Dildine et al., A chimeric Ty3/moloney murine leukemia virus integrase protein is active in vivo, 1998, Journal of Virology, pp. 4297-4307.* |
Narasimhulu et al., Early Transcription of Agrobacterium T-DNA Genes in Tobacco and Maize, The Plant Cell, May 1996, pp. 873-886, vol. 8, American Society of Plant Physiologists. |
Osborne, B., et al., “A System for Insertional Mutagenesis and Chromosomal Rearrangement Using the Ds Transposon and Cre-lox,” 1995, The Plant Journal, pp. 687-701, vol. 7(4). |
Araki et al. (1997) “Targeted Integration of DNA Using Mutant lox Sites in Embryonic Stem Cells”, Nucleic Acids Research 25(4):868-872. |
Russell et al. (1992) “Directed Excision of a Transgene From the Plant Genome”, Mol. Genet. Genet. 234:49-59. |
Storici et al. (1997) “Molecular Engineering with the FRT Sequence of the Yeast 2 μm Plasmid: [ciro] Segregant Enrichment by Counterselection for 2 μm Site-Specific Recombination”, Gene 195:245-255. |
Karreman et al. (1996) “On the Use of Double FLP Recognition Targets (FRTs) in the LTR of Retroviruses for the Construction of High Producer Cell Lines”, Nucleic Acids Research 24(9):1616-1624. |
Seibler et al. (1997) “Double-Reciprocal Crossover Mediated by FLP-Recombinase: A Concept and an Assay”, Biochemistry 36:1740-1747. |
Sauer (1992) “Identification of Cryptic lox Sites in the yeast Genome by Selection for Cre-mediated Chromosome Translocations that Confer Multiple Drug Resistance”, J. Mol. Biol. 223:911-928. |
Senecoff et al. (1988) “DNA Recognition by the FLP Recombinase of the Yeast 2μ Plasmid”, J. Mol. Biol. 201:406-421. |
Senecoff et al.Directionality in FLP Protein-promoted Site-Specific Recombination Is Mediated by DNA-DNA Pairing J. Biol. Chem. (Jun. 5, 1986) pp. 7380-7386 vol. 261(16) American Society of Biological Chemists, Madison, Wisconsin. |
McLeod et al. Identification of the Crossover Site during FLP-Mediated Recombination in the Saccharomyces cerevisiae Plasmid 2 μm Circle Mol. Cell. Biol (Oct. 1986) pp. 3357-3367 vol. 6(10) American Society for Microbiology, Princeton, NJ. |
Campbell et al., Codon Usage in Higher Plants, Green Algae, and Cyanobacteria, Plant Physiol., 1990, pp. 1-11, vol. 92, Houghton, Michigan. |
O'Gorman et al. Recombinase-Mediated Gene Activation and Site-Specific Integration in Mammalian Cells Science (Mar. 15, 1991) pp. 1351-1355 vol. 251 Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA. |
Dale et al. Gene Transfer with Subsequent Removal of the Selection Gene from the Host Genome Proc. Natl. Acad. Sci USA (Dec. 1991) pp. 10558-10562 vol. 88 Plant Gene Expression Center, US Dept. of Agriculture/Ag. Res. Svs. Albany, CA. |
Russell et al. Directed Excision of a Transgene from the Plant Genome Mol Genet Genet (1992) pp. 49-59 vol. 234 Central Res. And Dev. And Agric. Prod. du Pont Experimental Station, Wilmington, DE. |
Lyznik et al. Activity of Yeast FLP Recombinase in Maize and Rice Protoplasts Nucleic Acids Research (1993) pp. 969-975 vol. 21(4) Oxford University Press. |
Lyznik et al., Activity of Yeast FLP Recombinase in Maize and Rice Protoplasts, Nucleic Acids Research, 1993, pp. 969-975, vol. 21, No. 4, Oxford University Press. |
Schlake et al. Use of Mutated FLP Recognition Target (FRT) Sites for the Exchange of Expression Cassettes at Defined Chromosomal Loci Biochemistry (1994) pp. 12746-12751 vol. 33(43) The American Chemical Society. |
Schlake and Bode, Use of Mutated FLP Recognition Target (FRT) Sites for the Exchange of Expression Cassettes at Defined Chromosomal Loci, Biochemistry, 1994, pp. 12746-12751, vol. 33, American Chemical Society. |
Albert et al., Site-Specific Integration of DNA into Wild-type and Mutant Lox Sites Placed in the Plant Genome, The Plant Journal, 1995, pp. 649-655, vol. 7(4). |
Ow and Medberry, Genome Manipulation Through Site-Specific Recombination, Critical Reviews in Plant Sciences, 1995, pp. 239-261, vol. 14(3), CRC Press, Inc. |
