_Ex9_F
Forward
323
CRTGGCTAGTCTTATTCCC
nt11358~nt11376



3DL3_SBT_Ex9_R
Reverse
324
CCCTAGAAGATCCCATCAA
nt11627~nt11645





3DS1
3DS1_SBT_Ex1_F
Forward
325
AAGCCATGCTCCGCTCTTG
nt-181~nt-163



3DS1_SBT_Ex1_R
Reverse
326
CAGATCTCCATCCCCGCAC
nt65~nt83



3DS1_SBT_Ex2_F
Forward
327
AGTGGGGGCAGCAGGGTG
nt968~nt985



3DS1_SBT_Ex2_R
Reverse
328
AATGTGGGCCGAGCATCCG
nt1182~nt1200



3DS1_SBT_Ex3_F
Forward
329
GGGGAGAATCTTCTGGGCACT
nt1735~nt1755



3DS1_SBT_Ex3_R
Reverse
330
TGATGGGACCCTGACGGAC
nt2166~nt2184



3DS1_SBT_Ex4_F
Forward
331
GGAGAGAGACAGACACGGG
nt3485~nt3503



3DS1_SBT_Ex4_R
Reverse
332
TGGTACAGACCTCACCAAG
nt4007~nt4025



3DS1_SBT_Ex5_F
Forward
333
CAGGTGTGAGGGGAGCTGT
nt5403~nt5421



3DS1_SBT_Ex5_R
Reverse
334
CCTGTCTGCCATCCTGCGC
nt5892~nt5910



3DS1_SBT_Ex6_F
Forward
335
TCAAGACAGTGGGCATCGCAC
nt8763~nt8783



3DS1_SBT_Ex6_R
Reverse
336
GGGAGGTTTGAGCCAACGCTT
nt9045~nt9065



3DS1_SBT_Ex7_F
Forward
337
CGCTGTATGTGGTTACCTGTG
nt13165~nt13185



3DS1_SBT_Ex7_R
Reverse
338
GGTGAGGAACACACACCCG
nt13432~nt13450



3DS1_SBT_Ex8_F
Forward
339
CCAGAAGTGCCCTCCGAGC
nt13784~nt13802



3DS1_SBT_Ex8_R
Reverse
340
GCTGAGTGAGGGAGGGTGC
nt13944~nt13962



3DS1_SBT_Ex9_F
Forward
341
CGTGGCTAGTGTTATTCCC
nt13904~nt13922



3DS1_SBT_Ex9_R
Reverse
342
GGCCTCTGAGAAGGGCGAG
nt14055~nt14073









(1) The forward and reverse sequencing primers for exon 1 of KIR2DL1 are 2DL1_SBT_Ex1_F (5′-CGTGTTCCGCTCTTGAGCG-3′, nt-177˜nt-159, SEQ ID No: 113) and 2DL1_SBT_Ex1_R (5′-TCACTCCCTCCCTCTATTG-3′, nt50˜nt68, SEQ ID No: 114), respectively;


The forward and reverse sequencing primers for exon 2 of KIR2DL1 are 2DL1_SBT_Ex2_F (5′-TTCTTGGGTGCAGGTAGGC-3′, nt855˜nt873, SEQ ID No: 115) and 2DL1_SBT_Ex2_R (5′-ACCCTGGTCCCCACAGAAC-3′, nt1210˜nt1228, SEQ ID No: 116), respectively;


The forward and reverse sequencing primers for exon 4 of KIR2DL1 are 2DL1_SBT_Ex4_F (5′-AAGGGGAAGCCTGACTCAA-3′, nt3400˜nt3418, SEQ ID No: 117) and 2DL1_SBT_Ex4_R (5′-CCAATTCCTGGATCATTCAC-3′, nt3827˜nt3846, SEQ ID No: 118), respectively;


The forward and reverse sequencing primers for exon 5 of KIR2DL1 are 2DL1_SBT_Ex5_F (5′-GTTCTCAGCTCAGGTGAAG-3′, nt5240˜nt5258, SEQ ID No: 119) and 2DL1_SBT_Ex5_R (5′-AAACAAGCAGTGGGTCACTTGAC-3′, nt5574˜nt5596, SEQ ID No: 120), respectively;


The forward and reverse sequencing primers for exon 6 of KIR2DL1 are 2DL1_SBT_Ex6_F (5′-TTTCCACTGAGTGGAGGAC-3′, nt8698˜nt8716, SEQ ID No: 121) and 2DL1_SBT_Ex6_R (5′-TGGAGTTCGGAGATGGTGG-3′, nt8920˜nt8938, SEQ ID No: 122), respectively;


The forward and reverse sequencing primers for exon 7 of KIR2DL1 are 2DL1_SBT_Ex7_F (5′-ATGTGGTTACCTGTCAATC-3′, nt12979˜nt12997, SEQ ID No: 123) and 2DL1_SBT_Ex7_R (5′-TCCTGCTTCCCCACATGGC-3′, nt13207˜nt13225, SEQ ID No: 124), respectively;


The forward and reverse sequencing primers for exon 8 of KIR2DL1 are 2DL1_SBT_Ex8_F (5′-CTCAGCCACCTATGGTCTC-3′, nt13533˜nt13551, SEQ ID No: 125) and 2DL1_SBT_Ex8_R (5′-TCTCTGTGTGAAAACGCAG-3′, nt13835˜nt13853, SEQ ID No: 126), respectively;


The forward and reverse sequencing primers for exon 9 of KIR2DL1 are 2DL1_SBT_Ex9_F (5′-ACAGAACAGCGAATAGCGA-3′, nt13667˜nt13685, SEQ ID No: 127) and 2DL1_SBT_Ex9_R (5′-TAAGATGCAGACTCATGCC-3′, nt14060˜nt14078, SEQ ID No: 128), respectively.


(2) The forward and reverse sequencing primers for exon 1 of KIR2DL2 are 2DL2_SBT_Ex1_F (5′-AGAGGTTGGATCTGAGACGTC-3′, nt-263˜nt-243, SEQ ID No: 129) and 2DL2_SBT_Ex1_R (5′-TCTCCAACTCTGGGCCCCG-3′, nt81˜nt99, SEQ ID No: 130), respectively;


The forward and reverse sequencing primers for exon 2 of KIR2DL2 are 2DL2_SBT_Ex2_F (5′-TTCTTGGGTGCAGGTAGGC-3′, nt799˜nt817, SEQ ID No: 131) and 2DL2_SBT_Ex2_R (5′-CCCAGTCTAACCCTGGTCC-3′, nt1163˜nt1181, SEQ ID No: 132), respectively;


The forward and reverse sequencing primers for exon 4 of KIR2DL2 are 2DL2_SBT_Ex4_F (5′-AAGGGGAAGCCTCACTCAT-3′, nt3332˜nt3350, SEQ ID No: 133) and 2DL2_SBT_Ex4_R (5′-GGCCCCTGTGTCTGTCCTC-3′, nt3900˜nt3918, SEQ ID No: 134), respectively;


The forward and reverse sequencing primers for exon 5 of KIR2DL2 are 2DL2_SBT_Ex5_F (5′-GCTGTGACAAGGAAGATCC-3′, nt5179˜nt5197, SEQ ID No: 135) and 2DL2_SBT_Ex5_R (5′-AAGCTCCTCAGCTAAGGCT-3′, nt5564˜nt5582, SEQ ID No: 136), respectively;


The forward and reverse sequencing primers for exon 6 of KIR2DL2 are 2DL2_SBT_Ex6_F (5′-ATCCCAGGACTCCCAGGGC-3′, nt8669˜nt8687, SEQ ID No: 137) and 2DL2_SBT_Ex6_R (5′-GGCGTACAATGTCAGAGCTGC-3′, nt8928˜nt8948, SEQ ID No: 138), respectively;


The forward and reverse sequencing primers for exon 7 of KIR2DL2 are 2DL2_SBT_Ex7_F (5′-ATCTGGGTGCTTGTCCTAA-3′, nt12990˜nt13008, SEQ ID No: 139) and 2DL2_SBT_Ex7_R (5′-CCTCTGCTTCGTGAGACTTAC-3′, nt13213˜nt13233, SEQ ID No: 140), respectively;


The forward and reverse sequencing primers for exon 8 of KIR2DL2 are 2DL2_SBT_Ex8_F (5′-CCCAGAAGTGCCCTCCGAG-3′, nt13628˜nt13646, SEQ ID No: 141) and 2DL2_SBT_Ex8_R (5′-TCTCTGTGTGAAAACGCAG-3′, nt13876˜nt13894, SEQ ID No: 142), respectively;


The forward and reverse sequencing primers for exon 9 of KIR2DL2 are 2DL2_SBT_Ex9_F (5′-ACAGAACAGCGAATAGCGA-3′, nt13708˜nt13726, SEQ ID No: 143) and 2DL2_SBT_Ex9_R (5′-GGCTGTTGTCTCCCTAGAAGACG-3′, nt14026˜nt14048, SEQ ID No: 144), respectively.


(3) The forward and reverse sequencing primers for exon 1 of KIR2DL3 are 2DL3_SBT_Ex1_F (5′-CYGMCTGTCTGCACAGA-3′, nt-24˜nt-8, SEQ ID No: 145) and 2DL3_SBT_Ex1_R (5′-TCTCCAACTCTGGGCCCCG-3′, nt81˜nt99, SEQ ID No: 146), respectively;


The forward and reverse sequencing primers for exon 2 of KIR2DL3 are 2DL3_SBT_Ex2_F (5′-TTCTTGGGTGCAGGTAGGC-3′, nt799˜nt817, SEQ ID No: 147) and 2DL3_SBT_Ex2_R (5′-ACCCTGGTCCCCACAGAAC-3′, nt1154˜nt1172, SEQ ID No: 148), respectively;


The forward and reverse sequencing primers for exon 4 of KIR2DL3 are 2DL3_SBT_Ex4_F (5′-CAGCAAGGGGAAGCCTCA-3′, nt3329˜nt3346, SEQ ID No: 149) and 2DL3_SBT_Ex4_R (5′-GGCCCCTGTGTCTGTCCTC-3′, nt3901˜nt3919, SEQ ID No: 150), respectively;


The forward and reverse sequencing primers for exon 5 of KIR2DL3 are 2DL3_SBT_Ex5_F (5′-GAGCATTAGGTCATAGAGC-3′, nt5131˜nt5149, SEQ ID No: 151) and 2DL3_SBT_Ex5_R (5′-CTCTCTGCATCTGTCCATGCTTC-3′, nt5602˜nt5624, SEQ ID No: 152), respectively;


The forward and reverse sequencing primers for exon 6 of KIR2DL3 are 2DL3_SBT_Ex6_F (5′-TACTCAGGAGTTTGAGGCC-3′, nt8310˜nt8328, SEQ ID No: 153) and 2DL3_SBT_Ex6_R (5′-GGCGTACAATGTCAGAGCTGC-3′, nt8908˜nt8928, SEQ ID No: 154), respectively;


The forward and reverse sequencing primers for exon 7 of KIR2DL3 are 2DL3_SBT_Ex7_F (5′-TCTGGGTGCTTGTCCTAAAGG-3′, nt12969˜nt12989, SEQ ID No: 155) and 2DL3_SBT_Ex7_R (5′-CAGGCAATGGTCTGTGAGC-3′, nt13361˜nt13379, SEQ ID No: 156), respectively;


The forward and reverse sequencing primers for exon 8 of KIR2DL3 are 2DL3_SBT_Ex8_F (5′-CTTCATCGCTGGTGCTG-3′, nt13166˜nt13182, SEQ ID No: 157) and 2DL3_SBT_Ex8_R (5′-GCTGAGTGAGGGAGGGTGC-3′, nt13772˜nt13790, SEQ ID No: 158), respectively;


The forward and reverse sequencing primers for exon 9 of KIR2DL3 are 2DL3_SBT_Ex9_F (5′-CCCAGCCTCGTGGCTAG-3′, nt13724˜nt13740, SEQ ID No: 159) and 2DL3_SBT_Ex9_R (5′-GGCAGGAGACAACTTTGGATCW-3′, nt13957˜nt13978, SEQ ID No: 160), respectively.


(4) The forward and reverse sequencing primers for exon 1 of KIR2DL4 are 2DL4_SBT_Ex1_F (5′-GTGGTCAATGTGTCAACTGCACG-3′, nt-99˜nt-77, SEQ ID No: 161) and 2DL4_SBT_Ex1_R (5′-CCTGAGCCACTGGGCGCCA-3′, nt166˜nt184, SEQ ID No: 162), respectively;


The forward and reverse sequencing primers for exon 2 of KIR2DL4 are 2DL4_SBT_Ex2_F (5′-GAGCCATGTTCTGAAGCAAGT-3′, nt111˜nt131, SEQ ID No: 163) and 2DL4_SBT_Ex2_R (5′-CACCCTCTGTGCTGCCTCC-3′, nt345˜nt363, SEQ ID No: 164), respectively;


The forward and reverse sequencing primers for exon 3 of KIR2DL4 are 2DL4_SBT_Ex3_F (5′-TACTCCTCTCTGAGGCGGC-3′, nt1140˜nt1158, SEQ ID No: 165) and 2DL4_SBT_Ex3_R (5′-CCAGAAGCTCTGGGACTCA-3′, nt1502˜nt1520, SEQ ID No: 166), respectively;


The forward and reverse sequencing primers for exon 5 of KIR2DL4 are 2DL4_SBT_Ex5_F (5′-GGGAGGGGAGCTGTGACAA-3′, nt2275˜nt2293, SEQ ID No: 167) and 2DL4_SBT_Ex5_R (5′-GCTTCTCTCCATCATCAGC-3′, nt2691˜nt2709, SEQ ID No: 168), respectively;


The forward and reverse sequencing primers for exon 6 of KIR2DL4 are 2DL4_SBT_Ex6_F (5′-CAGGCATCCTCATTGCCAC-3′, nt5179˜nt5197, SEQ ID No: 169) and 2DL4_SBT_Ex6_R (5′-TGGCAGGTGCTGAGCCAAC-3′, nt5341˜nt5359, SEQ ID No: 170), respectively;


The forward and reverse sequencing primers for exon 7 of KIR2DL4 are 2DL4_SBT_Ex7_F (5′-TCGCCAGACACCTGCATGC-3′, nt9519˜nt9537, SEQ ID No: 171) and 2DL4_SBT_Ex7_R (5′-TTTGGAGCACCAGC-3′, nt9600˜nt9613, SEQ ID No: 172), respectively;


The forward and reverse sequencing primers for exon 8 of KIR2DL4 are 2DL4_SBT_Ex8_F (5′-GAGGACCCAGAAGTGCCCT-3′, nt10030˜nt10048, SEQ ID No: 173) and 2DL4_SBT_Ex8_R (5′-CTGGAGAGAGGGAAATCCT-3′, nt10215˜nt10233, SEQ ID No: 174), respectively;


The forward and reverse sequencing primers for exon 9 of KIR2DL4 are 2DL4_SBT_Ex9_F (5′-CCAGCCTCATGGATACAGTCT-3′, nt10150˜nt10170, SEQ ID No: 175) and 2DL4_SBT_Ex9_R (5′-GGAAGAGTGATGCTCTAAGATGG-3′, nt10516˜nt10538, SEQ ID No: 176), respectively.


