The invention relates to a method of depth routing an electronic layup and apparatus for effecting such a method. The invention is particularly directed towards depth routing the electronic layup by way of sandblasting.
The following discussion of the background to the invention is intended to facilitate an understanding of the present invention. However, it should be appreciated that the discussion is not an acknowledgment or admission that any of the material referred to was published, known or part of the common general knowledge in any jurisdiction as at the priority date of the application.
The technique of depth routing to create a circuit involves eroding parts of each layer other than the copper or aluminium substrate. This can be achieved through chemical means, but more commonly this is performed by way of a Computer Numerical Control (“CNC”) machine. This latter process is often referred to as mechanical depth routing or milling.
The problem with CNC-based mechanical depth routing is that the resulting eroded surface is uneven and may contain burrs. These burrs and/or irregularities in the surface reduce the geographical area of an electronic component that can make contact with the underlying copper or aluminium substrate. In some cases, the electronic component may not be able to make any contact with the underlying copper or aluminium substrate—in which case heat is dissipated through the dielectric.
This is important as it is this contact with the underlying copper or aluminium substrate that allows an electronic component to dissipate heat (a heat sink connected to the underlying copper or aluminium substrate actually dissipating the heat). The greater the amount of contact between the electronic component and the underlying copper or aluminium substrate, the greater the amount of heat that can be dissipated. In addition, these burrs and/or irregularities in the surface make chemical plating less efficient and effective. Furthermore, the level of development in CNC-based mechanical depth routing has reached the point that any further refinement, in the inventor's opinion, will result in only marginal improvement in heat dissipation.
The current method of constructing a typical electronic layup as shown in
There are disadvantages associated with the current method of constructing a typical electronic layup as described above. Firstly, the step of creating the FR4 laminate with indentation involving about 28 process steps in a conventional PCB process incurs substantial time and costs. Die-cutting of the dielectric layer to conform to the fit and form of the FR4 laminate and the copper of aluminium substrate; and the subsequent arranging and aligning of the die-cut portion of the dielectric layer and the indented portion of the indented FR4 laminate involves a high degree of accuracy so as not to affect the quality, yield, reliability and engineering tolerance of the electronic layup.
Adding to this complication is that in the lamination of each layer of the electronic layup, each time the electronic layup is subjected to the lamination process, it is prone to warping or distortion. Where warping or distortion occurs, the problem of positioning an electronic component so as to obtain the greatest heat dissipation through the underlying copper or aluminium substrate arises. In addition, during the lamination process, care must be taken to ensure that the indentation is free of resin while ensuring that the resin is evenly distributed over the areas to be laminated so as not to affect the reliability and yield of the electronic layup.
The problems mentioned above can be minimized, if not eliminated, through using a standard insulated metal substrate commonly available and using a mechanical depth routing technique to create an indentation on the same.
Throughout this document, unless otherwise indicated to the contrary, the terms “comprising”, “consisting of”, and the like, are to be construed as non-exhaustive, or in other words, as meaning “including, but not limited to”.
In accordance with a first aspect of the invention, there is provided a method of depth routing an electronic layup, the electronic layup comprising a dielectric sandwiched between a metal layer and a metal substrate which is then laminated, the method comprising the steps of:
wherein the force, size and type of abrasive applied by the sandblasting machine are sufficient to erode the metal layer and the dielectric but not the metal substrate.
The method may also include the step of securing the electronic layup and hardened mask in a jig while maintaining the relative position of the hardened mask to the electronic layup. Ideally, the step of positioning the hardened mask includes the sub-step of positioning the hardened mask no more than 0.5 mm away from the metal layer.
To facilitate automation of the method, the method may further include the steps of:
Preferably, the step of sandblasting the electronic layup through the metal layer and the dielectric involves the sub-step of directing a fluid stream containing abrasive particles towards the electronic layup.
In accordance with a second aspect of the invention, there is provided a depth routed electronic layup formed in accordance with the method of the first aspect of the invention.
Preferably, the metal layer is copper. Similarly, it is preferable that the substrate is either copper or aluminium.
In accordance with a third aspect of the invention, there is provided a sandblasting machine for use in the method of the first aspect of the invention, the sandblasting machine configured to produce and direct a fluid stream containing abrasive particles towards the electronic layup.
