In many electronic applications, electrical resonators are used. For example, in many wireless communications devices, radio frequency (RF) and microwave frequency resonators are used as filters to improve reception and transmission of signals. Filters typically include inductors and capacitors, and more recently resonators.
As will be appreciated, it is desirable to reduce the size of components of electronic devices. Many known filter technologies present a barrier to overall system miniaturization. With the need to reduce component size, a class of resonators based on the piezoelectric effect has emerged. In piezoelectric-based resonators, acoustic resonant modes are generated in the piezoelectric material. These acoustic waves are converted into electrical waves for use in electrical applications.
One type of piezoelectric resonator is a Bulk Acoustic Wave (BAW) resonator. The BAW resonator includes an acoustic stack comprising, inter alia, a layer of piezoelectric material disposed between two electrodes. Acoustic waves achieve resonance across the acoustic stack, with the resonant frequency of the waves being determined by the materials in the acoustic stack. One type of BAW resonator comprises a piezoelectric film for the piezoelectric material. These resonators are often referred to as Film Bulk Acoustic Resonators (FBAR).
FBARs are similar in principle to bulk acoustic resonators such as quartz, but are scaled down to resonate at GHz frequencies. Because the FBARs have thicknesses on the order of microns and length and width dimensions of hundreds of microns. FBARs beneficially provide a comparatively compact alternative to certain known resonators.
FBARs may comprise a membrane (also referred to as the acoustic stack) disposed over air. Often, such a structure comprises the membrane suspended over a cavity provided in a substrate over which the membrane is suspended. Other FBARs may comprise the membrane formed over an acoustic mirror formed in the substrate. Regardless of whether the membrane is formed over air or over an acoustic mirror, the membrane comprises a piezoelectric layer disposed over a first electrode, and a second electrode disposed over the piezoelectric layer.
The piezoelectric layer comprises a crystalline structure and a polarization axis. Piezoelectric materials either compress or expand upon application of a voltage. By convention, a piezoelectric material that compresses when a voltage of a certain polarity is applied is referred to as compression-positive (CP) material, whereas a piezoelectric material that expands upon application of the voltage is referred to as a compression-negative (CN) material. The polarization axis of CP piezoelectric materials is antiparallel to the polarization axis CN material.
An FBAR is a polarity-dependent device as a result of polarity dependence of the piezoelectric material that constitutes part of the FBAR. A voltage of a given polarity applied between the electrodes of the FBAR will cause the thickness of the FBAR to change in a first direction, whereas the same voltage of the opposite polarity will cause the thickness of the FBAR to change in a second direction, opposite the first direction. (The thickness of the FBAR is the dimension of the FBAR between the electrodes.) For example, a voltage of the given polarity will cause the thickness of the FBAR to increase whereas a voltage of the opposite polarity will cause the FBAR to decrease. Similarly, a mechanical stress applied to the FBAR that causes the thickness of the FBAR to change in a first direction will generate a voltage of the given polarity between the electrodes of the FBAR, whereas a mechanical stress that causes the thickness of the FBAR to change in a second direction, opposite the first direction, will generate a voltage of the opposite polarity between the electrodes of the FBAR. As such, a mechanical stress applied to the FBAR that causes the thickness of the FBAR to increase will generate a voltage of the given polarity, whereas a mechanical stress that causes the thickness of the FBAR to decrease will generate a voltage of the opposite polarity.
The piezoelectric layer of an FBAR is often grown over a first electrode and beneath a second electrode. The orientation of the C-axis can be governed by the first layer formed over the first electrode. For example, in growing aluminum nitride (AlN) with a CP film orientation, the formation of a native oxide layer over the first electrode (e.g., Mo) is believed to cause the first layer of the piezoelectric crystal to be Al. Ultimately, the crystalline orientation of the AlN formed results in piezoelectric film's having CP orientation and its attendant properties. Growth of CN piezoelectric layers (e.g., AlN) by known methods has proven to be more difficult. It is believed that nitrogen and oxygen may be adsorbed at the surface of the first electrode, with the forming of a layer of Al over this adsorbed material. As such, rather than forming the desired CN piezoelectric layer, CP piezoelectric material is formed.