(5) The forward and reverse sequencing primers for exon 1 of KIR2DL5 are 2DL5_SBT_Ex1_F (5′-CCAAATAACATCCTGTGCGCT-3′, nt-67˜nt-47, SEQ ID No: 177) and 2DL5_SBT_Ex1_R (5′-AGATCTCCATCCCCGCACT-3′, nt64˜nt82, SEQ ID No: 178), respectively;


The forward and reverse sequencing primers for exon 2 of KIR2DL5 are 2DL5_SBT_Ex2_F (5′-CAGCAAGGGCCTGGCTACC-3′, nt668˜nt686, SEQ ID No: 179) and 2DL5_SBT_Ex2_R (5′-GAAAATCCCCCACCGGGCT-3′, nt872˜nt890, SEQ ID No: 180), respectively;


The forward and reverse sequencing primers for exon 3 of KIR2DL5 are 2DL5_SBT_Ex3_F (5′-ACAAGCCCTTGCTGTCTGCCT-3′, nt1575˜nt1595, SEQ ID No: 181) and 2DL5_SBT_Ex3_R (5′-CAGATGCTCTGGGATTCAG-3′, nt1891˜nt1909, SEQ ID No: 182), respectively;


The forward and reverse sequencing primers for exon 5 of KIR2DL5 are 2DL5_SBT_Ex5_F (5′-CAGGTGTGAGGGGAGCTGT-3′, nt2665˜nt2683, SEQ ID No: 183) and 2DL5_SBT_Ex5_R (5′-CGGGTCTGACCACTCATAGGGT-3′, nt2970˜nt2991, SEQ ID No: 184), respectively;


The forward and reverse sequencing primers for exon 6 of KIR2DL5 are 2DL5_SBT_Ex6_F (5′-TCACCTCTCTCCTGTCCTGTGT-3′, nt5165˜nt5186, SEQ ID No: 185) and 2DL5_SBT_Ex6_R (5′-TGAGCCAATGCTTGAATCCAAGA-3′, nt5295˜nt5317, SEQ ID No: 186), respectively;


The forward and reverse sequencing primers for exon 7 of KIR2DL5 are 2DL5_SBT_Ex7_F (5′-ATCCATAAAGAGGAACTGCTATA-3′, nt7951˜nt7973, SEQ ID No: 187) and 2DL5_SBT_Ex7_R (5′-CCTTGGTCCAGGGACCATC-3′, nt8201˜nt8219, SEQ ID No: 188), respectively;


The forward and reverse sequencing primers for exon 8 of KIR2DL5 are 2DL5_SBT_Ex8_F (5′-CACCTACGGCCTCCCGCTG-3′, nt8480˜nt8498, SEQ ID No: 189) and 2DL5_SBT_Ex8_R (5′-GAGGGTGCTCACATTCTTCAA-3′, nt8680˜nt8700, SEQ ID No: 190), respectively;


The forward and reverse sequencing primers for exon 9 of KIR2DL5 are 2DL5_SBT_Ex9_F (5′-TGCCGGGGACAGAACAGTG-3′, nt8600˜nt8618, SEQ ID No: 191) and 2DL5_SBT_Ex9_R (5′-CTCAAGGCCTGACTGTGGTGCTT-3′, nt8899˜nt8921, SEQ ID No: 192), respectively.


(6) The forward and reverse sequencing primers for exon 1 of KIR2DS1 are 2DS1_SBT_Ex1_F (5′-CTCCCATGATGTGGTCAAC-3′, nt-109˜nt-91, SEQ ID No: 193) and 2DS1_SBT_Ex1_R (5′-TCTCCAACCCCACACTCCC-3′, nt61˜nt79, SEQ ID No: 194), respectively;


The forward and reverse sequencing primers for exon 2 of KIR2DS1 are 2DS1_SBT_Ex2_F (5′-TTCTTGGGTGCAGGTAGGC-3′, nt855˜nt873, SEQ ID No: 195) and 2DS1_SBT_Ex2_R (5′-CTGCCAAGGGAATGAAAGG-3′, nt1185˜nt1203, SEQ ID No: 196), respectively;


The forward and reverse sequencing primers for exon 4 of KIR2DS1 are 2DS1_SBT_Ex4_F (5′-GGTGCCATGGATGGGATGA-3′, nt3423˜nt3441, SEQ ID No: 197) and 2DS1_SBT_Ex4_R (5′-CAAGTCCTGGATCATTCAC-3′, nt3827˜nt3845, SEQ ID No: 198), respectively;


The forward and reverse sequencing primers for exon 5 of KIR2DS1 are 2DS1_SBT_Ex5_F (5′-AGAGCAGGGGAGTGAGTTC-3′, nt5221˜nt5239, SEQ ID No: 199) and 2DS1_SBT_Ex5_R (5′-GGCTCTAGGATCATAGGAC-3′, nt5628˜nt5646, SEQ ID No: 200), respectively;


The forward and reverse sequencing primers for exon 6 of KIR2DS1 are 2DS1_SBT_Ex6_F (5′-TCCTCAAAGATTTCCACTGAGTG-3′, nt8684˜nt8706, SEQ ID No: 201) and 2DS1_SBT_Ex6_R (5′-GTGAGATGCTGAGTCAACGC-3′, nt8871˜nt8890, SEQ ID No: 202), respectively;


The forward and reverse sequencing primers for exon 7 of KIR2DS1 are 2DS1_SBT_Ex7_F (5′-GTGGTTACCTGCCAATCAAG-3′, nt12981˜nt13000, SEQ ID No: 203) and 2DS1_SBT_Ex7_R (5′-TGAGGAACACACATCCGCGT-3′, nt13236˜nt13255, SEQ ID No: 204), respectively;


The forward and reverse sequencing primers for exon 8 of KIR2DS1 are 2D51_SBT_Ex8_F (5′-ATGGCCTCCCCCTGTTTGT-3′, nt13547˜nt13565, SEQ ID No: 205) and 2DS1_SBT_Ex8_R (5′-GGGAATAAGACTAGCCACG-3′, nt13713˜nt13731, SEQ ID No: 206), respectively;


The forward and reverse sequencing primers for exon 9 of KIR2DS1 are 2DS1_SBT_Ex9_F (5′-CTCCTCGGCCCAGCCTCGT-3′, nt13697˜nt13715, SEQ ID No: 207) and 2DS1_SBT_Ex9_R (5′-TCCCCTCAAGGCCTGACTG-3′, nt13971˜nt13989, SEQ ID No: 208), respectively.


(7) The forward and reverse sequencing primers for exon 1 of KIR2DS2 are 2DS2_SBT_Ex1_F (5′-ATAACATCCTGTGCGCTGC-3′, nt-63˜nt-45, SEQ ID No: 209) and 2DS2_SBT_Ex1_R (5′-CCAACTCTGGGCCCCGATC-3′, nt78˜nt96, SEQ ID No: 210), respectively;


The forward and reverse sequencing primers for exon 2 of KIR2DS2 are 2DS2_SBT_Ex2_F (5′-AAGGGAGTCCTGGTTTGCC-3′, nt772˜nt790, SEQ ID No: 211) and 2DS2_SBT_Ex2_R (5′-GTCAGAAATGTGGGCCGAG-3′, nt981˜nt999, SEQ ID No: 212), respectively;


The forward and reverse sequencing primers for exon 4 of KIR2DS2 are 2DS2_SBT_Ex4_F (5′-CACCTTCTAAACTCACAACC-3′, nt3268˜nt3287, SEQ ID No: 213) and 2DS2_SBT_Ex4_R (5′-CACTCTGCAGCCCAATGAC-3′, nt3624˜nt3642, SEQ ID No: 214), respectively;


The forward and reverse sequencing primers for exon 5 of KIR2DS2 are 2DS2_SBT_Ex5_F (5′-AGAGCAGGGGAGTGAGTTC-3′, nt5030˜nt5048, SEQ ID No: 215) and 2DS2_SBT_Ex5_R (5′-GAAGCTCCTCAGCTAAGGC-3′, nt5453˜nt5471, SEQ ID No: 216), respectively;


The forward and reverse sequencing primers for exon 6 of KIR2DS2 are 2DS2_SBT_Ex6_F (5′-CCAGGGCCCAATATTAGAT-3′, nt8465˜nt8483, SEQ ID No: 217) and 2DS2_SBT_Ex6_R (5′-TGAGTCAACGCCTGAATCC-3′, nt8686˜nt8704, SEQ ID No: 218), respectively;


The forward and reverse sequencing primers for exon 7 of KIR2DS2 are 2DS2_SBT_Ex7_F (5′-GCCAATCAAGAAATGCGAG-3′, nt12815˜nt12833, SEQ ID No: 219) and 2DS2_SBT_Ex7_R (5′-GTCCTGCCTCTGTGGCTCC-3′, nt13108˜nt13126, SEQ ID No: 220), respectively;


The forward and reverse sequencing primers for exon 8 of KIR2DS2 are 2DS2_SBT_Ex8_F (5′-ATGAGGACCCAGAAGTGCC-3′, nt13407˜nt13425, SEQ ID No: 221) and 2DS2_SBT_Ex8_R (5′-CCTCCTGATGGTCTTGTTC-3′, nt13621˜nt13639, SEQ ID No: 222), respectively;


The forward and reverse sequencing primers for exon 9 of KIR2DS2 are 2DS2_SBT_Ex9_F (5′-AGGTAGGTGCTCCTCGGCC-3′, nt13512˜nt13530, SEQ ID No: 223) and 2DS2_SBT_Ex9_R (5′-AGAAGATCCCCTCAAGGCC-3′, nt13801˜nt13819, SEQ ID No: 224), respectively.


(8) The forward and reverse sequencing primers for exon 1 of KIR2DS3 are 2DS3_SBT_Ex1_F (5′-CAGGGAGCCAAATAACATC-3′, nt-75˜nt-57, SEQ ID No: 225) and 2DS3_SBT_Ex1_R (5′-CGCTCCCTCCCTCTATTCC-3′, nt49˜nt67, SEQ ID No: 226), respectively;


The forward and reverse sequencing primers for exon 2 of KIR2DS3 are 2DS3_SBT_Ex2_F (5′-GCCGAGAGCCCTGTTCTTG-3′, nt1182˜nt1200, SEQ ID No: 227) and 2DS3_SBT_Ex2_R (5′-ACAGGACTTCCCTCCCGTT-3′, nt1432˜nt1450, SEQ ID No: 228), respectively;


The forward and reverse sequencing primers for exon 4 of KIR2DS3 are 2DS3_SBT_Ex4_F (5′-AGAGAGACACCTTCTAAAT-3′, nt3780˜nt3798, SEQ ID No: 229) and 2DS3_SBT_Ex4_R (5′-ATCATTCACTCTGTGTCCG-3′, nt4152˜nt4170, SEQ ID No: 230), respectively;


The forward and reverse sequencing primers for exon 5 of KIR2DS3 are 2DS3_SBT_Ex5_F (5′-AGGAAGATCCTCCATAAGG-3′, nt5596˜nt5614, SEQ ID No: 231) and 2DS3_SBT_Ex5_R (5′-GGCTCTAGGATCATAGGAC-3′, nt5957˜nt5975, SEQ ID No: 232), respectively;


The forward and reverse sequencing primers for exon 6 of KIR2DS3 are 2DS3_SBT_Ex6_F (5′-TCCCAGGGCCCAATATTAG-3′, nt8968˜nt8986, SEQ ID No: 233) and 2DS3_SBT_Ex6_R (5′-CACTGAGCCCTGTGTTGGG-3′, nt9291˜nt9309, SEQ ID No: 234), respectively;


The forward and reverse sequencing primers for exon 7 of KIR2DS3 are 2DS3_SBT_Ex7_F (5′-GTGCTTGTCCTAAAGAGACGT-3′, nt13284˜nt13304, SEQ ID No: 235) and 2DS3_SBT_Ex7_R (5′-TGAGTGGCTGCAGGGGACG-3′, nt13709˜nt13727, SEQ ID No: 236), respectively;


The forward and reverse sequencing primers for exon 8 of KIR2DS3 are 2DS3_SBT_Ex8_F (5′-GACCTCAGGCACCTATGGC-3′, nt13862˜nt13880, SEQ ID No: 237) and 2DS3_SBT_Ex8_R (5′-GCTGAGTGAGGGAGGGTGC-3′, nt14082˜nt14100, SEQ ID No: 238), respectively;


The forward and reverse sequencing primers for exon 9 of KIR2DS3 are 2DS3_SBT_Ex9_F (5′-CGGCCCAGCCTCGTGGCTA-3′, nt14031˜nt14049, SEQ ID No: 239) and 2DS3_SBT_Ex9_R (5′-TGTCTTGGGCCTCTGAGAAGGGG-3′, nt14196˜nt14218, SEQ ID No: 240), respectively.


(9) The forward and reverse sequencing primers for exon 1 of KIR2DS4 are 2DS4_SBT_Ex1_F (5′-ACCATGTCGCTCATGGTC-3′, nt-3˜nt15, SEQ ID No: 241) and 2DS4_SBT_Ex1_R (5′-GGCTCATCACTCCATCTCT-3′, nt148˜nt166, SEQ ID No: 242), respectively;


The forward and reverse sequencing primers for exon 2 of KIR2DS4 are 2DS4_SBT_Ex2_F (5′-GAAGGGGCTGGCTATCAAG-3′, nt2218˜nt2236, SEQ ID No: 243) and 2DS4_SBT_Ex2_R (5′-GACTTCCCTCCCGTTTCAG-3′, nt2404˜nt2422, SEQ ID No: 244), respectively;


The forward and reverse sequencing primers for exon 4 of KIR2DS4 are 2DS4_SBT_Ex4_F (5′-AGAGAGACACCTTCTAAAC-3′, nt4774˜nt4792, SEQ ID No: 245) and 2DS4_SBT_Ex4_R (5′-CACCTGGGTCTCCAAGTCC-3′, nt5168˜nt5186, SEQ ID No: 246), respectively;


The forward and reverse sequencing primers for exon 5 of KIR2DS4 are 2DS4_SBT_Ex5_F (5′-AGTTCTCAGGTCAGGTGTG-3′, nt6589˜nt6607, SEQ ID No: 247) and 2DS4_SBT_Ex5_R (5′-GGAAGCTCCTCAGCTAAGG-3′, nt7001˜nt7019, SEQ ID No: 248), respectively;


The forward and reverse sequencing primers for exon 6 of KIR2DS4 are 2DS4_SBT_Ex6_F (5′-CTGGACTCCCAGGGCCCAATG-3′, nt10004˜nt10024, SEQ ID No: 249) and 2DS4_SBT_Ex6_R (5′-TTCCACCTCCCCAGGGTTC-3′, nt10209˜nt10227, SEQ ID No: 250), respectively;


The forward and reverse sequencing primers for exon 7 of KIR2DS4 are 2DS4_SBT_Ex7_F (5′-CGCCATTTGGGTGCTTGTC-3′, nt14317˜nt14335, SEQ ID No: 251) and 2DS4_SBT_Ex7_R (5′-GGTGAGGAACACACATCCG-3′, nt14611˜nt14629, SEQ ID No: 252), respectively;


The forward and reverse sequencing primers for exon 8 of KIR2DS4 are 2DS4_SBT_Ex8_F (5′-AGTCTGCTGTTGGCAACTG-3′, nt14883˜nt14901, SEQ ID No: 253) and 2DS4_SBT_Ex8_R (5′-CCTCCTGATGGTCTTGTTC-3′, nt15169˜nt15187, SEQ ID No: 254), respectively;


The forward and reverse sequencing primers for exon 9 of KIR2DS4 are 2DS4_SBT_Ex9_F (5′-CTCGGCCCAGCCTCGTGGC-3′, nt15072˜nt15090, SEQ ID No: 255) and 2DS4_SBT_Ex9_R (5′-CAACTTTGGATCTGGGCTC-3′, nt15304˜nt15322, SEQ ID No: 256), respectively.


