A method for writing a pattern on a surface intended for use in exposure equipment and for measuring the physical properties of the surface.
The present invention relates to a method for writing a pattern on a surface, preferably on a glass plate made from quartz, for use in exposure equipment, as defined in claim 1. The invention also relates to a method for measuring the physical properties of the surface to determine the shape of the surface of a plate as defined in claim 10.
When a large display or part of a display, colour filter or an other similar application, is produced, an exposure system transfer an image from a glass plate, preferably made from high quality quarts, onto a rather large substrate, which may have a dimension up to 1100 mm times 1300 mm or even more. The exposure system includes an aligner, or stepper, that emits light through the glass plate and onto the substrate, see
It is very important that the registration of masks, i.e. the absolute placement in a Cartesian coordinate system, is good enough to permit masks from different systems to fit together, e.g. the colour filter and the TFT-array. Furthermore, large TFT substrates may use two or more masks stitched together to cover a large exposure area.
In pattern generating systems for small plates, a three-foot device is used to support the plate during pattern generation and measurement, but the weight of a glass plate, with a thickness of 10 mm and a size of 1000×1000 mm, is approximately 40 kg, which will not be suitable to place on three pins. An alternative solution is to use an air cushion for plate support, but this introduces other problems like determining the exact position of the plate during exposure of the pattern. Another alternative is to handle the consequences that will arise when placing the plate directly on the stage (i.e. the support) of a pattern generating apparatus, although the plate will be deformed.
The object of the invention is to provide a method for writing a pattern on a glass plate that is independent of any physical deformations that will occur when writing the pattern.
This object is achieved by the method as defined in claim 1.
A further object with the invention is to provide a method for measuring a glass plate being independent of any physical deformations that will occur when measuring the plate.
This object is achieved by the method as defined in claim 10.
An advantage with the present invention is that unevenness in the support of the pattern generating apparatus (or measuring apparatus) will not introduce any error in the pattern or the measurement.
A further advantage is that any unevenness of the back surface and/or the front surface of the glass plate will not introduce any errors in the pattern or the measurement.
Still a further advantage with the present invention is that contamination in form of particles and/or air trapped between the plate and the support can be compensated for, and therefore will not introduce any error in the pattern or measurement.
Still another advantage is that it is possible to even correct the deformation that will occur in the exposure equipment together with the deformation generated during the pattern writing process, provided that information regarding deformation in the exposure equipment is known when manufacturing the plate, as is disclosed in the published international patent application WO 00/72090 by the same applicant.
a and 4b illustrate the plate bending effect a glass plate with a flat top and a shaped bottom and the introduction of a reference surface when arranged on a flat support.
a and 5b illustrate the plate bending effect a glass plate with a shaped top and a flat bottom and the introduction of a reference surface when arranged on a flat support.
a and 6b illustrate the plate bending effect a glass plate with a flat top and a flat bottom and the introduction of a reference surface when arranged on a shaped support.
a and 7b show measured x-y coordinates of a glass plate and compensated x-y coordinates of the same glass plate using the correction function, and
a and 9b show measured x-y coordinates of the glass plate illustrated in
Other necessary optics is not shown in
The apparatus 20 is also provided with an angled foot plate 26 arranged a constant distance above the surface 13 of the glass plate 11 by means of an air cushion 27. The foot plate 26 and the pattern writing means 21 are attached to the sliding support 24 via a flexible attachment 28, to allow the distance between the sliding support 24 and the pattern writing means/foot plate to vary dependent on the roughness of the surface 13 of the glass plate 11. The varying distance in the z direction, i.e. the height Hz, may be measured to calculate the roughness of the surface 13 in the z direction. The size of the foot plate that is parallel to the surface 13 of the glass plate 11 has an opening for a laser beam from the pattern writing means 21 and is preferably rather large, e.g. 5 mm on each side, since the purpose of the measurement is to detect deviations in height over a relatively large distance. The air cushion beneath foot plate will act as an auto focus device for the pattern generating apparatus due to the constant distance between the foot plate and the glass plate. The invention should however not be limited to this kind of pattern generating apparatus using an air cushion as an auto focus device, but other types of systems that will provide focus for the system could be used. The essential part is that the apparatus 20 is provided with means to measure the height Hz between the apparatus and the surface 13 of the glass plate 11 and thereby the variation in height when the pattern writing means 21 is moved in relationship to the stage 23, and thus the surface 13.
An essential part of the invention is to determine a reference surface against which the difference in height Hz is calculated. This difference is denoted H, as is illustrated in connection with
If it were possible, it may have been desirable to use the “free” (non gravity) form, i.e. the centre line of the plate as a reference surface, which is rather difficult to achieve in practise. The bottom surface of the plate is not a good alternative for a reference surface since a stepper or an aligner use the top surface as a reference.
On the other hand if the top surface would be used as a reference surface, there is an additional need to know the bottom shape of the plate and the shape of the support. The shape of the support may be obtained, but it is very difficult to achieve knowledge of the bottom surface in practice. The top surface may however be measured without the knowledge of the bottom surface. A large glass plate that is placed on a three-foot will be deformed due to the weight of the plate, but a deformation function for a perfect plate may be calculated if the thickness of the plate, the material of the plate and the configuration of the three-foot are known. A measurement of the non-perfect glass plate, when placed on the three-foot, will generate a measurement of the deformed plate. The shape of top surface is then calculated by subtraction the calculated deformation function for a perfect plate from the measurement of the deformed plate.