In certain applications, it is desirable to be able to select the orientation of the piezoelectric material, and to fabricate both CP piezoelectric material and CN piezoelectric material on the same structure. For example, in certain applications it is useful to provide a single-ended input to a differential output. One known resonator structure having a differential output comprises coupled mode resonators. Filters based on coupled mode acoustic resonators are often referred to as coupled resonator filters (CRFs). CRFs have been investigated and implemented to provide improved passband and isolation of the transmit band and receive band of duplexers, for example. One topology for CRFs comprises an upper FBAR and a lower FBAR. The two electrodes of one of the FBARs comprise the differential outputs, and one of the inputs to the lower resonator provides the single-ended input. The second electrode provides the ground for the device. However, while the stacked-FBAR CRF shows promise from the perspective of improved performance and reduced area or footprint due to its vertical nature, in order to attain this structure, the orientation of the compression axes (C-axes) of individual piezoelectric materials must be tailored to the application. For example, it may be useful to have one piezoelectric layer with its C-axis (e.g., CN) in one direction, and the second piezoelectric layer to have its crystalline orientation anti-parallel (e.g., CP) to the C-axis of the first piezoelectric layer. Unfortunately, and as alluded to above, using known methods of fabricating piezoelectric layers, it is difficult to select the orientation of the piezoelectric crystal during fabrication, and especially on the same wafer.
What is needed, therefore, is a method of fabricating piezoelectric materials that overcomes at least the known shortcomings described above.
In accordance with a representative embodiment, a method of fabricating a piezoelectric material comprising a first component and a second component comprises: providing a substrate; flowing hydrogen over the substrate; flowing the first component to form the piezoelectric material over a target; and sputtering the piezoelectric material from the target on the substrate.
In accordance with another representative embodiment, a method of fabricating a bulk acoustic wave (BAW) resonator comprises: forming a first electrode over a substrate; forming a seed layer over the substrate; depositing a piezoelectric material having a compression-negative (CN) polarity, the depositing comprising: flowing a first component of the piezoelectric material to form the piezoelectric material over a target comprising a second component of the piezoelectric material; and sputtering the piezoelectric material from the target to the substrate.
The illustrative embodiments are best understood from the following detailed description when read with the accompanying drawing figures. It is emphasized that the various features are not necessarily drawn to scale. In fact, the dimensions may be arbitrarily increased or decreased for clarity of discussion. Wherever applicable and practical, like reference numerals refer to like elements.
It is to be understood that the terminology used herein is for purposes of describing particular embodiments only, and is not intended to be limiting. The defined terms are in addition to the technical and scientific meanings of the defined terms as commonly understood and accepted in the technical field of the present teachings.
As used in the specification and appended claims, the terms ‘a’, ‘an’ and ‘the’ include both singular and plural referents, unless the context clearly dictates otherwise. Thus, for example, ‘a device’ includes one device and plural devices.
As used in the specification and appended claims, and in addition to their ordinary meanings, the terms ‘substantial’ or ‘substantially’ mean to with acceptable limits or degree. For example, ‘substantially cancelled’ means that one skilled in the art would consider the cancellation to be acceptable.
As used in the specification and the appended claims and in addition to its ordinary meaning, the term ‘approximately’ means to within an acceptable limit or amount to one having ordinary skill in the art. For example, ‘approximately the same’ means that one of ordinary skill in the art would consider the items being compared to be the same.
In the following detailed description, for purposes of explanation and not limitation, specific details are set forth in order to provide a thorough understanding of illustrative embodiments according to the present teachings. However, it will be apparent to one having ordinary skill in the art having had the benefit of the present disclosure that other embodiments according to the present teachings that depart from the specific details disclosed herein remain within the scope of the appended claims. Moreover, descriptions of well-known apparati and methods may be omitted so as to not obscure the description of the illustrative embodiments. Such methods and apparati are clearly within the scope of the present teachings.
Generally, it is understood that the drawings and the various elements depicted therein are not drawn to scale. Further, relative terms, such as “above,” “below,” “top,” “bottom,” “upper” and “lower” are used to describe the various elements' relationships to one another, as illustrated in the accompanying drawings. It is understood that these relative terms are intended to encompass different orientations of the device and/or elements in addition to the orientation depicted in the drawings. For example, if the device were inverted with respect to the view in the drawings, an element described as “above” another element, for example, would now be below that element.