(10) The forward and reverse sequencing primers for exon 1 of KIR2DS5 are 2DS5_SBT_Ex1_F (5′-GGCGCCAAATAACATCCTG-3′, nt-72˜nt-54, SEQ ID No: 257) and 2DS5_SBT_Ex1_R (5′-GCCCAGATCTCCATCCCCG-3′, nt68˜nt86, SEQ ID No: 258), respectively;


The forward and reverse sequencing primers for exon 2 of KIR2DS5 are 2DS5_SBT_Ex2_F (5′-GGCACTGAGKGTGAGTTTC-3′, nt1383˜nt1401, SEQ ID No: 259) and 2DS5_SBT_Ex2_R (5′-TGACAGGACTTCCCTCCCG-3′, nt1606˜nt1624, SEQ ID No: 260), respectively;


The forward and reverse sequencing primers for exon 4 of KIR2DS5 are 2DS5_SBT_Ex4_F (5′-GACACCTTCTAAATTCACAAAC-3′, nt3958˜nt3979, SEQ ID No: 261) and 2DS5_SBT_Ex4_R (5′-CTCTGCATCCCAATGACAATG-3′, nt4315˜nt4335, SEQ ID No: 262), respectively;


The forward and reverse sequencing primers for exon 5 of KIR2DS5 are 2DS5_SBT_Ex5_F (5′-CCTCCCTGAGGAAAATGCC-3′, nt5786˜nt5804, SEQ ID No: 263) and 2DS5_SBT_Ex5_R (5′-TCATAGGACATGGGACAGC-3′, nt6129˜nt6147, SEQ ID No: 264), respectively;


The forward and reverse sequencing primers for exon 6 of KIR2DS5 are 2DS5_SBT_Ex6_F (5′-CAGGGCCCAATATTAGATAAC-3′, nt9147˜nt9167, SEQ ID No: 265) and 2DS5_SBT_Ex6_R (5′-GGAGTATCTGGAGTTCGGAGA-3′, nt9426˜nt9446, SEQ ID No: 266), respectively;


The forward and reverse sequencing primers for exon 7 of KIR2DS5 are 2DS5_SBT_Ex7_F (5′-CTGTCAATCAAGAAATGCGAG-3′, nt13495˜nt13515, SEQ ID No: 267) and 2DS5_SBT_Ex7_R (5′-GGAACACACACCCGCGTGC-3′, nt13740˜nt13758, SEQ ID No: 268), respectively;


The forward and reverse sequencing primers for exon 8 of KIR2DS5 are 2DS5_SBT_Ex8_F (5′-AGATAGAATGTCTGAGTCTGC-3′, nt14003˜nt14023, SEQ ID No: 269) and 2DS5_SBT_Ex8_R (5′-ACACAGTGATCCAATTATGCG-3′, nt14329˜nt14349, SEQ ID No: 270), respectively;


The forward and reverse sequencing primers for exon 9 of KIR2DS5 are 2DS5_SBT_Ex9_F (5′-GGTAGGTGCTCCTCGGCCC-3′, nt14195˜nt14213, SEQ ID No: 271) and 2DS5_SBT_Ex9_R (5′-ATGGGAGCTGGCAACCCGG-3′, nt14528˜nt14546, SEQ ID No: 272), respectively.


(11) The forward and reverse sequencing primers for exon 1 of KIR3DL1 are 3DL1_SBT_Ex1_F (5′-CAGGGCGCCAAATAACATC-3′, nt-74˜nt-56, SEQ ID No: 273) and 3DL1_SBT_Ex1_R (5′-CAGATCTCCATCCCCGCAC-3′, nt65˜nt83, SEQ ID No: 274), respectively;


The forward and reverse sequencing primers for exon 2 of KIR3DL1 are 3DL1_SBT_Ex2_F (5′-AGGGCCTGGCTGCCAAGAC-3′, nt940˜nt958, SEQ ID No: 275) and 3DL1_SBT_Ex2_R (5′-AATGTGGGCCGAGCATCCG-3′, nt1182˜nt1200, SEQ ID No: 276), respectively;


The forward and reverse sequencing primers for exon 3 of KIR3DL1 are 3DL1_SBT_Ex3_F (5′-GGGGAGAATCTTCTGGGCACT-3′, nt1736˜nt1756, SEQ ID No: 277) and 3DL1_SBT_Ex3_R (5′-TGATGGGACCCTGACGGAC-3′, nt2167˜nt2185, SEQ ID No: 278), respectively;


The forward and reverse sequencing primers for exon 4 of KIR3DL1 are 3DL1_SBT_Ex4_F (5′-TGGAGGCACCTGCACCAGG-3′, nt3052˜nt3070, SEQ ID No: 278) and 3DL1_SBT_Ex4_R (5′-TGGTACAGACCTCACCAAG-3′, nt3633˜nt3651, SEQ ID No: 280), respectively;


The forward and reverse sequencing primers for exon 5 of KIR3DL1 are 3DL1_SBT_Ex5_F (5′-CAGGTATGAGGGGAGCTATG-3′, nt5001˜nt5020, SEQ ID No: 281) and 3DL1_SBT_Ex5_R (5′-CCTGTCTGCCATCCTGCGC-3′, nt5490˜nt5508, SEQ ID No: 282), respectively;


The forward and reverse sequencing primers for exon 6 of KIR3DL1 are 3DL1_SBT_Ex6_F (5′-AAGCACCCTCATTTCCTCAC-3′, nt8485˜nt8504, SEQ ID No: 283) and 3DL1_SBT_Ex6_R (5′-CAACACTTGCATCCAAGGC-3′, nt8631˜nt8649, SEQ ID No: 284), respectively;


The forward and reverse sequencing primers for exon 7 of KIR3DL1 are 3DL1_SBT_Ex7_F (5′-CCCGCCATCTGGGTGCTTG-3′, nt12734˜nt12752, SEQ ID No: 285) and 3DL1_SBT_Ex7_R (5′-TCCTGCTTCCCCACATGGC-3′, nt13001˜nt13019, SEQ ID No: 286), respectively;


The forward and reverse sequencing primers for exon 8 of KIR3DL1 are 3DL1_SBT_Ex8_F (5′-CCAGAAGTGCCCTCCGAGC-3′, nt13382˜nt13400, SEQ ID No: 287) and 3DL1_SBT_Ex8_R (5′-TGTTTGGGAATAACACTAGCC-3′, nt13507˜nt13527, SEQ ID No: 288), respectively;


The forward and reverse sequencing primers for exon 9 of KIR3DL1 are 3DL1_SBT_Ex9_F (5′-CGTGGCTAGTGTTATTCCC-3′, nt13504˜nt13522, SEQ ID No: 289) and 3DL1_SBT_Ex9_R (5′-ATGGGAGCTGGCAACTCGG-3′, nt13833˜nt13851, SEQ ID No: 290), respectively.


(12) The forward and reverse sequencing primers for exon 1 of KIR3DL2 are 3DL2_SBT_Ex1_F (5′-GCCAAATAACATCCTGTGCGC-3′, nt-68˜nt-48, SEQ ID No: 291) and 3DL2_SBT_Ex1_R (5′-TAGGCCGAGATCTCCATCC-3′, nt71˜nt89, SEQ ID No: 292), respectively;


The forward and reverse sequencing primers for exon 2 of KIR3DL2 are 3DL2_SBT_Ex2_F (5′-GAGGCTAAGTTTACCTTCAGC-3′, nt624˜nt644, SEQ ID No: 293) and 3DL2_SBT_Ex2_R (5′-GACTTCCCTCCTGTTTCAG-3′, nt834˜nt852, SEQ ID No: 294), respectively;


The forward and reverse sequencing primers for exon 3 of KIR3DL2 are 3DL2_SBT_Ex3_F (5′-GGCCCAGCACTGTGGTGCC-3′, nt1553˜nt1571, SEQ ID No: 295) and 3DL2_SBT_Ex3_R (5′-GCCCATTTCCCCTGTATTC-3′, nt1930˜nt1948, SEQ ID No: 296), respectively;


The forward and reverse sequencing primers for exon 4 of KIR3DL2 are 3DL2_SBT_Ex4_F (5′-GAGAGATGCCTTCTAAACT-3′, nt3235˜nt3253, SEQ ID No: 297) and 3DL2_SBT_Ex4_R (5′-TCTCCATAAGAATCCCACGCT-3′, nt3663˜nt3683, SEQ ID No: 298), respectively;


The forward and reverse sequencing primers for exon 5 of KIR3DL2 are 3DL2_SBT_Ex5_F (5′-CCTCCCTGAGGAAACTGCC-3′, nt5111˜nt5129, SEQ ID No: 299) and 3DL2_SBT_Ex5_R (5′-GAAAGAGCCGAAGCATCTG-3′, nt5361˜nt5379, SEQ ID No: 300), respectively;


The forward and reverse sequencing primers for exon 6 of KIR3DL2 are 3DL2_SBT_Ex6_F (5′-CAACCTCAAAGATTTCCATTG-3′, nt8530˜nt8550, SEQ ID No: 301) and 3DL2_SBT_Ex6_R (5′-CAACACTTGCATCCAAGGC-3′, nt8707˜nt8725, SEQ ID No: 302), respectively;


The forward and reverse sequencing primers for exon 7 of KIR3DL2 are 3DL2_SBT_Ex7_F (5′-GAGATGTTCCATGTGGTTACC-3′, nt15231˜nt15251, SEQ ID No: 303) and 3DL2_SBT_Ex7_R (5′-GGAACACACACCCGCGTGC-3′, nt15494˜nt15512, SEQ ID No: 304), respectively;


The forward and reverse sequencing primers for exon 8 of KIR3DL2 are 3DL2_SBT_Ex8_F (5′-TCTGAGTCTGGATGTTGGC-3′, nt15764˜nt15782, SEQ ID No: 305) and 3DL2_SBT_Ex8_R (5′-GGGTCTTGTTCATCAGAGTCC-3′, nt16046˜nt16066, SEQ ID No: 306), respectively;


The forward and reverse sequencing primers for exon 9 of KIR3DL2 are 3DL2_SBT_Ex9_F (5′-CCTCGGCCCAGCCTCACGG-3′, nt15957˜nt15975, SEQ ID No: 307) and 3DL2_SBT_Ex9_R (5′-GACTGTGGTGCTCGTGGGC-3′, nt16216˜nt16234, SEQ ID No: 308), respectively.


(13) The forward and reverse sequencing primers for exon 1 of KIR3DL3 are 3DL3_SBT_Ex1_F (5′-ACAACATCCTGTGTGCTGCTGAA-3′, nt-63˜nt-41, SEQ ID No: 309) and 3DL3_SBT_Ex1_R (5′-TCCCTCCCTCGATTCCCTT-3′, nt46˜nt64, SEQ ID No: 310), respectively;


The forward and reverse sequencing primers for exon 2 of KIR3DL3 are 3DL3_SBT_Ex2_F (5′-GATGTACAGATGGATCATC-3′, nt672˜nt690, SEQ ID No: 311) and 3DL3_SBT_Ex2_R (5′-GTCAACCCCCTGTGTCGCCTG-3′, nt815˜nt835, SEQ ID No: 312), respectively;


The forward and reverse sequencing primers for exon 3 of KIR3DL3 are 3DL3_SBT_Ex3_F (5′-GCTCCACATCCTCCTCTCT-3′, nt1474˜nt1492, SEQ ID No: 313) and 3DL3_SBT_Ex3_R (5′-ATCCCCCTTTACCCCAAAT-3′, nt1905˜nt1923, SEQ ID No: 314), respectively;


The forward and reverse sequencing primers for exon 4 of KIR3DL3 are 3DL3_SBT_Ex4_F (5′-GGGAAGCCTCACTTATTTCAG-3′, nt2996˜nt3016, SEQ ID No: 315) and 3DL3_SBT_Ex4_R (5′-ACCTGGGGCTTCCAGTCCT-3′, nt3431˜nt3449, SEQ ID No: 316), respectively;


The forward and reverse sequencing primers for exon 5 of KIR3DL3 are 3DL3_SBT_Ex5_F (5′-GAGAGCTGTGACAASGAAG-3′, nt4900˜nt4918, SEQ ID No: 317) and 3DL3_SBT_Ex5_R (5′-GCAGGAAGCTCCTCAGCTA-3′, nt5294˜nt5312, SEQ ID No: 318), respectively;


The forward and reverse sequencing primers for exon 7 of KIR3DL3 are 3DL3_SBT_Ex7_F (5′-GTGAGACAATTCATATAGA-3′, nt10650˜nt10668, SEQ ID No: 319) and 3DL3_SBT_Ex7_R (5′-TGCTTCCCCACATGGCCCT-3′, nt10852˜nt10870, SEQ ID No: 320), respectively;


The forward and reverse sequencing primers for exon 8 of KIR3DL3 are 3DL3_SBT_Ex8_F (5′-GACCTCAGGCACCTATGGC-3′, nt11178˜nt11196, SEQ ID No: 321) and 3DL3_SBT_Ex8_R (5′-GAGTGAGGGAGGGTGCTCA-3′, nt11395˜nt11413, SEQ ID No: 322), respectively;


The forward and reverse sequencing primers for exon 9 of KIR3DL3 are 3DL3_SBT_Ex9_F (5′-CRTGGCTAGTCTTATTCCC-3′, nt11358˜nt11376, SEQ ID No: 323) and 3DL3_SBT_Ex9_R (5′-CCCTAGAAGATCCCATCAA-3′, nt11627˜nt11645, SEQ ID No: 324), respectively.