The top surface of a glass plate is normally much more even, i.e. less variation in height in relation to the centre line, compared to the bottom surface, and the best compromise should therefore be to make the top surface of the plate to be the reference surface. It should however be noted that it is not evident that the top surface is the best choice due to the deformation of the glass plate during the following step in the exposure system, as shown in
It should however be noted that any surface may be used as reference surface, although the top side is preferred.
A local offset d (as a function of x and y) is thereafter calculated for each measurement point and depends on three variables: the thickness of the glass plate (T), the distance between adjacent measurement points (P) and the measured height (H) between the reference surface 30 and the surface 13 of the glass plate 11. The local offset should be interpreted as the position deviation from the position where a pattern should be written in relationship to the reference surface, as described in connection with
The distance between adjacent measurement points should not exceed a predetermined distance, which is dependent on the required accuracy for the measurement to get a reasonable good result from the measurement. An example of maximum distance between adjacent measurement points is 50 mm if the thickness of the glass plate 11 is around 10 mm and the glass plate material is quartz. The distance between adjacent measurement points also vary dependent on the thickness of the glass plate to obtain the same measurement accuracy. The variations in thickness of the glass plate is may be around 10-15 μm, but could be larger. The measurement points could be randomly distributed across the surface 13, but are preferably arranged in a grid structure with a predetermined distance between each point, i.e. pitch, that is not necessarily the same in the x and y direction.
The local offset is a function of the gradient in x and y direction at each measurement point and could be calculated using very simple expressions.
An angle α may be calculated from the measured height H provided the distance P between two adjacent measurement points 31a is known.
For small angles α:
Furthermore the local offset d may be calculated provided a is small using the formula:
It should however be noted that the formula for calculating the local offset d above, only is a non-limiting example of a calculation to determine the offset d. The gradient in each measurement point could be directly measured by the system and the local offset is proportional to the gradient and the thickness of the plate.
As previously mentioned above,
As a non-limiting example we assume that the distance between two adjacent points 31 is 40 mm, the thickness of the glass plate is 10 mm, and that the measured height H is 1 μm, which will result in a one-dimensional local offset d of 125 nm.
a and 4b illustrate the plate bending effect a glass plate 41 with a flat top surface 43 and a shaped bottom surface 42 and the introduction of a reference surface 44, which is flat in this example, when supported by a flat support 45.
When the glass plate 41 is arranged on the flat support 45, the shape of the top surface 43 is changed and the bottom surface 42 will generally follow the flat support 45. The result of this is that the pattern generated, illustrated by the dots 46 on the top surface, has to be expanded to obtain a correct reference surface.
a and 5b illustrate the plate bending effect a glass plate 51 with a shaped top surface 53 and a flat bottom surface 52 and the introduction of a reference surface 44, which is flat in this example, when arranged on a flat support 45.
When the glass plate 51 is arranged on the flat support 45, the shape of the top surface 43 is unchanged and the bottom surface 42 will follow the flat support 45. The pattern generated, illustrated by the dots 55 on the top surface, has to be expanded to obtain a correct reference surface, since the top surface will be flattened out when positioned in the exposure equipment as described in
a and 6b illustrate the plate bending effect a glass plate 61 with a flat top surface 43 and a flat bottom surface 52 and the introduction of a reference surface 44, which is flat in this example, when arranged on a shaped support 62.
When the glass plate 61 is arranged on the shaped support 62, the shape of the top surface 43 is changed and the bottom surface 42 will generally follow the shaped support 62. The pattern generated, illustrated by the dots 64 on the top surface, has to be expanded to obtain a correct reference surface, since the top surface will be flattened out when positioned in the exposure equipment as described in
a-4b, 5a-5b and 6a-6b illustrate extreme conditions and in reality all three variations are present during the process of writing a pattern on a glass plate.
The overall error is however much smaller since all errors from the bottom surface, support surface and contamination, see
a shows measured x-y coordinates of a reference glass plate and compensated x-y coordinates of the same reference glass plate using a calculated correction function according to the present invention.
The size of the glass plate is in this example 800×800 mm, and the distance between each dashed line 70 in
c clearly illustrates the deviations between the two functions in
A transition from a low H value to high H value corresponds to that the glass plate has a “negative” bend, as illustrated in
a shows measured x-y coordinates of the glass plate illustrated in
Although a glass plate has been used as an illustrative example in the patent application, the scope of the claims should not be limited to a plate made of glass.
Furthermore, the pattern generating apparatus could of course include correction functions for any repeatable error, e.g. errors present in substrates for the manufacturing of TFT-arrays that are introduced in the substrates during the manufacture of the substrates, as well as repeatable errors introduced in the manufacturing process in the aligner, or stepper as previously mentioned.
The method may naturally be implemented into a computer program for performing the measurements, and calculating the local offset for each measurement point.