Certain aspects of the present teachings are relevant to components of FBAR devices, FBAR-based filters, their materials and their methods of fabrication. Many details of FBARs, materials thereof and their methods of fabrication may be found in one or more of the following U.S. Patents and Patent Applications: U.S. Pat. No. 6,107,721, to Lakin; U.S. Pat. Nos. 5,587,620, 5,873,153 and 6,507,983 to Ruby, et al.; U.S. patent application Ser. No. 11/443,954, entitled “Piezoelectric Resonator Structures and Electrical Filters” to Richard C. Ruby, et al.; U.S. patent application Ser. No. 10/990,201, entitled “Thin Film Bulk Acoustic Resonator with Mass Loaded Perimeter” to Hongjun Feng, et al.; and U.S. patent application Ser. No. 11/713,726, entitled “Piezoelectric Resonator Structures and Electrical Filters having Frame Elements” to Jamneala, et al.; and U.S. patent application Ser. No. 11/159,753, entitled “Acoustic Resonator Performance Enhancement Using Alternating Frame Structure” to Richard C. Ruby, et al. The disclosures of these patents and patent applications are specifically incorporated herein by reference. It is emphasized that the components, materials and method of fabrication described in these patents and patent applications are representative and other methods of fabrication and materials within the purview of one of ordinary skill in the art are contemplated.
Generally, the present teachings relate to a method of fabricating a piezoelectric layer comprising a selected C-axis orientation (i.e., polarity). In certain embodiments a piezoelectric material fabricated according to representative embodiments comprises a CN polarity (also referred to as type-CN piezoelectric material), whereas another piezoelectric material fabricated over the same substrate comprises a CP polarity (also referred to as type-CP piezoelectric material). In other embodiments, more than two or more piezoelectric layers are fabricated according to representative embodiments comprise CN polarity. Furthermore, in representative embodiments the piezoelectric material comprises AlN. It is emphasized that this is merely illustrative, and that the fabrication of other types of piezoelectric materials is contemplated, including but not limited to the fabrication of zinc oxide (ZnO) and lead zirconium titanate (PZT).
Applications of the illustrative methods will be appreciated by one having ordinary skill in the art. Some of these applications include FBARs useful in transformer applications and FBARs useful in filter applications. For example, the method of fabrication piezoelectric materials comprising antiparallel C-axes (e.g., CN polarity and CP polarity) may be useful on the fabrication of film acoustic transformers, such as described in commonly owned U.S. Pat. Nos. 6,987,433 and 7,091,649, to Larson, III, et al. Moreover, the method of fabrication piezoelectric materials comprising antiparallel C-axes (e.g., CN polarity and CP polarity) or parallel C-axes (e.g., both CN polarity) may be useful in the fabrication of the stacked thin film bulk acoustic resonators (SBARs). SBARs comprise stacking two or more layers of piezoelectric material with electrodes between the piezoelectric layers and on the top and bottom of the stack. Such SBARs are described, for example in commonly owned U.S. Pat. Nos. 5,587,620 and 6,060,818, to Ruby, et al. Furthermore, the method of fabricating piezoelectric materials comprising antiparallel C-axes (e.g., CN polarity and CP polarity) or both comprising CN polarity may be useful in CRF applications, such as described in commonly-owned U.S. patent application Ser. No. 12/201,641 entitled “Single Cavity Acoustic Resonators and Electrical Filters Comprising Single Cavity Acoustic Resonators” filed on Aug. 29, 2008 to Bradley, et al.; and in commonly owned U.S. Pat. No. 7,515,018 to Handtmann, et al. The disclosures of U.S. Pat. Nos. 5,587,620; 6,060,818; 6,987,433; 7,091,649; and 7,515,018 and the disclosure of U.S. patent application Ser. No. 12/201,641 are specifically incorporated herein by reference. It is emphasized that the noted applications are intended merely to illustrate applications of the methods of the present teachings, and that the application of the methods of fabricating piezoelectric materials of the present teachings are not limited to these illustrative applications.