(14) The forward and reverse sequencing primers for exon 1 of KIR3DS1 are 3DS1_SBT_Ex1_F (5′-AAGCCATGCTCCGCTCTTG-3′, nt-181˜nt-163, SEQ ID No: 325) and 3DS1_SBT_Ex1_R (5′-CAGATCTCCATCCCCGCAC-3′, nt65˜nt83, SEQ ID No: 326), respectively;


The forward and reverse sequencing primers for exon 2 of KIR3DS1 are 3D51_SBT_Ex2_F (5′-AGTGGGGGCAGCAGGGTG-3′, nt968˜nt985, SEQ ID No: 327) and 3DS1_SBT_Ex2_R (5′-AATGTGGGCCGAGCATCCG-3′, nt1182˜nt1200, SEQ ID No: 328), respectively;


The forward and reverse sequencing primers for exon 3 of KIR3DS1 are 3D51_SBT_Ex3_F (5′-GGGGAGAATCTTCTGGGCACT-3′, nt1735˜nt1755, SEQ ID No: 329) and 3DS1_SBT_Ex3_R (5′-TGATGGGACCCTGACGGAC-3′, nt2166˜nt2184, SEQ ID No: 330), respectively;


The forward and reverse sequencing primers for exon 4 of KIR3DS1 are 3DS1_SBT_Ex4_F (5′-GGAGAGAGACAGACACGGG-3′, nt3485˜nt3503, SEQ ID No: 331) and 3DS1_SBT_Ex4_R (5′-TGGTACAGACCTCACCAAG-3′, nt4007˜nt4025, SEQ ID No: 332), respectively;


The forward and reverse sequencing primers for exon 5 of KIR3DS1 are 3D51_SBT_Ex5_F (5′-CAGGTGTGAGGGGAGCTGT-3′, nt5403˜nt5421, SEQ ID No: 333) and 3DS1_SBT_Ex5_R (5′-CCTGTCTGCCATCCTGCGC-3′, nt5892˜nt5910, SEQ ID No: 334), respectively;


The forward and reverse sequencing primers for exon 6 of KIR3DS1 are 3DS1_SBT_Ex6_F (5′-TCAAGACAGTGGGCATCGCAC-3′, nt8763˜nt8783, SEQ ID No: 335) and 3D51_SBT_Ex6_R (5′-GGGAGGTTTGAGCCAACGCTT-3′, nt9045˜nt9065, SEQ ID No: 336), respectively;


The forward and reverse sequencing primers for exon 7 of KIR3DS1 are 3DS1_SBT_Ex7_F (5′-CGCTGTATGTGGTTACCTGTG-3′, nt13165˜nt13185, SEQ ID No: 337) and 3DS1_SBT_Ex7_R (5′-GGTGAGGAACACACACCCG-3′, nt13432˜nt13450, SEQ ID No: 338), respectively;


The forward and reverse sequencing primers for exon 8 of KIR3DS1 are 3D51_SBT_Ex8_F (5′-CCAGAAGTGCCCTCCGAGC-3′, nt13784˜nt13802, SEQ ID No: 339) and 3DS1_SBT_Ex8_R (5′-GCTGAGTGAGGGAGGGTGC-3′, nt13944˜nt13962, SEQ ID No: 340), respectively;


The forward and reverse sequencing primers for exon 9 of KIR3DS1 are 3D51_SBT_Ex9_F (5′-CGTGGCTAGTGTTATTCCC-3′, nt13904˜nt13922, SEQ ID No: 341) and 3DS1_SBT_Ex9_R (5′-GGCCTCTGAGAAGGGCGAG-3′, nt14055˜nt14073, SEQ ID No: 342), respectively.


VIII. All the sequencing reactions can be carried out in a volume of 10 μL containing:


















5 × BigDye Sequencing Buffer
2.075 μL, 



BigDye Terminator 3.1
0.25 μL,



10 μM Sequencing Primer
0.32 μL,



Purified PCR Products Diluted 1:3 with ddH2O
 2.0 μL,



Add ddH2O to
10.0 μL.










IX. The thermocycling parameters for the sequencing reaction are described below:



















95° C.
1
min;



95° C.
10
Sec,



50° C.
5
Sec,










60° C.
4 min, 25 cycles;



 4° C.
Infinite.










Based on the structural features of KIR full genomic sequences, the distribution of single nucleotide polymorphisms in their coding regions and the length of flanking intronic sequence of each exon, the present disclosure has established a scientific and efficient PCR amplification strategy for all the 14 functional KIR genes. We design KIR gene-specific PCR and sequencing primers, and explore the optimal PCR amplification and sequencing conditions. This disclosure allows for simultaneous genotyping of 14 functional KIR genes by SBT, which is suitable for high-resolution level KIR genotyping, population genetics, tissue typing for bone marrow transplant and disease-associated studies.


The contributions of the present disclosure include: for the first time this disclosure has established the method for high-throughput simultaneous sequence-based typing of 14 functional KIR genes at high-resolution level. KIR gene-specific PCR primers with similar annealing temperatures have been designed, which allow for simultaneous PCR amplification of 14 functional KIR genes under the same PCR conditions and make the PCR procedure less time-consuming and labor-consuming. The occurrence of non-specific amplification or co-amplification events has been solved via designing KIR gene-specific PCR primers. Without using the extra commercial KIR-SSP kit, the presence or absence of 14 functional KIR genes can also be identified by agarose gel electrophoresis of PCR products. Based on our KIR SBT method, the entire coding sequence for all the 14 functional KIR genes are sequenced in both direction, the deficiencies existed in previous literatures can be overcome. Moreover, no noise and artifacts are observed in the obtained sequences, which can greatly facilitate the process of KIR allele assignment.









TABLE 3







Structure of the Coding Region and Length


of Exons of the 14 Functional KIR Genes












Leader

Transmembrane and
Length












KIR
Peptides
Extracellular Domains
Stem
Cytoplasmic Region
of

















Protein
Exon
Exon
Exon
Exon
Exon
Exon
Exon
Exon
Exon
Coding


KIR
1
2
3
4
5
6
7
8
9
Sequence


Gene
(bp)
(bp)
(bp)
(bp)
(bp)
(bp)
(bp)
(bp)
(bp)
(bp)




















2DL1
34
36
Pseudoex
300
294
51
102
53
177
1047


2DL2
34
36
Pseudoex
300
294
51
102
53
177
1047


2DL3
34
36
Pseudoex
300
294
51
105
53
177
1050


2DL4
40
36
285
Del
294
51
105
53
270
1134


2DL5
34
36
285
Del
294
51
105
53
270
1128


2DS1
34
36
Pseudoex
300
294
51
105
53
42
915


2DS2
34
36
Pseudoex
300
294
51
105
53
42
915


2DS3
34
36
Pseudoex
300
294
51
105
53
42
915


2DS4
34
36
Pseudoex
300
294
51
105
53
42
915


2DS5
34
36
Pseudoex
300
294
51
105
53
42
915


3DL1
34
36
285
300
294
51
105
53
177
1335


3DL2
34
36
285
300
294
51
105
53
210
1368


3DL3
34
36
285
300
294
Del
105
53
126
1233


3DS1
34
36
285
300
294
51
105
51
8
1164





Del: deleted exon.













TABLE 4







Structure and Length of Non-coding Sequence of the 14 Functional KIR Genes































Length of
Full
Length of introns 5




Intron
Intron
Intron
Intron
Intron
Intron
Intron
Intron
3′-
non-coding
genomic
and 6 accounting


KIR
5′UTR
1
2
3
4
5
6
7
8
UTR
sequence
sequence
for % of full


Gene
(bp)
(bp)
(bp)
(bp)
(bp)
(bp)
(bp)
(bp)
(bp)
(bp)
(bp)
(bp)
genomic sequence






















2DL1
268
964
Intron 2/3: 2448
1529
3154
4259
462
98
510
13692
14739
50.3% (7413/14739)


2DL2
300
908
Intron 2/3: 2436
1514
3272
4265
462
98
510
13765
14812
50.9% (7537/14812)


2DL3
268
908
Intron 2/3: 2437
1515
3250
4263
462
98
510
13711
14761
50.9% (7513/14761)



















2DL4
267
199
900
Intron 3/4: 873
2595
4242
461
99
407
10043
11177
61.2% (6837/11177)


2DL5
489
733
762
Intron 3/4: 875
2172
2765
462
100
415
8773
9901
49.9% (4937/9901) 



















2DS1
267
964
Intron 2/3: 2448
1525
3154
4263
462
98
624
13805
14721
50.4% (7417/14721)


2DS2
300
792
Intron 2/3: 2436
1518
3168
4264
462
98
624
13662
14577

51% (7432/14577)



2DS3
300
1305
Intron 2/3: 2443
1519
3153
4265
462
98
645
14190
15105
49.1% (7418/15105)


2DS4
267
2280
Intron 2/3: 2461
1552
3168
4265
462
98
624
15177
16092
46.2% (7433/16092)


2DS5
268
1498
Intron 2/3: 2444
1528
3155
4265
462
98
645
14363
15278
48.6% (7420/15278)




















3DL3
267
999
745
1113
1552
3169
4282
462
118
504
13211
14546
51.2% (7451/14546)


3DS1
267
1000
744
1488
1580
3170
4280
462
98
679
13768
14932
49.9% (7450/14932)


3DL3
268
710
742
1464
1572
3166
6675
460
99
485
15641
17009
57.9% (9841/17009)



















3DL3
320
677
770
1273
1578
Intron 5/6: 5466
462
98
537
11181
12414
44.0% (5466/12414)
















TABLE 5







Alleles of Functional KIR Gene Released in the IPD-KIR Database (Release 2.6.0)






















Gene
2DS1
2DL2
2DL3
2DL4
2DL5
2DS1
2DS2
2DS3
2DS4
2DS5
3DL1
3DS1
3DL2
3DL3
Total

























Number of
48
30
55
52
48
16
22
15
31
18
110
30
112
111
698


KIR alleles


Number of
1
0
1
0
0
0
0
1
0
0
2
1
1
0
7


Null Alleles












BRIEF DESCRIPTION OF THE DRAWINGS

In order to more clearly illustrate the embodiments of the present disclosure or the prior art solutions, a brief description of the accompanying drawings for use with the illustration of the embodiments or the prior art are provided below. It is obvious that the drawings described below depict merely some embodiments of the disclosure and those of ordinary skill in the art can obtain other drawings based on the arrangements shown in these drawings without making inventive efforts.



FIG. 1 is the technical strategy illustrating the simultaneous sequence-based typing (SBT) method for all 14 functional KIR genes, according to which:


3˜5 pairs of KIR gene-specific PCR primers (except that three pairs of PCR primers are used for KIR3DL3 and five pairs of PCR primers are used for KIR2DL1, four pairs of KIR gene-specific PCR primers are used for each of other functional KIR genes) are used to amplify the complete coding sequence of each functional KIR gene. The nucleotide sequences of the exons carried by each amplicon were determined in both directions using the specific forward and reverse sequencing primers. As for KIR2DL1˜5, 2DS1˜5 and KIR3DL3 genes, each KIR gene is sequenced by sixteen specific sequencing primers, respectively. For KIR3DL1˜2 and KIR3DS1 genes, each KIR gene is sequenced by eighteen specific sequencing primers, respectively.



FIG. 2 shows the electrophoresis of the PCR products on a agarose gel for a DNA sample with KIRAA1 profile, according to the first embodiment of this disclosure, wherein, M: DL2000 Marker; A1: Amplicon 1, amplifying the target sequence covering entire exon 1 through exon 2 of each KIR gene. A2: Amplicon 2, as for KIR3DL1˜3, 3DS1 and 2DL4˜5 genes, PCR ampicon 2 covers the target sequence of entire exon 3 through exon 5; whereas for KIR2DL1˜3 and KIR2DS1˜5 genes, PCR amplicon 2 covers the target sequence of entire exon 4 through exon 5; In particular, two separate 2DL1-specific PCR amplifications (Amplicon 2-1, Amplicon 2-2) are used for amplifying exon 4 and exon 5 of 2DL1, respectively. A3: Amplicon 3, amplifying the target sequence covering entire exon 6 of each KIR gene; A4: Amplicon 4, amplifying the target sequence covering entire exon 7 through exon 9.



FIGS. 3A to 3H indicate the effect of KIR SBT and allele assignment for a DNA sample with KIRAA1 profile that carrys 7 functional KIR genes (KIR2DL1, 2DL3, 2DL4, 2DS4, 3DL1, 3DL2 and 3DL3). The obtained sequences covering all the exons of each above KIR gene are imported into Assign 3.5 or 4.7 software, the allele level genotype of this sample in the first embodiment is KIR2DL1*00302-2DL3*00101-2DL4*00102,011-2DS4*00101,010-3DL1*00501, 01502-3DL2*00201, 010-3DL3*00901,010.



FIG. 4 shows the electrophoresis of the PCR products on an agarose gel for a DNA sample with KIRAB6 profile. According to the second embodiment of this disclosure, wherein, M: DL2000 Marker; A1: Amplicon 1, amplifying the target sequence covering entire exon 1 through exon 2 of each KIR gene; A2: Amplicon 2, as for 3DL1˜3, 3DS1, and 2DL4˜5 genes, PCR ampicon 2 covers the target sequence of entire exon 3 through exon 5; whereas for KIR2DL1˜3 and KIR2DS1˜5 genes, PCR amplicon 2 covers the target sequence of entire exon 4 through exon 5; In particular, two separate 2DL1 specific PCR amplifications (Amplicon 2-1, Amplicon 2-2) are used for amplifying exon 4 and exon 5 of 2DL1, respectively; A3: Amplicon 3, amplifying the target sequence covering entire exon 6 of each KIR gene; A4: Amplicon 4, amplifying the target sequence covering entire exon 7 through exon 9.



FIGS. 5A to 5O indicate the effect of KIR SBT and allele assignment for a DNA sample with KIRAB6 profile that carrys all 14 functional KIR genes. The obtained sequences covering all the exons of each above KIR gene are imported into Assign 3.5 or 4.7 software, the allele level genotype of the sample in the second embodiment is KIR2DL1*00302,00401-2DL2*00301-2DL3*00101-2DL4*00102,00501-2DL5A*00101,B*010-2DS1*00201-2DS2*00101-2DS3*00101-2DS4*00101-2DS5*00201-3DL1*01502-3DL 2*00201,00701-3DL3*01002-3DS1*01301.


The foregoing objects, features and advantages of the present disclosure will be described in greater detail with reference to the accompanying drawings.