The abrasive particles comprise at least one of the following types of abrasive particles: aluminium oxide; fused aluminium oxide with titanium; corundum. The size of the abrasive particles ranges from 5 μm to 2800 μm. Although, in its preferred arrangement, the mean particle size of the abrasive particles is 10 μm±0.2 μm.
The pressure of the fluid stream may fall in the range of 0.3 MPa to 2 MPa. However, the preferred pressure range is 3.724×105 Pa±0.098×105 Pa. The exception is in the case of high temperature copper, where it is preferred that the fluid stream is a stream of air having a pressure range of 0 to 4.7×105 Pa.
The at least one nozzle may be a ceramic nozzle, a tungsten carbide nozzle or a boron carbide nozzle. Where ceramic nozzles are used, the size of the nozzle can be:
Where tungsten carbide nozzles are used, the size of the nozzle can be:
Similarly, where a boron carbide nozzle is used, the size of the nozzle can be:
The speed of the fluid stream produced can be between 5 m/min and 30 m/min. Preferably, the speed of the fluid stream produced is between 9 m/min and 11 m/min.
Preferably, the abrasive particles have a hardness of between 7 and 9 Mohs.
The invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
Specific embodiments of the present invention are now described in detail. The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention.
In accordance with a first embodiment of the invention, there is provided a method of mechanical depth routing an electronic layup. The operation of the method requires the use of the following components:
The electronic layup 12 used in this embodiment is shown in
The sandblasting machine 14 shown in
In this embodiment, the sandblasting machine 14 has eight conical ceramic nozzles 28. The size of the eight conical ceramic nozzles 28 is adjustable.
In
To ensure that there is no relative movement between the protective stencil 18 and the electronic layup 12 during the sandblasting operation, the jig 16 is clamped by clampers 34 (see
The protective stencil 18 is formed from hardened steel. In
The feeder belt 20 has securing mechanisms for securing the jig 16 thereto. The speed of the feeder belt 20 is controllable within the range 5 to 30 m/min.
The embodiment will now be described in the context of its intended use.
The electronic layup 12 is securely received in the base plate 30 of the jig 16. Almost at the same time, the protective stencil 18 is securely received within the tooling fixture plate 32. The jig 16 is then clamped using the clampers 34.
With the jig 16 clamped, the jig 16 is attached to the feeder belt 20. Attachment is achieved by way of the securing mechanisms. Once so secured, the feeder belt 20 is operated so as to control the movement of the jig 16 relative to the sandblasting machine 14.
In
In this manner, the entrained particles emitted by the sandblasting machine 14 are either stopped by the protective stencil 18 or allowed to pass through the apertures provided therein. Those particles that are allowed to pass through the apertures cause erosion on a layer 22, 24 (excepting the underlying copper or aluminium substrate layer 26) of the electronic layup 12. Over time and as the nozzles 28 and the feeder belt 20 move in accordance with a predetermined pattern, the erosion of the various layers 22, 24 of the electronic layup 12 then form an identical pattern to that of the protective stencil 18.
The advantage of the above system is that the aluminium oxide abrasive chosen has sufficient strength to remove the copper layer 22 and the dielectric 24, but does not have the abrasive strength to remove the underlying copper or aluminium substrate 26 or cause damage to the protective stencil 18. This means that manufacturers only need focus on the x-y position of the sandblasting machine 14 as opposed to the x-y-z position of CNC-based mechanical depth routers (which are capable of removing the underlying copper or aluminium substrate 26, thereby rendering the electronic layup faulty). It also means that the surface of the underlying copper or aluminium substrate 26 near the eroded layers 22, 24 is significantly clear of burs and/or other irregularities.
In addition, with the use of the sandblasting technique, the total amount of material and the thickness of the electronic layup 12 can be reduced. For instance, in a conventional electronic layup shown in
It should be appreciated by the person skilled in the art that the above invention is not limited to the embodiment described. In particular, the following modifications and improvements may be made without departing from the scope of the present invention
Furthermore, the features described in the above embodiments and the additional features mentioned above may be combined to form yet additional embodiments that fall within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
200800182-8 | Jan 2008 | SG | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SG08/00470 | 12/9/2008 | WO | 00 | 7/8/2010 |