A cavity 106 is formed in the substrate 101 beneath the first electrode 103 by a known method. The first electrode 103 and the second electrode 105 may be one of a variety of conductive materials, such as metals suitable as electrodes in BAW applications. Generally, materials suitable for the first electrode 103 and the second electrode 105 comprise Refractory metals. Transition metals or Noble Metals. In specific embodiments, the first and second electrodes 103, 105 illustratively comprise one or more of molybdenum (Mo), aluminum (Al), tungsten (W), platinum (Pt), ruthenium (Ru), niobium (Nb), hafnium (Hf) and uranium-238 (U-238), or other low-loss metals, and are fabricated using a known method. The piezoelectric layer 104 is fabricated in accordance with the present teachings.
In a representative embodiment, the FBAR 100 comprises a seed layer 108 disposed over an upper surface 107 of the first electrode 103. As described more fully below, the seed layer 108 is illustratively Al and fosters growth of piezoelectric layer 104 of type-CN AlN. In a representative embodiment, the seed layer 108 has a thickness in the range of approximately 50 Å to approximately 1000 Å over the upper surface 107. In other representative embodiments described below, the seed layer 108 is not provided over the first electrode 103. Rather, the type-CN piezoelectric layer 104 is formed over the upper surface 107 of the first electrode 103 by methods of representative embodiments.
In a representative embodiment, the FBAR 109 comprises the seed layer 108 disposed over an upper surface 107 of the first electrode 103. The seed layer 108 has a thickness in the range of approximately 50 Å to approximately 1000 Å over the upper surface 107. In other representative embodiments described below, the seed layer 108 is not provided over the first electrode 103. Rather, the type-CN piezoelectric layer 104 is formed over the upper surface 107 of the first electrode 103 by methods of representative embodiments.
The cavity 106 is formed in the substrate 101 beneath the first electrode 103 by a known method. The first electrode 103 and the second electrode 105 may be one of a variety of conductive materials as noted above, and are fabricated using a known method. The piezoelectric layer 104 is fabricated in accordance with the present teachings.
In a representative embodiment, and unlike the FBAR 100, FBAR 200 does not comprise the seed layer 108 over the upper surface 107 of the first electrode 103. Rather, the type-CN piezoelectric layer 104 is formed over the upper surface 107 of the first electrode 103 by methods of representative embodiments described below.
In a representative embodiment, and unlike FBAR 109 shown in
A second piezoelectric layer 311 is disposed over the second electrode 305; and a third electrode 312 is disposed over the second piezoelectric layer 311. The second piezoelectric layer 311 is a type-CN piezoelectric material, and is illustratively type-CN aluminum nitride (AlN). A cavity 306 is formed in the substrate 301 beneath the first electrode 303 by a known method. The cavity 306 provides acoustic isolation as described above. Alternatively, an acoustic isolator (not shown in
The first electrode 303, the second electrode 305 and the third electrode 312 may be one of a variety of conductive materials, such as metals suitable as electrodes in BAW applications. Generally, materials suitable for the first electrode 103 and the second electrode 105 comprise Refractory metals, Transition metals or Noble Metals. In specific embodiments, the first and second electrodes 103, 105 illustratively comprise one or more of molybdenum (Mo), aluminum (Al), tungsten (W), platinum (Pt), ruthenium (Ru), niobium (Nb), hafnium (Hf) and uranium-238 (U-238), or other low-loss metals, and are fabricated using a known method. The piezoelectric layer 104 is fabricated in accordance with the present teachings.
In a representative embodiment, the FBAR 300 comprises a first seed layer 308 disposed over an upper surface 307 of the first electrode 303; and a second seed layer 310 disposed over an upper surface 309 of the second electrode 305. As described more fully below, the first and second seed layers 308, 310 are illustratively Al and foster growth of the first and second piezoelectric layers 304, 311 both of type-CN AlN. In a representative embodiment, the first and second seed layers 308, 310 each have a thickness in the range of approximately 50 Å to approximately 1000 Å.
It is appreciated that the FBAR 300 of the representative embodiment comprises an acoustic stack comprising more than one type CN piezoelectric layer. It is emphasized that other BAW resonator structures comprising an acoustic stack comprising more than one type CN piezoelectric layer are contemplated. For example, decoupled stacked acoustic resonators comprising more than one FBAR with an acoustic decoupler disposed therebetween are contemplated. In such an embodiment, each of the FBARs would include a type CN piezoelectric layer fabricated in accordance with the present teachings. The present teachings contemplate forming the piezoelectric layers with CN axes by providing a seed layer over a surface of respective electrodes and forming the respective piezoelectric layer thereover.