DETAILED DESCRIPTION OF THE EMBODIMENTS
Embodiment 1

In the present embodiment, a randomly selected DNA sample which had been previously identified as KIRAA1 profile using a commercial KIR-SSP kit was subjected to sequence-based typing according to the present disclosure with an aim to confirm the effect of this disclosure. Firstly, the complete coding region of each functional KIR gene was separately amplified using 3˜5 pairs of KIR gene-specific PCR primers in an ABI 9700 PCR cycler. All the PCR amplifications were carried out in a volume of 10 μL containing:


















10 × PCR Buffer (without MgCl2)
1.0 μL 



2.5 mM dNTP
0.8 μL,



5.0 mM MgCl2
3.0 μL,



10 μM each PCR Primer
0.4 μL,



50~100 ng/μL Genomic DNA
2.0 μL,



5 U/μL Taq DNA Polymerase
0.1 μL,



Add ddH2O to
10.0 μL. 










All the PCR amplifications were simultaneously amplified under the same thermocycling parameters described below:



















95° C.
3
min;



95° C.
15
Sec,



68° C.
15
Sec,










72° C.
3.5 min, 35 cycles;











72° C.
7
min;










 4° C.
Infinite.










To confirm successful PCR amplification, 2 μL PCR products mixed with 1 μL nucleic acid dye as well as 3 μL 5×loading buffer were electrophoresed on a 2% agarose gel. The expected sizes of PCR products were in comparison with Takara DL2000 DNA markers. As a result, specific and clear PCR product bands for 7 KIR genes (KIR2DL1, 2DL3, 2DL4, 2DS4, 3DL1, 3DL2 and 3DL3) were observed on the gel, indicating the tested sample carried the above KIR genes. However, the remaining 7 functional KIR genes including KIR2DL2, 2DL5, 2DS1, 2DS2, 2DS3, 2DS5 and 3DS1 were absent since no specific PCR product band was observed on the gel. Thus, the PCR products amplified by using the PCR primers of this disclosure were subjected to agarose gel electrophoresis, the result was completely consistent with the known KIRAA1 profile. The electrophoresis images of the tested sample are shown in FIG. 2.


Now that the 7 functional KIR genes (KIR2DL1, 2DL3, 2DL4, 2DS4, 3DL1, 3DL2 and 3DL3) were present for the tested sample, the specific PCR products of these KIR genes were then purified using the same purification system described below:



















1 U/μL Thermosensitive Alkaline Phosphatase
1
μL,



20 U/μL Exonuclease I
0.25
μL,



10 × Reaction Buffer
3
μL,



PCR Products
10
μL.










Purification of PCR products were carried out under the same thermocycling parameters described below:


















37° C.
45 min;



85° C.
15 min;



 4° C.
Infinite.










Upon completion, dilute the purified product 1:3 with sterile deionized water. Mix gently by vortexing and centrifuge briefly.


The nucleotide sequences of each exon carried by purified PCR amplicons were determined in both directions. As for KIR2DL1, 2DL3, 2DL4, 2DS4 and 3DL3 genes, each KIR gene was sequenced using sixteen specific sequencing primers, respectively. For KIR3DL1 and 3DL2 genes, each KIR gene was sequenced using eighteen specific sequencing primers, respectively. All the sequencing reactions were carried out in a volume of 10 μL containing:


















5 × BigDye Sequencing Buffer
2.075 μL, 



BigDye Terminator 3.1
0.25 μL,



10 μM Sequencing Primer
0.32 μL,



Purified PCR Products
 2.0 μL,



Add ddH2O to
10.0 μL.










The thermocycling parameters for all the sequencing reactions were carried out as follows:



















95° C.
1
min;



95° C.
10
Sec,



50° C.
5
Sec,










60° C.
4 min, 25 cycles;



 4° C.
Infinite.










When the sequencing reaction was completed, purification of sequencing reaction products was carried out by ethanol/NaOAc/EDTA precipitation method, and finally added 15 μL of Hi-Di formamide solution to each well and then denatured at 95° C. for 2.5 min in a PCR cycler. The purified sequencing reaction products were detected by capillary electrophoresis in an ABI 3730 DNA sequencer. All the obtained sequences were then imported into Assign 3.5 or 4.7 software (Conexio Genomics, Western Australia) (see FIGS. 3A to 3H), the allele level KIR genotype was identified as “KIR2DL1*00302-KIR2DL3*00101-KIR2DL4*00102,011-KIR2DS4*00101,010-KIR3DL1*00501,01502-KIR3DL2*00201,010-KIR3DL3*00901,010”.



FIG. 3D and FIG. 3E showed 2DS4 SBT results with heterozygous genotype KIR2DS4*00101, 010. Since KIR2DS4*010 has a 22 bp deletion in exon 5, whereas KIR2DS4*00101 does not possess a 22 bp deletion, forward sequencing result of exon 5 showed that nucleotide misalignment occurred at the nucleotied position nt454 and the downstream region (see FIG. 3D), while reverse sequencing result of exon 5 showed that nucleotide misalignment occurred at nucleotide position nt475 and the upstream region (see FIG. 3E).


Embodiment 2

In the present embodiment, a randomly selected DNA sample which had been previously identified as KIRAB6 profile using a commercial KIR-SSP kit was subjected to sequence-based typing according to the present disclosure with an aim to confirm the effect of this disclosure. Firstly, the complete coding region of each functional KIR gene was separately amplified using 3˜5 pairs of KIR gene-specific PCR primers in an ABI 9700 PCR cycler. All the PCR amplifications were carried out in a volume of 10 μL containing:


















10 × PCR Buffer (without MgCl2)
1.0 μL 



2.5 mM dNTP
0.8 μL,



5.0 mM MgCl2
3.0 μL,



10 μM each PCR Primer
0.4 μL,



50~100 ng/μL Genomic DNA
2.0 μL,



5 U/μL Taq DNA Polymerase
0.1 μL,



Add ddH2O to
10.0 μL. 










All the PCR amplifications were simultaneously amplified under the same thermocycling parameters described below:



















95° C.
3
min;



95° C.
15
Sec,



68° C.
15
Sec,










72° C.
3.5 min, 35 cycles;











72° C.
7
min;










 4° C.
Infinite.










To confirm successful PCR amplification, 2 μL PCR products mixed with 1 μL nucleic acid dye as well as 3 μL loading buffer were electrophoresed on a 2% agarose gel. The expected sizes of PCR products were in comparison with Takara DL2000 DNA markers. As a result, specific and clear PCR product bands for 14 KIR genes (KIR2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 3DL1, 3DL2, 3DL3 and 3DS1) were observed on gel, indicating the tested sample carried the above KIR genes. Thus, the PCR products amplified by using the PCR primers of this disclosure subjected to agarose gel electrophoresis, the result is completely consistent with the known KIRAB6 profile. The electrophoresis images of the tested sample are shown in FIG. 4.


Now that the 14 functional KIR genes (KIR2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 3DL1, 3DL2, 3DL3 and 3DS1) were present for this tested sample, the specific PCR products of these KIR genes were then purified using the same purification system described below:



















1 U/μL Thermosensitive Alkaline Phosphatase
1
μL,



20 U/μL Exonuclease I
0.25
μL,



10 × Reaction Buffer
3
μL,



PCR Products
10
μL.










Purification of PCR products were carried out under the same thermocycling parameters described below:


















37° C.
45 min;



85° C.
15 min;



 4° C.
Infinite.










Upon completion, diluted the purified PCR product 1:3 with sterile deionized water. Mixed gently by vortexing and centrifuge briefly.


The nucleotide sequences of each exon carried by the purified PCR amplicons were determined in both directions. As for KIR2DL1˜5, 2DS1˜5 and KIR3DL3 genes, each KIR gene was sequenced using sixteen specific sequencing primers, respectively. For KIR3DL1˜2 and KIR3DS1 genes, each KIR gene was sequenced using eighteen specific sequencing primers, respectively. All the sequencing reactions were carried out in a volume of 10 μL containing:


















5 × BigDye Sequencing Buffer
2.075 μL, 



BigDye Terminator 3.1
0.25 μL,



10 μM Sequencing Primer
0.32 μL,



Purified PCR Products
 2.0 μL,



Add ddH2O to
10.0 μL.










The thermocycling parameters for all the sequencing reactions were carried out as follows:



















95° C.
1
min;



95° C.
10
Sec,



50° C.
5
Sec,










60° C.
4 min, 25 cycles;



 4° C.
Infinite.










When the sequencing reactions were completed, purification of sequencing reaction products was carried out by ethanol/NaOAc/EDTA precipitation method, and finally added 15 μL, of Hi-Di formamide solution to each well and then denatured at 95V for 2.5 min in a PCR cycler. The purified sequencing reaction products were detected by capillary electrophoresis in an ABI 3730 DNA sequencer. All the obtained sequences were then imported into Assign 3.5 or 4.7 software (Conexio Genomics, Western Australia) (FIGS. 5A-5O), the allele level KIR genotype was identified as “KIR2DL1*00302,00401-KIR2DL2*00301-KIR2DL3*00101-KIR2DL4*00102,00501-KIR2 DL5A*00101,B*010-KIR2DS1*00201-KIR2DS2*00101-KIR2DS3*00101-KIR2DS4*0010 1-KIR2DS5*00201-KIR3DL1*01502-KIR3DL2*00201,00701-KIR3DL3*01002-KIR3DS1*01301”.



FIG. 5I and FIG. 5J showed 2DS4 SBT results with homozygous KIR2DS4*00101, 00101. Since KIR2DS4*00101 does not possess a 22 bp deletion in exon 5, forward sequencing result of exon 5 showed that no nucleotide misalignment occurred at the nucleotied position nt454 and the downstream region (see FIG. 5I), reverse sequencing result of exon 5 showed that no nucleotide misalignment occurred at nucleotide position nt475 and the upstream region (see FIG. 5J).


Embodiment 3

In the present embodiment, a total number of 306 randomly selected DNA samples which had been previously detected using a commercial KIR-SSP kit were subjected to sequence-based typing according to the present disclosure with an aim to confirm the effect of this disclosure. Firstly, the complete coding region of each functional KIR gene was separately amplified using 3˜5 pairs of KIR gene-specific PCR primers in an ABI 9700 PCR cycler. All the PCR amplifications were carried out in a volume of 10 μL containing:


















10 × PCR Buffer (without MgCl2)
1.0 μL 



2.5 mM dNTP
0.8 μL,



5.0 mM MgCl2
3.0 μL,



10 μM each PCR Primer
0.4 μL,



50~100 ng/μL Genomic DNA
2.0 μL,



5 U/μL Taq DNA Polymerase
0.1 μL,



Add ddH2O to
10.0 μL. 










All the PCR amplifications were simultaneously amplified under the same thermocycling parameters described below:



















95° C.
3
min;



95° C.
15
Sec,



68° C.
15
Sec,










72° C.
3.5 min, 35 cycles;











72° C.
7
min;










 4° C.
Infinite.










To confirm successful PCR amplification, 2 μL PCR products mixed with 1 μL nucleic acid dye as well as 3 μL loading buffer were electrophoresed on a 2% agarose gel. The expected sizes of PCR products were in comparison with Takara DL2000 DNA markers. As a result, the PCR products amplified by using the PCR primers of this disclosure were subjected to agarose gel electrophoresis, the results were completely consistent with the known KIR profiles for all the 306 DNA samples.


PCR products for KIR genes that were present in each tested DNA sample, were then purified using the same purification system described below:



















1 U/μL Thermosensitive Alkaline Phosphatase
1
μL,



20 U/μL Exonuclease I
0.25
μL,



10 × Reaction Buffer
3
μL,



PCR Products
10
μL.










Purification of PCR products were carried out under the same thermocycling parameters described below:


















37° C.
45 min;



85° C.
15 min;



 4° C.
Infinite.










Upon completion, dilute the purified PCR products 1:3 with sterile deionized water. Mix gently by vortexing and centrifuge briefly.


The nucleotide sequences of each exon carried by purified PCR amplicons were determined in both directions. As for KIR2DL1˜5, 2DS1˜5, and KIR3DL3 genes, each KIR gene was sequenced using sixteen specific sequencing primers, respectively. For KIR3DL1˜2 and KIR3DS1 genes, each KIR gene was sequenced using eighteen specific sequencing primers, respectively. All the sequencing reactions were carried out in a volume of 10 μL containing:


















5 × BigDye Sequencing Buffer
2.075 μL, 



BigDye Terminator 3.1
0.25 μL,



10 μM Sequencing Primer
0.32 μL,



Purified PCR Product
 2.0 μL,



Add ddH2O to
10.0 μL.










The thermocycling parameters for all the sequencing reactions were carried out as follows:



















95° C.
1
min;



95° C.
10
Sec,



50° C.
5
Sec,










60° C.
4 min, 25 cycles;



 4° C.
Infinite.










When the sequencing reactions were completed, purification of sequencing reaction products was carried out by ethanol/NaOAc/EDTA precipitation method, and finally added 15 μL of Hi-Di formamide solution to each well and then denatured at 95° C. for 2.5 min in a PCR cycler. The purified sequencing reaction products were detected by capillary electrophoresis in an ABI 3730 DNA sequencer. All the obtained sequences were then imported into Assign 3.5 or 4.7 software (Conexio Genomics, Western Australia), the allele level KIR genotype for each sample was identified (see Table 6). The identified alleles and their frequencies of 14 functional KIR genes in southern Chinese Han population (n=306) were provided in Table 7.