Snaith et al., Multiple Cloning Sites Carrying loxP and FRT Recognition Sites for the Cre and Flp Site-Specific Recombinases, Gene, 1995, pp. 173-174, vol. 166, Elsevier Science. |
Umlauf et al. The Functional Significance of DNA Sequence Structure in a Site-Specific Genetic Recombinatin Reaction pp. 1845-1852 IRL Press Limited, Oxford, England. |
Lyznik et al. Heat-inducible Expression of FLP Gene in Maize Cells The Plant Journal (1995) pp. 177-186 vol. 8(2) Dept. of Botany and Plant Pathology, Purdue Univ. West Lafayette, IN. |
Kilby et al. FLP Recombinase in Transgenic Plants: Constitutive Activity in Stably Transformed Tobacco and Generation of Marked Cell Clones in Arabidopsis The Plant Journal (1995) pp. 637-652 vol. 8(5) Institute of Biotech., Univ. of Cambridge, Cambridge, UK. |
Albert et al. Site-Specific Integration of DNA into Wild-type and Mutant Lox Sites Placed in the Plant Genome The Plant Journal (1995) pp. 649-659 vol. 7(4) Plant Gene Expression Center, USDA/ARS-UC Berkeley, Albany, CA. |
Logie et al. Ligand-Regulated Site-Specific Recombination Proc. Natl. Acad. Sci. USA (Jun. 1995) pp. 5940-5944 vol. 92 Gene Expression Program, Eur. Mol. Biol. Lab., Heidelberg, Germany. |
Zhang et al. Inducible Site-Directed Recombination in Mouse Embryonic Stem Cells Nucleic Acids Research (1996) pp. 543-548 vol. 24(4) Oxford University Press. |
Lyznik et al. FLP-Mediated Recombination of FRT Sites in the Maize Genome Nucleic Acids Research (1996) pp. 3784-3789 vol. 24(19) Oxford University Press. |
Araki et al. Targeted Integration of DNA Using Mutant Lox sites in Embryonic Stem Cells Nucleic Acids Research (1997) pp. 868-872 vol. 25(4) Oxford University Press. |
Bethke et al. Segmental Genomic Replacement by Cre-mediated Recombination: Genotoxic Stress Activation of the p53 Promoter in Single-copy Transformants Nucleic Acids Research (1997) pp. 2828-2834 vol. 25(14) National Insitutes of Health, National Institute of Diabetes, Gigestive and Kidney Disease, Bethesda, MD. |
Golic et al. FLP Mediated DNA Mobilization to Specific Target Sites in Drosophila Chromosomes (1997) pp. 3665-3671 vol. 25(18) Oxford University Press. |
O'Gorman et al. Protamine-Cre Recombinase Transgenes Efficiently Recombine Target Sequences in the Male Germ Line of Mice, but Not in Embryonic Stem Cells Proc. Natl. Acad. Sci. USA (Dec. 1997) pp. 14602-14607 vol. 94 Gene Expression Laboratory, The Salk Institute for Biological Studies, San Diego, CA. |
Feil et al. Regulation of Cre Recombinase Activity by Mutated Estrogen Receptor Ligand-Binding Domains Biochem. and BioPhy. Res. Comm. (1997) pp. 752-757 vol. 237 Academic Press. |
U.S. patent application Ser. No. 09/193,475, Baszczynski et al., filed Nov. 17, 1998. |
U.S. patent application Ser. No. 09/411,826, Baszczynski et al., filed Oct. 01, 1999. |
U.S. patent application Ser. No. 09/193,484, Baszczynski et al., filed Nov. 17, 1998. |
U.S. patent application Ser. No. 09/193,502, Baszczynski et al., filed Nov. 17, 1998. |
U.S. patent application Ser. No. 09/455,051, Baszczynski et al., filed Dec. 06, 1999. |
U.S. patent application Ser. No. 09/438,239, Baszczynski et al., filed Nov. 12, 1999. |
U.S. patent application Ser. No. 09/455,050, Baszczynski et al., filed Dec. 06, 1999. |
U.S. patent application Ser. No. 09/439,042, Baszczynski et al., filed Nov. 12, 1999. |
U.S. patent application Ser. No. 09/438,874, Baszczynski et al., filed Nov. 12, 1999. |
U.S. patent application Ser. No. 09/439,158, Baszczynski et al., filed Nov. 12, 1999. |
Snaith et al., Multiple Cloning Sites Carrying loxP and FRT Recognition Sites for the Cre and Flp Site-Specific Recombinases, Gene, 1995, pp. 173-174, vol. 166. |
Ow et al., Genome Manipulation Through Site-Specific Recombination, Critical Reviews in Plant Sciences, (1995), pp. 239-261, vol. 14(3). |