Furthermore, in certain BAW structures comprising an acoustic resonator comprising more than one piezoelectric layer, it is desirable to provide piezoelectric layers comprising anti-parallel C-axes (e.g., one type CN piezoelectric layer, and one type CP piezoelectric layer). The present teachings also contemplate forming the piezoelectric layers with CN axes by providing a seed layer over the surface of an electrode, forming the type CN piezoelectric layer over the seed layer and forming a type CP piezoelectric layer over another electrode. The type CP piezoelectric layer is formed using a known method.
The second piezoelectric layer 311 is disposed over the second electrode 305; and the third electrode 312 is disposed over the second piezoelectric layer 311. The second piezoelectric layer 311 is a type-CN piezoelectric material, and is illustratively type-CN aluminum nitride (AlN). Cavity 306 is formed in the substrate 301 beneath the first electrode 303 by a known method. The cavity 306 provides acoustic isolation as described above. Alternatively, an acoustic isolator (not shown in
The first electrode 303, the second electrode 305 and the third electrode 312 may be one of a variety of conductive materials, such as metals suitable as electrodes in BAW applications. Generally, materials suitable for the first electrode 103 and the second electrode 105 comprise Refractory metals, Transition metals or Noble Metals. In specific embodiments, the first and second electrodes 103, 105 illustratively comprise one or more of molybdenum (Mo), aluminum (Al), tungsten (W), platinum (Pt), ruthenium (Ru), niobium (Nb), hafnium (Hf) and uranium-238 (U-238), or other low-loss metals, and are fabricated using a known method. The piezoelectric layer 104 is fabricated in accordance with the present teachings.
In a representative embodiment, and unlike FBAR 300 shown in
It is appreciated that the FBAR 302 of the representative embodiment comprises an acoustic stack comprising more than one piezoelectric layer having a CN axis. It is emphasized that other BAW resonator structures comprising an acoustic stack comprising more than one type CN piezoelectric layer are contemplated. For example, decoupled stacked acoustic resonators comprising more than one FBAR with an acoustic decoupler disposed therebetween are contemplated. In such an embodiment, each of the FBARs would include a type CN piezoelectric layer fabricated in accordance with the present teachings. The present teachings contemplate forming the type CN piezoelectric layers over a surface of respective electrodes. Furthermore, in certain BAW structures comprising an acoustic resonator comprising more than one piezoelectric layer, it is desirable to provide piezoelectric layers comprising anti-parallel C-axes (e.g., one type CN piezoelectric layer, and one type CP piezoelectric layer). The present teachings also contemplate forming the piezoelectric layers with CN axes and forming a type CP piezoelectric layer over another electrode. The type CP piezoelectric layer is formed using a known method.
The deposition system 400 comprises a reaction chamber 401, which is maintained substantially at vacuum during fabrication of piezoelectric materials of the representative embodiments. The deposition system 400 also comprises gas inlets 403, 404, 405 as inputs to a flow control system 402, which controls the flow of selected gases provided to the gas inlets 403, 404, 405 and the flow rates of the gases provided. A load and lock chamber 413 is provided to allow for the loading of wafers and transfer them to a reaction chamber 401 without breaking vacuum. The flow control system 402 comprises valves (not shown) for selecting the gases to be flowed into the reaction chamber 401, flow controllers (not shown) to measure and control the flow rates thereof, and a controller (not shown) comprising suitable software for controlling the valves. Moreover, the deposition system 400 may comprise an exhaust outlet 412, which has a constant pumping speed, and control of the total pressure in the reaction chamber 401 is provided by changing of gas flow by each flow controller independently or together.
The flow control system 402 may comprise an interface (not shown), such as a graphic user interface (not shown). The deposition system 400 also comprises gas outlets 406, 407, 408, from the flow control system 402. Gas from the gas outlets 406, 407,408 is provided to the reaction chamber 401. Notably, the use of mixed gases (e.g., Ar and H2) from a single source is also contemplated. As described more fully below, these gases form atmospheres used in cleaning and sputter depositing materials 411 from first target 409 and second target 410 over the substrate 101 according to representative embodiments.