TABLE 6





SBT Results of 14 Functional KIR Genes in Southern Chinese Han Population (n = 306)






















No.
2DL1
2DL2/3
2DL4
2DL5A
2DL5B
2DS1
2DS2





1
00302
3*00101, 3*00109
00102, 00501
005

00201


2
00302
3*00101
 011


3
00302
3*00101
00102, 00801


4
00302
3*00109, 3*023 
 006, 00801


5
00302
3*00101
00102, 011 


6
00302
3*00101
00102


7
00302
3*00101
00102, 00501
005

00201


8
00302
3*00101
00102, 00501
001

00201


9
00302
3*00101, 3*028 
00102, 00801


10
00201, 00302
3*00101, 3*00201
00501, 006 
001

00201


11
00201, 00302
3*00101, 3*00201
00102, 011 


12
00201
2*00301, 3*00201
00102, 00501
001
006
00201
00101


13
00302
3*00101, 3*029 
00102


14
00302
3*00101
00102, 006 


15
00302
3*00101
00102


16
00302
2*00301, 3*00101
00102



00101


17
00302
3*00101
00102, 011 


18
00201, 00302
3*00101, 3*00201
00501, 011 
001

00201


19
00302
2*00301, 3*00101
00102, 006 



00101


20
00302
2*00301, 3*00101
00501
001
010
00201
00101


21
00302
2*00301, 3*00101
00102

006
00201
00101


22
00302
3*00101
00102, 011 


23
00302
3*00101
00102, 00801


24
00302
3*00101
00102


25
00302, 00401
2*00301, 3*00101
00102, 006 

010

00101


26
00302, 00401
2*00101, 3*00101
00102, 00501
001
002
00201
00101


27
00302
2*00301, 3*00101
00102, 006 



00101


28
00201
3*00201
00102, 011 


29
00201, 00302
3*00101, 3*00201
00102, 006 


30
00302
2*00301, 3*00101
00103, 00501
001
006
00201
00101


31
00302, 00401
2*00301, 3*00101
00501
001, 00

00201
00101







text missing or illegible when filed



32
00302
2*00301, 3*00101
00102

006
00201
00101


33
00201
3*00201
00501, 011 
012

00201


34
00201, 00302
3*00101, 3*00201
00102, 011 


35
00302
2*00301, 3*00101
00102, 00501
001
006
00201
00101


36
00302, 00401
2*00101, 3*00101
00102

002

00101


37
00302
3*00101
00102, 00504
001

00201


38
00302
3*00101
00102


39
00302
3*00101
00102


40
00302
3*00101
00102


41
00302
3*00101
00102


42
00302
2*00301, 3*00101
00503
001, 01

00201
00101







text missing or illegible when filed



43
00302, 00401
2*00301, 3*00101
00102

010

00101


44
00302
2*00301, 3*00101
00102



00101


45
00302
3*00101
00501, 006 
005

00201


46
00302, 031 
3*00101, 3*023 
00102, 00501
001

00201


47
00302
3*00101
00801, 011 


48
00302, 00401
2*00101, 3*00101
00102, 00501
005
002

00101


49
00302
3*00101
00103, 011 


50
00302, 00401
2*00101, 3*00101
00102

002

009


51
00201, 00302
3*00101, 3*00201
00501, 006 
001

00201


52
00302
3*00101
00102, 011 


53
00302
3*00101
00102, 011 


54
 001, 00201
2*00101, 3*00201
00501
001
002
00201
009


55
00201, 00302
3*00101, 3*00201
00102, 011 


56
00302
3*00101
00102, 00501
022

00201


57
00201, 00302
3*00101, 3*00201
00102


58
00302
3*00101, 3*027 
 011


59
00302
3*00101, 3*023 
00102


60
00302
3*00101
00102


61
00302
3*00101
00102, 011 


62
00302
3*00101
00102, 00501
001

00201


63
00302
3*00101
00102, 011 


64
00302
3*00101
00102, 006 


65
00201, 00302
3*00101, 3*00201
00102, 006 


66
00401
2*00101, 2*00301
00102, 00801

002, 010

00101,










text missing or illegible when filed



67
00302
2*00301, 3*00101
 006, 00801



00101


68
00302
3*00101
00102


69
00201
2*00301, 3*00201
 011

008

00101


70
00201, 00302
3*00101, 3*00201
00501, 011 
001

00201


71
00302, 00401
2*00301, 3*023 
00102, 00103

010

00101


72
030
3*00101
 011


73
00302
3*00101
00102, 00501
001

00201


74
00302
3*00101
00102, 011 


75
00201, 00302
3*00101, 3*00201
00102


76
00302
3*00101
00102, 00501
001

00201


77
00302
3*00101
00102


78
00302, 00401
2*00301, 3*00101
00102, 00501
001
010
00201
00101


79
00201, 00302
3*00101, 3*00201
00501, 011 
001

00201


80
00201, 00302
3*00201, 3*023 
00102


81
00302
3*00101
00102, 00501
001

00201


82
00302
3*00101
00501, 00801
005

00201


83
00201, 00302
3*00101, 3*00201
 006, 00801


84
00302
3*00101
00102


85
00302
3*00101
00102, 011 


86
00201, 00302
3*00101, 3*00201
00102


87
00302
3*00101
00102


88
00302
3*00101
00102


89
00302
3*00101
00102, 00103


90
00302
2*00301, 3*00101
00103, 00501
005
010
00201
00101


91
00302
2*00301, 3*00101
00501, 011 
001
006
00201
00101


92
00302
3*00101
00102, 011 


93
00302
3*00101, 3*023 
00102, 00501
001

00201


94
00302
3*00101
00102, 011 


95
00401
2*00301, 3*00101
00102, 00501
001
006
00201
00101


96
00302
3*00101, 3*023 
00102


97
00302
3*00101
00102, 006 


98
00201, 00302
3*00101, 3*00201
00501, 00801


99
00201, 00302
3*00101, 3*00201
00102, 011 


100
00302
2*00301, 3*00101
00102, 00501
012
006
00201
00101


101
00201, 00302
3*00101, 3*00201
00102


102
00302
3*00101
00501
001, 00

00201







text missing or illegible when filed



103
00401
2*00301
00102

006, 010
00201
00101


104
00201, 00302
3*00101, 3*00201
00103, 00501
001

00201


105
00302
3*00101
00501, 00801
005

00201


106
00302
3*00101, 3*023 
00102, 00801


107
00305
2*00301, 3*00101
00102, 006 



00101


108
00302
2*00101, 3*00101
00102

002
00201
00101


109
00201, 00302
3*00101, 3*015 
00102, 011 


110
00302
2*00301, 3*00101
00503, 011 
001
006
00201
00101


111
00302
3*00101, 3*019 
00102, 011 


112
00302, 00401
2*00101, 3*00101
00501, 011 
005
002
00201
00101


113
00302
3*00101
00103, 00801


114
00302
3*00101
00102, 011 


115
00302
3*00101
00102, 006 


116
00302
3*00101, 3*025 
00102, 011 


117
00302
3*00101
00102, 00801


118
00201, 00302
3*00101, 3*00201
00102, 006 


119
00302
2*00301, 3*00101
00501, 011 
001
006
00201
00101


120
00302
3*00101
00501, 011 


121
00201, 00302
3*00101, 3*00201
00501, 011 
001

00201


122
00302
3*00101
00102, 011 


123
00302
3*00101
00102, 00501


124

2*00301
00501
001
006
00202
00101


125
00302
3*00101
00102, 00501
005

00201


126
00201, 00302
3*00101, 3*00201
00102, 006 


127
00302
3*00101
00102, 00501
001

00201


128
00302
3*00101
00102


129
00302
3*00101
00102


130
00302
3*00101
00102, 00504
001

00201


131
00302
3*00101
00102, 00103


132

2*00301
00102, 00501
012
006
00201
00101


133
00302
2*00301, 3*00101
 006



00101


134
00302
3*00101
00102, 00501
005

00201


135
00302
2*00301, 3*00101
00501, 006 
001
006
00201
00101


136
00302
3*00101
00102, 00103


137
00302
3*00101
00102


138
00302
2*00301, 3*00101
00102, 011 



00101


139
00302
3*00101, 3*00109
00102, 00501
001

00201


140
00201, 00302
3*00101, 3*00201
00102, 00501
001

00201


141
00201
3*00201
00102, 00501
001

00201


142
00302
3*00101
00102, 00801


143
00302
2*00301, 3*00101
00102, 00501
001
006
00201
00101


144
00201, 00302
3*00101, 3*00201
 011


145
00201, 00302
3*00101, 3*00201
00102, 011 


146
00201, 00302
3*00101, 3*00201
00801


147
00201, 00302
3*00101, 3*00201
00102, 00501
001

00201


148
00302
3*00101
00102, 011 


149
00201, 00302
3*00101, 3*015 
00501, 006 
005

00201


150
00201
3*00201, 3*022 
00102


151
00201, 00302
3*00101, 3*00201
00102, 00501
001

00201


152
00302
3*00101
00102


153
00201, 00302
3*00101, 3*00201
00103, 00801


154
00302
3*00101
00102


155
00302
3*00101
00102


156
00201, 00302
3*00101, 3*00201
00102, 00801


157
00201
2*00301, 3*00201
00102, 00801



00101


158
00302
3*00101
00102, 00501
005

00201


159
00201, 00302
3*00101, 3*00201
00102


160
00201, 00302
3*00101, 3*00201
00102, 006 


161
00302
3*00101
00102, 00801


162
00302
3*00101
00102


163
00201, 00302
3*00101, 3*00201
00102, 00501
001

00201


164
00302, 00401
2*00301, 3*00101
00102, 00103

010

00101


165
00201, 00302
3*00101, 3*00201
00102


166
00201
3*00201
00102, 00501
001

00201


167
00201, 00302
3*00101, 3*00201
00501, 006 
001

00201


168
00302
3*00101
00102, 00801


169
00302
3*00101
00102, 011 


170
00302
3*00101
00102


171
00201, 00302
3*00101, 3*00201
00501, 00801


172
00302
3*00101, 3*023 
00102, 011 


173
00302
3*00101
00102


174
00302
3*00101
00501, 00801
001

00201


175
00201, 00302
3*00101, 3*00201
00102, 00501
001

00201


176
00201, 00302
3*00101, 3*00201
00102, 00103


177
00302
3*00101, 3*00109
00501, 033 
005

00201


178
00201, 00302
3*00101, 3*00201
00102, 00103


179
00302
3*00101
00102, 00103


180
00302
3*00101
00102, 00501
005

00201


181
00302
3*00101
00102, 00501
005

00201


182
00302
3*00101
00102, 00501
001

00201


183
00302
3*00101, 3*023 
00102, 006 


184
00302
2*00301, 013, 3*00101
00102, 006 



00101


185
00302
3*00101
00102


186
00302
3*00101
00102, 00501
001

00201


187
00302
2*00301, 3*00101
00102, 00501



00101


188
00302
3*00101, 3*021 
00102, 00103


189
00201, 00302
3*022, 3*023
00102


190
00302
2*00301, 3*00101
00501
001
006
00201, 0
00101









text missing or illegible when filed



191
00302
3*00101
00102


192
00302
3*00101
00102, 011 


193
00302
3*00101
00102, 00501
001

00201


194
00302
2*00301, 3*00101
00103, 00801



00101


195
00302
3*00101
00102


196
00302
3*00101
00102, 00801


197
00302
3*00101
00102


198
00302
3*00101
00102, 00501
005

00201


199
00302
3*00101
00102


200
00302
3*00101
00102, 00801


201
00302
3*00101
 006, 00801


202
00201, 00302
3*00101, 3*00201
00102


203
00302
3*00101
00102


204
00302
2*00301, 3*00101
00501, 011 
001
006
00201
00101


205
00302, 00401
2*00301, 3*00101
00102

010

00101


206
00201, 00302
3*00101, 3*00201
 011


207
00302
2*00301, 3*00101
00102



00101


208
00302
3*00101, 3*00110
00102, 00501


209
00302
3*00101
00102


210
00302
3*00101
00102


211
00302
2*00301, 3*00101
00102, 011 



00101


212
00201, 00302
3*00101, 3*00201
00501, 006 
001

00201


213
00302
3*00101
00501, 011 
005


214
00201
2*00301, 3*00201
00102, 00103



00101


215
00302
3*00101
00102


216
00302, 00401
2*00101, 3*00101
00102, 006 

002

00101


217
00302
3*00101
00102, 00501
001

00201


218
00302
3*00101
00102


219
00201, 00302
3*00101, 3*00201
00102, 00501
001

00201


220
00201, 00302
3*00101, 3*00201
00102, 011 


221
00302
2*00301, 3*00101
00102, 00501
005
010
00201
00101


222
00302
2*00301, 3*00101
00501
001
006
00201
00101


223
00302
3*00101
00102, 00801


224
00302
3*00101
00102


225
00302
3*00101
00102, 00501
005

00201


226
00302
3*00101
00102


227
00302
3*00101
00102, 00501
001

00201


228
00302
3*00101
00102


229
00401
2*00101, 2*00301
00102, 00501
005
010

00101


230
00201, 00302
3*00101, 3*00201
00102, 011 


231
00302
2*00301, 3*00101
00102, 00501
001
006
00201
00101


232
00302
3*00101
00102


233
00201, 00302
3*00101, 3*00201
00801, 011 


234
00302
2*00301, 3*00101
00501, 00801
001
006

00101


235
00302
3*00101
00102, 011 


236
00302
3*00101
00102, 011 


237
00201
3*00201
00501, 006 
005

00201


238
00302
3*00101
00102, 00501
005

00201


239
00302
3*00101
00102, 006 


240
00302
3*00101
00102, 00103


241
00302
3*00101
00102


242
00302
3*00101
00102


243
00201, 00302
3*00101, 3*00201
00102, 011 


244
00302
3*00101
00102


245
00302
3*00101
00102, 00501
005

00201


246
00302
2*00301, 3*00101
 006, 00801



00101


247
00302
3*00101, 3*026 
 006


248
00302
3*00101
00102


249
00302
3*00101
00102


250
00302
3*00101
00501, 006 
005

00201


251
00201, 00302
3*00101, 3*00201
00102, 011 


252
00302
3*00101
00102


253
00302
2*00301, 3*00101
00102, 00501
001
006
00201
00101


254
00201, 00302
3*00101, 3*00201
00102, 011 


255
00302
3*00101
00102, 00501
005

00201


256
00201, 00302
3*00201, 3*031 
00102, 006 


257
00201, 00302
3*00101, 3*00201
00102, 00501
001

00201


258
00302
3*00101
00102, 00501


259
00302
3*00101
00103, 011 


260
00201, 00302
3*00101, 3*00201
00501, 011 
001

00201


261
00201, 00302
3*00101, 3*00201
00102, 00103


262
00302
2*00301, 3*00101
00501, 011 
005
010
00201
00101


263
00302
3*00101
00102, 011 


264
00302
3*00101
00102, 034 
001

00201


265
00302
3*00101
00501
001

00201


266
00302
3*00101
00102, 00501
001

00202


267
00201, 00302
3*00101, 3*00201
006, 011


268
00302
3*00101
00102, 032 


269
00201, 00302
3*00101, 3*00201
00102, 006 


270
00302
3*00101
00102, 00801


271
00201, 00302
3*00101, 3*00201
006, 011
001

00201


272
00302, 00401
2*00301, 3*00101
00102

010

00101


273
00201, 00302
3*00101, 3*00201
006, 011


274
00201, 00302
3*00101, 3*00201
006, 011


275
00302
2*00301, 3*00101
00102, 00501
001
006
00201
00101


276
00304
2*00301, 3*00101
00102, 011 



00101


277
00302
3*00101, 3*023 
00102


278
00302
3*00101, 3*023 
00102


279
00201, 00302
3*00101, 3*00201
00102, 00103


280
00201, 00302
3*00101, 3*00201
00102


281
