The present invention relates to the field of semiconductors and, more particularly, to an improved dielectric for increasing semiconductor performance.
There is a constant demand for semiconductor devices of a reduced size. The performance characteristics of semiconductor capacitors, transistors, electrode layers and the like become more critical as device size decreases. Accordingly, processes that result in increased device performance are critical to improved semiconductor device fabrication.
Capacitors generally have two conductive layers or plates separated by an insulator layer or dielectric layer. Capacitor performance can be improved by increasing the dielectric constant of the dielectric material or decreasing the leakage characteristics of the dielectric material.
Accordingly, there is a need in the art for an improved dielectric layer that has improved characteristics such as lower leakage and a higher dielectric constant.
This need is met by the present invention, where a silicon-containing material is deposited over at least a portion of a semiconductor device. The deposited silicon-containing material is processed in a reactive ambient to form the dielectric layer.
In accordance with one embodiment of the present invention, a method for fabricating a semiconductor device is disclosed. According to the method, a substrate having at least one semiconductor layer is provided. A first conductive layer is formed over the substrate. A silicon-containing material is deposited over at least a portion of the semiconductor device. The deposited silicon-containing material is processed in a reactive ambient to form a dielectric layer. A second conductive layer is formed over the dielectric layer.
In accordance with yet another embodiment of the present invention, a semiconductor device is disclosed. The semiconductor device includes a substrate, a first conductive layer, a silicon-containing dielectric layer and a second conductive layer. The first conductive layer is formed over the substrate. The silicon-containing layer is formed over the first conductive layer by reacting silicon atoms from a precursor layer with a reactive agent. The second conductive layer is formed over the silicon-containing layer.
Other methods and devices are disclosed.
The following detailed description of the present invention can be best understood when read in conjunction with the accompanying drawings, where like structure is indicated with like reference numerals.
Generally, conventional dielectric layers are processed using temperature ranges of 700° C. to 1050° C., processing time of 10 seconds to 60 minutes, and processing pressure of 760 torr. Whereas, the dielectric layer of the present invention is typically processed using temperature ranges of 500° C. to 900° C., processing time of 30 seconds to 5 minutes, and processing pressure of 450 torr. However, with silicon sources such as HMDS, the time is not critical because they are self limiting sources. It is contemplated that variations to these ranges may also result in suitable dielectric layer formation.
Table 3A, shown above, shows experimental results for dielectric layers fabricated utilizing the method of
Table 3A and
The dielectric layer 402 is fabricated by vapor depositing a selected material or precursor and subsequently processing those materials. The selected material can be deposited by using vapor priming (VP). The selected material is a silicon containing material such as silazane or silane type materials. An example of a typical silicon-containing material is hexamethyldisilazane (HMDS). Other materials or precursors which may be used are tetramethyldisilazane, octamethylcyclotetrasilazine, hexamethylcyclotrisilazine, diethylaminotrimethylsilane or dimethylaminotrimethylsilane. The selected material can be deposited a single time or the depositing can be repeated any number of times. The selected material is processed in a reactive ambient to create a final desirable silicon-containing dielectric layer. The reactive ambient can be materials such as NH3, N2, O2, O3, N2, NO and the like and cause silicon atoms of the selected material to react with oxygen atoms, nitrogen atoms or both. The resulting silicon-containing dielectric layer is the dielectric layer 402 and can result in a layer that is primarily nitride, primarily oxide or an oxynitride.
For the purposes of describing and defining the present invention, formation of a material “on” a substrate or layer refers to formation in contact with a surface of the substrate or layer. Formation “over” a substrate or layer refers to formation above or in contact with a surface of the substrate. A “substrate” may comprise one or more semiconductor layers or semiconductor structures which may define portions of a semiconductor device.
Dielectric layers fabricated using the present invention can be used for a variety of purposes. Some examples follow, but embodiments of the present invention are not limited to these. A dielectric layer can be used as a covering on a semiconductor device. A dielectric layer according to the present invention can be used in a gate structure of a transistor or in an anti-fuse application. A dielectric layer according to the present invention can be formed on top of metals to prevent oxidation of metals. A dielectric layer according to the present invention can be used in post gate stack and pre oxidation steps to prevent oxygen in-diffusion into active areas of the transistor. A dielectric layer according to the present invention can be used to prevent oxidation of gate electrodes with subsequent processing steps when using materials such as polysilicon, Si—Ge, W or other transistion metals. A dielectric layer according to the present invention can be used in anti-fuse components of a semiconductor device.
Additionally, multiple dielectric layers formed according to the various embodiments of the present invention can be used in a single device and can be stacked or intermixed with other types of dielectric layers.
Semiconductor devices fabricated utilizing the present invention can be improved compared to other semiconductor devices because the dielectric of this invention can provide an increased dielectric constant and reduced leakage. This may also permit reductions in the size of semiconductor devices.
Having described the present invention in detail and by reference to preferred embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the present invention defined in the appended claims.
This application is a divisional of U.S. patent application Ser. No. 10/273,667 filed Oct. 18, 2002, now U.S. Pat. No. 6,670,231 which is a divisional of U.S. patent application Ser. No. 09/653,096, filed Aug. 31, 2000, now U.S. Pat. No. 6,576,964. This application is related to commonly assigned U.S. patent application Ser. No. 09/653,639, now U.S. Pat. No. 6,410,968, METHOD FOR FORMING A BARRIER LAYER TO INCREASE SEMICONDUCTOR DEVICE PERFORMANCE, filed Aug. 31, 2000, by Powell et al. and Ser. No. 09/653,298, now U.S. Pat. No. 6,521,544, METHOD FOR FORMING A DIELECTRIC LAYER AT A LOW TEMPERATURE, filed Aug. 31, 2000, by Mercaldi et al., the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5290736 | Sato et al. | Mar 1994 | A |
5304398 | Krusell et al. | Apr 1994 | A |
5312776 | Murakami et al. | May 1994 | A |
5358739 | Baney et al. | Oct 1994 | A |
5525551 | Ohta | Jun 1996 | A |
5567661 | Niishio et al. | Oct 1996 | A |
5814852 | Sandhu et al. | Sep 1998 | A |
5844771 | Graettinger et al. | Dec 1998 | A |
5872696 | Peters et al. | Feb 1999 | A |
5874766 | Hori | Feb 1999 | A |
5882978 | Srinivasan et al. | Mar 1999 | A |
5917571 | Shimada | Jun 1999 | A |
6197628 | Vaarstra et al. | Mar 2001 | B1 |
6258653 | Chew et al. | Jul 2001 | B1 |
6291288 | Huang et al. | Sep 2001 | B1 |
6444584 | Hsiao | Sep 2002 | B1 |
6686292 | Yang et al. | Feb 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20040106248 A1 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10273667 | Oct 2002 | US |
Child | 10706415 | US | |
Parent | 09653096 | Aug 2000 | US |
Child | 10273667 | US |