00302
3*00101
00501, 011 
005

00201


282
00302, 033 
3*00101
00102


283
00302
3*00101
00501, 00801
001

00201


284
00302
3*00101
00102, 00501


285
00302
3*00101
00102, 00501
001

00201


286
00302, 00401
2*00101, 3*00101
00102, 00501
005
002

00101


287
00302
3*00101
00102


288
00302
3*00101
00103, 006 


289
00201, 00302
3*00101, 3*00201
006, 011


290
00302
3*00101
00102, 00501


291

2*00301
00102, 00501
001
006
00201
00101


292
00302
3*00101
 011


293
00302
3*00101
00102


294
00302
3*00101
00102


295
00302
3*00101
00102, 006 


296
00302
3*00101
00102


297
00302
2*00301, 3*00101
00102

006
00201
00101


298
00302
3*00101
00102, 00501
005

00201


299
00302
3*00101
00102, 006 


300
00302
2*00301, 3*00101
00102, 00801



00101


301
00302
3*00101
00102, 00801


302
00302
3*00101, 3*026 
00103, 006 


303
00302
3*00101
00103, 00501
005

00201


304
00201, 00302
3*00101, 3*00201
00103


305
00302, 034 
3*00101, 3*00201
00102


306
00302
3*00101
00102


















No.
2DS3
2DS4
2DS5
3DL1/S1
3DL2
3DL3







1
00201
00101

L1*01502, S1*01301,
00701, 039 
010







S1*082



2

 010

L1*00501
010
010



3

00101, 00301

L1*00101, L1*01502
001, 002
008, 009



4

00301, 00401

L1*00101, L1*00701
008, 010
010



5

00101, 010 

L1*00501, L1*01502
002, 010
010



6

00101

L1*01502
002
008



7
00201
00105

L1*01502, S1*01301
 002, 00701
008, 010



8

00101
0020 •
L1*01502, S1*01301
002, 093
009, 010



9

00101, 00301

L1*00101, L1*01502
001, 002
001, 008



10

00401
0020 •
L1*00701, S1*01301
002, 008
001, 009



11

00101, 010 

L1*00501, L1*01502
002, 010
008, 009



12

00101
0020 •
L1*01502, S1*01301
002
048



13

00101

L1*01502
002
009, 010



14

00101, 00401

L1*01502, L1*00701
002, 008
009, 010



15

00101

L1*01502
002
008



16

00101

L1*01502
002, 039
008, 028



17

00101, 010 

L1*00501, L1*01502
002, 010
009, 010



18

 018
0020 •
L1*00501, S1*01301
001, 010
006, 010



19

00101, 00401

L1*01502, L1*00701
002, 008
008, 009



20
00201

0020 •
S1*01301
00701 
008, 010



21

00101
0020 •
L1*01502
00701, 039 
008, 010



22

00101, 010 

L1*00501, L1*01502
002
010



23

00101, 00301

L1*00101, L1*01502
001, 002
008, 010



24

00101

L1*01502, L1*02901
002
009, 010



25
001
00101, 00401

L1*01502, L1*00701
002, 010
008, 009



26
001
00101
0020 •
L1*01502, S1*01301
002, 015
010, 028



27

00101, 00401

L1*01502, L1*00701
002, 008
008, 010



28



29

00101, 00401

L1*01502, L1*00701
002, 008
009, 048



30

00101
0020 •
 L1*020, S1*01301
002, 009
010, 028



31
001, 00

0020 •
S1*01301
 002, 00701
004, 015





text missing or illegible when filed




32

00101
0020 •
L1*01502
 002, 00701
008, 010



33

 010
0020 •
L1*00501, S1*01301,
 002, 00701
 001, 04802







S1*084



34

00101, 010 

L1*00501, L1*01502
002, 010
001, 002



35

00101
0020 •
L1*01502, S1*01301
002
008, 015



36
001
00101

L1*01502, L1*02901
002
010



37

00101
0020 •
L1*01502, S1*01301
002, 093
008, 010



38

00101

L1*01502
002
010, 015



39

00101

L1*01502
002
009



40

00101

L1*01502
002
009



41

00101

L1*01502
002
008, 010



42


0020 •
S1*01301
00701 
008, 010



43
001
00101

L1*01502
002
008, 010



44

00101

L1*01502
002
008, 010



45
00201
00401

L1*00701, S1*01301
00701, 008 
008, 010



46

00101
0020 •
L1*01502, S1*01301
002
009, 010



47

00301, 010 

L1*00101, L1*00501
001, 010
010



48
001
00101

L1*01502, S1*01301,
002
009







S1*082



49

00301, 010 

L1*00501, L1*008 
009, 010
009, 010



50
001
00101

L1*01502
002, 039
010, 028



51

00401
0020 •
L1*00701, S1*01301
00701, 008 
001, 010



52

00101, 010 

L1*00501, L1*01502
002, 010
009



53

00101, 010 

L1*00501, L1*01502
002, 010
008, 010



54
001

0020 •
S1*01301
00701 
001, 048



55

00101, 010 

L1*00501, L1*01502
002, 010
 010, 04802



56
00201
00101

L1*01502, S1*01301
 002, 00707
009, 010



57

00101

L1*01502
002
006, 010



58

 010

L1*00501
010
009, 010



59

00101

L1*01502
002
010



60

00101

L1*01502
002
009, 010



61

00101

L1*00501, L1*01502
002, 039
010



62

00101
0020 •
L1*01502, S1*01301,
001, 015
008







S1*083



63

00101, 010 

L1*00501, L1*01502
002, 010
002, 010



64

00101, 00401

L1*01502, L1*00701
002, 021
010



65

00101, 00401

L1*01502, L1*00701
008, 010
006, 010



66
001
00101, 00301

L1*00101, L1*01502
001, 002
003, 004



67

00301, 00401

L1*00101, L1*00701
001, 008
010



68

00101

L1*01502
002
010



69

 010
0020 •
L1*00501
 002, 00701
02602 



70

 010
0020 •
L1*00501, S1*01301,
 001, 00701
006, 010







S1*078



71
001
00101

L1*01502, L1*020 
002, 009
010



72

 010

L1*00501
010
010



73

00101
0020 •
L1*01502, S1*01301
 002, 00701
008, 010



74

00101, 010 

L1*00501, L1*01502
002, 010
009, 010



75

00101

L1*01502
002
 010, 02602



76

00101
0020 •
L1*01502, S1*01301
002, 093
010



77

00101

L1*01502
002
008, 009



78
001
00101
0020 •
L1*01502, S1*01301
 002, 00701
010



79

 010
0020 •
L1*00501, S1*01301
002
006, 009



80

00101

L1*01502
002
006, 010



81

00101
0020 •
L1*01502, S1*01301
 002, 00701
009



82
00201
00301

L1*00101, S1*01301
 001, 00707
010



83

00301, 00401

L1*00701, L1*070 
001, 008
006, 010



84

00101

L1*01502
002
008, 010



85

00101, 010 

L1*00501, L1*01502
002, 010
010



86

00101

L1*01502
002
001, 010



87

00101

L1*01502
002
008, 010



88

00101

L1*01502
002
010, 015



89

00101

L1*01502, L1*020 
001, 002
010



90
00201
00101

 L1*020, S1*01301
00701, 009 
008, 010



91

 010
0020 •
L1*00501, S1*01301
00701, 010 
010



92

00101, 010 

L1*00501, L1*01502
002, 010
008, 010



93

00101
0020 •
L1*01502, S1*01301
 002, 00701
009, 015



94

00101, 010 

L1*00501, L1*01502
002, 010
008, 010



95

00101
0020 •
L1*01502, S1*01301
002
 009, 01003



96

00101

L1*01502
002
010



97

00101, 00401

L1*01502, L1*00701
002, 009
009



98

00401, 010 

L1*00501, L1*00701
008, 010
006, 010



99

00101, 010 

L1*00501, L1*01502
002, 010
 008, 04802



100

00101
0020 •
L1*02901, S1*01301
 002, 00701
010



101

00101

L1*01502
002
001, 010



102
00201

0020 •
S1*01301
00701, 027 
010



103
001
00101
0020 •
L1*01502
 002, 00701
004, 028



104

00101
0020 •
 L1*020, S1*01301
002, 009
010, 064



105
00201
00101, 010 

L1*00101, S1*01301
 001, 00701
009, 010



106

00101, 00301

L1*00101, L1*01502
001, 002
010



107

00101, 00401

L1*01502, L1*00701
002, 021
010



108
00201
00101

L1*01502
 002, 00701
010



109

00101, 010 

L1*00501, L1*01502
002
 010, 04802



110

 010
0020 •
L1*00501, S1*01301
00701, 010 
008, 009



111

00101, 010 

L1*00501, L1*01502
002
009, 010



112
001, 00
010

L1*00501, S1*01301
00701, 010 
010





text missing or illegible when filed




113

00101, 00301

L1*00101, L1*020 
002, 009
009, 015



114

00101, 010 

L1*00501, L1*01502
002, 010
010, 015



115

00101, 00401

L1*01502, L1*00701
002, 008
008



116

00101, 010 

L1*00501, L1*01502
002, 010
008, 009



117

00101, 00301

L1*00101, L1*01502
001, 002
010



118

00101, 00401

L1*01502, L1*00701
039, 083
006, 010



119

 010
0020 •
L1*00501, S1*01301
002
008



120

 010

L1*00501, L1*00502
010, 021
010



121

 010
0020 •
L1*00501, S1*01301
002, 010
006, 009



122

00101, 010 

L1*00501, L1*01502
002, 010
010



123

00101

L1*01502, S1*01301
002
010



124


0020 •
S1*01301
00701 
028



125
00201
00101

L1*01502, S1*01301
 002, 00701
010, 015



126

00101, 00401

L1*01502, L1*00701
002, 016
008, 048



127

00101
0020 •
L1*01502, S1*01301
039, 093
008, 010



128

00101

L1*01502
002
009



129

00101

L1*01502
002
008, 010



130

00101
0020 •
L1*01502, S1*01301
039, 093
010



131

00101

L1*01502, L1*020 
002, 009
010



132

00101
0020 •
L1*01502, S1*01301
 002, 00701
004, 028



133

00401

L1*00701
008
008, 015



134
00201
00101

L1*01502, S1*01301
 002, 00701
009, 015



135

00401
0020 •
L1*00701, S1*01301
002, 008
009, 010



136

00101

L1*01502, L1*020 
010, 039
008, 010



137

00101

L1*01502, L1*02901
002, 010
010



138

00101, 010 

L1*00501, L1*01502
002, 010
008



139

00101
0020 •
L1*01502, S1*01301
 002, 00701
009, 010



140

00101
0020 •
L1*01502, S1*01301
002, 015
006, 009



141

00101
0020 •
L1*01502, S1*01301
002
001, 006



142

00101, 00301

L1*00101, L1*01502
002, 010
010, 015



143

00101
0020 •
L1*01502, S1*01301
 002, 00701
010



144

 010

L1*00501
002, 010
001, 010



145

00101, 010 

L1*00501, L1*01502
002, 010
006, 010



146

00301, 00401

L1*00101, L1*00701
008, 016
008, 064



147

00101
0020 •
L1*01502, S1*01301
002
010, 013



148

00101, 010 

L1*00501, L1*01502
002, 010
008, 010



149
00201
00401

L1*00701, S1*01301
00701, 008 
 010, 04802



150

00101

L1*01502
002
001, 063



151

00101
0020 •
L1*01502, S1*01301
 002, 00701
006, 009



152

00101

L1*01502
002
010



153

00101, 00301

L1*00101, L1*020 
001, 009
001, 010



154

00101

L1*01502
002
008, 010



155

00101

L1*01502
002
008



156

00101, 00301

L1*00101, L1*01502
002, 010
 010, 02602



157

00101, 010 

L1*00501, L1*01502
002, 010
 006, 02602



158
00201
00101

L1*01502, S1*01301
 002, 00701
008, 010



159

00101

L1*01502
002
001, 008



160

00101, 00401

L1*01502, L1*00701
002, 008
010, 065



161

00101, 00301

L1*00101, L1*01502
001, 002
008



162

00101
0020 •
L1*01502
002
008, 009



163

00101
0020 •
L1*02901, S1*01301
 002, 00701
001, 010



164
001
00101

L1*01502, L1*020 
002
008, 010



165

00101

L1*01502
002, 039
010, 062



166

00101
0020 •
L1*01502, S1*01301
002, 010
001



167

00401
0020 •
L1*00701, S1*01301
00701, 008 
001, 010



168

00101, 00301

L1*00101, L1*01502
001, 093
010



169

00101, 010 

L1*00501, L1*01502
002, 010
008, 009



170

00101

L1*01502
002
010



171

00401, 010 

L1*00501, L1*00701
008, 010
001, 008



172

00101, 010 

L1*00501, L1*01502
002
009, 010



173

00101

L1*01502
002
008, 010



174

00301
0020 •
L1*00101, S1*01301
 001, 00701
008, 010



175

00101
0020 •
L1*01502, S1*01301
002
006, 008



176

00101

L1*01502, L1*020 
002, 009
010, 062



177
00201
00101

L1*01502, S1*01301
 002, 00701
010



178

00101

L1*01502, L1*020 
002, 009
009, 048



179

00101

L1*01502, L1*020 
009, 021
010



180
00201
00101

L1*01502, S1*01301
 002, 00701
010



181
00201
00101

L1*01502, S1*01301
 002, 00701
010



182

00101
0020 •
L1*01502, S1*01301
 002, 00701
008, 010



183

00101, 00401

L1*01502, L1*00701
002, 008
009, 010



184

00101, 00401

L1*01502, L1*00701
002, 021
008, 010



185

00101

L1*01502, L1*01505
002
010



186

00101
0020 •
L1*01502, S1*01301
00701, 010 
010



187

00101

L1*01502, L1*020 
002, 009
010, 015



188

00101, 00401

L1*01502, L1*00701
002, 008
009, 010



189

00101

L1*01502
002, 039
 010, 04802



190


0020 •
S1*01301
 002, 00701
001, 048



191

00101

L1*01502
002
009, 010



192

00101, 010 

L1*00501, L1*01502
002
010



193

00101
0020 •
L1*01502, S1*01301
 002, 00701
009



194

00101, 00301

L1*00101, L1*020 
009, 010
003, 010



195

00101

L1*01502
002
009, 010



196

00101, 00301

L1*00101, L1*01502
001, 002
010, 015



197

00101

L1*01502
002, 010
008



198
00201
00101

L1*01502, S1*01301
 002, 00701
009



199

00101

L1*01502
001, 002
009, 010



200

00101, 00301

L1*00101, L1*01502
001, 002
008, 010



201

00301, 00401

L1*00101, L1*00701
001, 009
009, 010



202

00101

L1*01502
002, 039
006, 010



203

00101

L1*01502
002, 039
008



204

 010
0020 •
L1*00501, S1*01301
002, 091
010, 028



205
001
00101

L1*01502
002
010



206

 010

L1*00501
010
006, 010



207

00101

L1*01502
002
009, 010



208

00101

L1*01502, S1*01301
002
009, 010



209

00101

L1*01502
002
008, 010



210

00101

L1*01502
002
008, 010



211

00101, 010 

L1*00501, L1*01502
010, 039
008, 009



212

00401
0020 •
L1*00701, S1*01301
00701, 008 
 008, 04802



213
00201
 010

L1*00501, S1*01301
00706, 010 
009, 015



214

00101

 L1*020, L1*02901
002, 009
02602, 04802



215

00101

L1*01502
002
009



216
001
00101, 00401

L1*01502, L1*00701
002, 008
008, 009



217

00101
0020 •
L1*01502, S1*01301
002
010



218

00101

L1*01502
002
009, 010



219

00101
0020 •
L1*01502, S1*01301
002
006, 010



220

00101, 010 

L1*00501, L1*01502
002, 021
 010, 02602



221
00201
00101

L1*01502, S1*01301
001, 010
008



222


0020 •
S1*01301
00701, 015 
010



223

00101, 00301

L1*00101, L1*01502
002, 010
008, 010



224

00101

L1*01502
002
010, 015



225
00201
00101

L1*01502, S1*01301
002, 015
009, 010



226

00101

L1*01502
002
010



227

00101
0020 •
L1*01502, S1*01301
002
002, 010



228

00101

L1*01502
002
008, 009



229
001
 010

L1*01502, L1*00501,
002, 010
003, 028







S1*01301



230

00101, 010 

L1*00501, L1*01502
002, 010
010, 065



231

00101
0020 •
L1*01502, S1*01301
 002, 00701
008, 010



232

00101

L1*01502
002
009, 010



233

00301, 010 

L1*00101, L1*00501
001, 002
001, 009



234

00301
0020 •
L1*00101, S1*01301
001, 002
010



235

00101, 010 

L1*00501, L1*01502
002
010



236

00101, 010 

L1*00501, L1*01502
002, 010
008, 009



237
00201
00401

L1*00701, S1*01301
00701, 008 
001, 006



238
00201
00101

L1*01502, S1*01301
002, 027
008, 010



239

00101, 00401

L1*01502, L1*00701
002, 008
009, 010



240

00101

L1*01502, L1*020 
002, 084
008, 015



241

00101

L1*01502
002, 039
009, 010



242

00101

L1*01502, L1*02901
002
008, 010



243

00101, 010 

L1*00501, L1*01502
002, 010
 010, 04802



244

00101

L1*01502
002
008, 010



245
00201
00101

L1*01502, S1*01301
 002, 00701
008, 010



246

00301, 00401

L1*00101, L1*00701
001, 008
008, 010



247

00101, 00401

L1*01502, L1*00701
002, 008
010, 015



248

00101

L1*01502
 002, 00701
009, 010



249

00101

L1*01502
002, 010
009, 010



250
00201
00401

L1*00701, S1*01301,
00701, 008 
010







S1*085



251

00101, 010 

L1*00501, L1*01502
002, 010
001, 015



252

00101

L1*01502
002
009, 010



253

 017
0020 •
L1*01502, S1*01301
002
008, 009



254

00101, 010 

L1*00501, L1*01502
002, 091
006, 009



255
00201
00101

L1*01502, L1*079,
00701, 039 
008, 010







S1*01301



256

00101, 00401

L1*01502, L1*00701
002, 008
010, 064



257

00101
0020 •
L1*01502, S1*01301
002, 039
006, 008



258

00101, 010 

L1*00501, L1*01502
00701, 010 
008, 009



259

00101, 010 

L1*00501, L1*020 
009, 010
010



260

 018
0020 •
L1*00501, S1*01301
001, 010
006, 009



261

00101

L1*01502, L1*020 
002, 009
010, 063



262
00201
 010

L1*00501, S1*01301
00706, 010 
008



263

00101, 010 

L1*00501, L1*01502
001, 002
008, 010



264

00101
0020 •
L1*01502, S1*01301
 002, 00701
010



265


0020 •
S1*01301
002
009, 010



266

00101
0020 •
L1*01502, S1*01301
 002, 00701
008, 010



267

00401, 010 

L1*00501, L1*00701
001, 002
 010, 04802



268

00101

L1*01502
002
009, 010



269

00101, 00401

L1*01502, L1*00701
008, 039
 008, 04802



270

00101, 00301

L1*01502, L1*070 
001, 002
009, 010



271

00401
0020 •
L1*00701, S1*01301
002, 008
006, 010



272
001
00101

L1*01502, L1*02901
002
008, 015



273

00401, 010 

L1*00501, L1*00701
002, 010
 010, 04802



274

00401, 010 

L1*00501, L1*00701
008, 010
006, 010



275

00101
0020 •
L1*01502, S1*01301
002
010



276

00101, 010 

L1*00501, L1*01502
002, 091
010



277

00101

L1*01502
002
008, 010



278

00101

L1*01502
002, 099
010



279

00101

 L1*020, L1*02901
002, 009
006, 008



280

00101

L1*01502
002
001, 010



281
00201
 010

L1*00501, S1*01301
010, 015
010



282

00101

L1*01502
002
009, 010



283

00301
0020 •
L1*00101, S1*01301
 001, 00701
008, 010



284

00101, 010 

L1*00501, L1*02901
001, 002
009, 010



285

00101
0020 •
L1*01502, S1*01301
 002, 00701
009, 010



286
001
00101, 00401

L1*01502, L1*00701,
002, 008
010







S1*01301



287

00101

L1*01502
002
008, 009



288

00101, 00401

L1*00701, L1*020 
008, 009
010, 015



289

00401, 010 

L1*00501, L1*00701
010, 016
001, 010



290

00101

L1*01502, L1*020,
002, 009
008, 009







S1*01301



291

00101
0020 •
L1*01502, S1*01301
002
004, 028



292

 010

L1*00501
010
008, 010



293

00101

L1*01502
002
008, 010



294

00101

L1*01502
002
008, 010



295

00101, 00401

L1*01502, L1*00701
002, 008
010



296

00101

L1*01502
002
010



297

00101
0020 •
L1*01502
 002, 00701
008, 009



298
00201
00101

L1*01502, S1*01301
 002, 00701
009, 010



299

00101, 00401

L1*01502, L1*00701
002, 008
008, 009



300

00101, 00301

L1*00101, L1*01502
002, 010
009, 010



301

00101, 00301

L1*00101, L1*01502
001, 002
008, 009



302

00401

L1*00701
008
001, 010



303
00201
00101

L1*020, S1*01301,
 002, 00701
008, 010







S1*085



304

00101

L1*020 
002, 009
006, 010



305

00101

L1*01502
002, 039
008, 062



306

00101

L1*01502
001, 010
010








text missing or illegible when filed indicates data missing or illegible when filed














TABLE 7







Alleles and their Frequencies of 14 Functional KIR


Genes in Southern Chinese Han Population (n = 306)










N
Freq.















Cen





KIR3DL3



*001
24
0.078



*002
3
0.010



*003
3
0.010



*004
5
0.016



*006
28
0.092



*008
98
0.320



*009
85
0.278



*010
212
0.693




*01003

1
0.003



*013
1
0.003



*015
20
0.065




*02602

6
0.020



*028
10
0.033



*048
6
0.020




*04802

12
0.039




*062

3
0.010




*063

2
0.007




*064

3
0.010




*065

2
0.007



KIR2DS2



*00101
65
0.212




*009

3
0.010



neg
239
0.781



KIR2DL5B



*002
10
0.033



*006
24
0.078



*008
1
0.003



*010
14
0.046



neg
259
0.846



KIR2DS3



*001
19
0.062



*00201
32
0.105



neg
257
0.840



KIR2DS5



*00201
76
0.248



neg
230
0.752



KIR2DL2/3



2*00101
11
0.036



2*00301
58
0.190




2*013

1
0.003



3*00101
284
0.928




3*00109

4
0.013




3*00110

1
0.003



3*00201
74
0.242



3*015
2
0.007



3*019
1
0.003



3*021
1
0.003



3*022
2
0.007



3*023
13
0.042




3*025

1
0.003




3*026

2
0.007




3*027

1
0.003




3*028

1
0.003




3*029

1
0.003




3*031

1
0.003



KIR2DL1



*001
1
0.003



*00201
76
0.248



*00302
285
0.931




*00304

1
0.003




*00305

1
0.003



*00401
19
0.062




*030

1
0.003




*031

1
0.003




*033

1
0.003




*034

1
0.003



neg
3
0.010



Tel



KIR2DL4



*00102
231
0.755



*00103
25
0.082



*00501
104
0.340




*00503

2
0.007




*00504

2
0.007



*006
44
0.144



*00801
35
0.114



*011
68
0.222



*032
1
0.003



*033
1
0.003



*034
1
0.003



KIR3DL1/S1



L1*00101
30
0.098



L1*00501
73
0.239



L1*00502
1
0.003



L1*00701
49
0.160



L1*008
1
0.003



L1*01502
228
0.745




L1*01505

1
0.003



L1*020
24
0.078



L1*02901
10
0.033



L1*070
2
0.007




L1*079

1
0.003



S1*01301
104
0.340



S1*078
1
0.003




S1*082

2
0.007




S1*083

1
0.003




S1*084

1
0.003




S1*085

2
0.007



KIR2DL5A



*001
67
0.219



*005
32
0.105



*012
4
0.013




*022

1
0.003



neg
205
0.670



KIR2DS4



*00101
241
0.788




*00105

1
0.003



*00301
32
0.105



*00401
49
0.160



*010
71
0.232




*017

1
0.003




*018

2
0.007



neg
9
0.029



KIR2DS1



*00201
196
0.641



*00202
2
0.007



*006
98
0.320



neg
205
0.670



KIR3DL2



*001
35
0.114



*002
238
0.778



*00701
62
0.203




*00706

2
0.007




*00707

2
0.007



*008
39
0.127



*009
22
0.072



*010
68
0.222



*015
6
0.020



*016
3
0.010



*021
6
0.020



*027
2
0.007



*039
19
0.062




*083

1
0.003




*084

1
0.003




*091

3
0.010




*093

6
0.020




*099

1
0.003







Note:



The bold one indicates that the KIR allele is a novel allele.



“neg” means negative.






The foregoing description merely depicts some exemplary embodiments of the present disclosure and therefore is not intended as limiting the scope of the present disclosure. Any equivalent structural transformations made to the disclosure, or any direct or indirect applications of the disclosure on any other related fields based on concepts of the present disclosure, shall all fall in the scope of the present disclosure.


REFERENCES



  • [1] Vierra-Green C, Roe D, Hou L, et al. Allele-Level Haplotype Frequencies and Pairwise Linkage Disequilibrium for 14 KIR Loci in 506 European-American Individuals. PLoS One, 2012, 7(11): e47491.

  • [2] Robinson J, Mistry K, McWilliam H, Lopez R, Marsh SGE. IPD—the immuno polymorphism database. Nucleic Acids Res. 2010, 38: D863-869.

  • [3] McErlean C, Gonzalez A A, Cunningham R, et al. Differential RNA expression of KIR alleles. Immunogenetics, 2010, 62(7): 431-440.

  • [4] Yawata M, Yawata N, Draghi M, et al. Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J Exp Med, 2006, 203(3): 633-645.

  • [5] Pando M J, Gardiner C M, Gleimer M, et al. The protein made from a common allele of KIR3DL1 (3DL1*004) is poorly expressed at cell surfaces due to substitution at positions 86 in Ig domain 0 and 182 in Ig domain 1 J Immunol, 2003, 171(12): 6640-6649.

  • [6] Bao X, Hou L, Sun A, et al. Distribution of killer cell immunoglobulin-like receptor genes and 2DS4 alleles in the Chinese Han population. Hum Immunol, 2010, 71(3): 289-292.

  • [7] Lebedeva T V, Ohashi M, Zannelli G, et al. Comprehensive approach to high-resolution KIR typing. Hum Immunol, 2007, 68(9):789-796.

  • [8] Yan L X, Zhu F M, Jiang K, et al. Diversity of the killer cell immunoglobulin-like receptor gene KIR2DS4 in the Chinese population. Tissue Antigens, 2007, 69(2): 133-138.

  • [9] Buhler S, Di Cristofaro J, Frassati C, et al. High levels of molecular polymorphism at the KIR2DL4 locus in French and Congolese populations: impact for anthropology and clinical studies. Hum Immunol. 2009, 70(11):953-959.

  • [10] Belle I, Hou L, Chen M, et al. Investigation of killer cell immunogloublin-like receptor gene diversity in KIR3DL1 and KIR3DS1 in a transplant population, Tissue Antigens. 2008, 71(5): 434-439.

  • [11] Hou L, Chen M, Steiner N, et al. Killer cell immunoglobulin-like receptors (KIR) typing by DNA sequencing. Methods Mol Biol, 2012, 882: 431-468.

  • [12] Meenagh A, Gonzalez A, Sleator C, et al. Investigation of killer cell immunoglobulin-like receptor gene diversity, KIR2DL1 and KIR2DS1. Tissue Antigens. 2008, 72(4):383-391.

  • [13] Zhen J, Yu Q. Progress in research on genetic polymorphisms and sequence-based typing of KIR genes. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2016, 33(6):867-870.


Claims
  • 1. A method for simultaneous sequence-based typing of 14 functional killer cell immunoglobulin-like receptor (KIR) genes comprising: simultaneously amplifying the complete coding sequence of each functional KIR gene by using 3˜5 pairs of KIR gene-specific PCR primers that have the same annealing temperature, wherein three pairs of PCR primers are used for KIR3DL3 and five pairs of PCR primers are used for KIR2DL1, four pairs of KIR gene-specific PCR primers are used for each of other 12 functional KIR genes respectively; wherein the coding sequences of 14 functional KIR genes are amplified using a total of 56 pairs of KIR gene-specific PCR primers as set forth in Table 1, the sequence of each PCR primer and its position in the full genomic sequence are shown in Table 1;determining the nucleotide sequences of each of the exons, which are carried by PCR amplicon, in both directions using specific forward and reverse sequencing primers, respectively.
  • 2. (canceled)
  • 3. The method according to claim 1, wherein each of the PCR amplifications is carried out in a volume of 10 μL containing:
  • 4. The method according to claim 1, wherein PCR amplifications are conducted simultaneously under the same thermocycling parameters, and the thermocycling parameters are described below:
  • 5. The method according to claim 1, wherein a purification of PCR amplicon is carried out using the purification system described below:
  • 6. The method according to claim 1, wherein a purification of PCR amplicon is carried out under the same thermocycling parameters, and the thermocycling parameters are described below:
  • 7. The method according to claim 1, wherein the nucleotide sequences of each exon carried by purified PCR amplicons are sequenced in both directions using the forward and reverse sequencing primers; wherein the 230 KIR gene-specific forward and reverse sequencing primers as set forth in Table 2 are used for sequencing all the 14 functional KIR genes; wherein the sequence of each sequencing primer and its position in the full genomic sequence are shown in the Table 2.
  • 8. The method according to claim 7, wherein each of the sequencing reactions is carried out in a volume of 10 μL containing:
Priority Claims (1)
Number Date Country Kind
201710284545.3 Apr 2017 CN national