As described in connection with representative embodiments below, the gas inlets 403, 404, 405 may selectively provide argon (Ar), nitrogen (N) or hydrogen (H), respectively, or a combination thereof. The gas outlets 406, 407,408 provide a mixture of these gases as to the reaction chamber 401. For example, in forming an Al seed layer (e.g., seed layer 108), Ar plasma may be formed by the outlet of Ar gas from one of the gas outlets 406, 407 in the reaction chamber 401, and results in sputter deposition of seed layer 108 of Al from first and second Al targets 409, 410 over the first electrode 103. After the forming of the seed layer 108, the growth of type-CN piezoelectric layer (e.g., piezoelectric layer 104) is provided by selectively sputtering the first and second targets 409,410 (e.g., Al) in an Ar/N2 atmosphere, from gas outlets 406, 407.
In another exemplary method where no seed layer is provided, hydrogen (H2) is provided from one of the gas outlets 406, 407 to provide a hydrogen atmosphere useful in removing contaminants on the upper surface 107. The contaminants could include metal oxides, gases such as H2O, N2 or O2 on the upper surface 107, as well as processing residues such as photoresist. After the cleaning step in the hydrogen atmosphere, the growth of type-CN piezoelectric layer (e.g., piezoelectric layer 104) is provided by selectively sputtering the first and second targets 409, 410 (e.g., Al) in an Ar/N2/H2 atmosphere, from gas outlets 406, 407408 or by pre-mixed source of Ar/H2, and a nitrogen source.
Turning to
At 501, the method comprises forming a first electrode over a substrate. Illustratively, the first electrode 103 is formed over the substrate 101. For purposes of description of the method 500, the first electrode 103 is formed by sputter-depositing the selected conductive material over the substrate 101 by a known method, although other methods of forming the first electrode are contemplated. Notably, the formation of the cavity 106 in the substrate 101 may be carried out before fabrication of the acoustic stack 102 of the FBAR 100, with the cavity 106 filled with a sacrificial material (not shown) such as phosphosilicate glass (PSG) or other release processes such as polysilicon and xenon difluoride etchant, known to one of ordinary skill in the art, during the fabrication of layers of the acoustic stack 102; and released after the forming of the layers of the acoustic stack 102. Alternatively, the acoustic isolator 110 is formed in the substrate 101 before forming of the first electrode 103 of the FBAR 109.
The fabrication of the piezoelectric layer 104 begins with cleaning the upper surface 107 of the first electrode 103 before the forming of the piezoelectric layer 104. In a representative embodiment, this cleaning step comprises flowing only Ar to one of the gas inlets 403, 404,405 and to one of the gas outlets 406, 407 to provide an Ar atmosphere in the reaction chamber 401. An RF bias is applied to the first electrode 103 and the reaction chamber 401 is maintained at ground, so that the first electrode 103 functions as a cathode. An Ar plasma is formed in the reaction chamber 401 and bombards the upper surface 107 of the first electrode 103. Illustratively, the RF power is provided in the range of approximately 15 W to approximately 1 kW, and the Ar bombardment of the upper surface 107 of the first electrode is maintained for a few seconds to a few minutes to ensure proper removal of contaminants. Notably, during this cleaning step, no voltage is applied to the first and second targets 409, 410.
It is believed that the comparatively high kinetic energy of the Ar ions provides suitable bombardment of the upper surface 107 to remove substantially therefrom contaminants such as adsorbed water, adsorbed oxide, adsorbed nitrides and native oxides formed on materials commonly used in the fabrication of the first electrode 103. By substantially removing contaminants from the upper surface 107, the formation of a comparatively pure and electropositive Al seed layer 108 is fostered. Thereafter, a type-CN AlN piezoelectric layer may be formed by deposition of AlN over the seed layer 108 as described above. Furthermore, in an embodiment where the first electrode 103 comprises Pt, by this cleaning step in the Ar atmosphere, it is believed that contaminants such as adsorbed water, adsorbed oxides and adsorbed nitrides are believed to be removed from the Pt, which does not readily form native oxides.
At 502, the method 500 comprises forming the seed layer 108 over the upper surface 107 of the first electrode 103. In a representative embodiment, at this point the RF power to the first electrode 103 is terminated, and AC power is provided between the first target 409 and the second target 410 in the reaction chamber 401. In a representative embodiment, the piezoelectric material comprises two components, and the first and second targets 409, 410 comprise one of the components. Illustratively, AlN is the piezoelectric material, and the first and second targets 409,410 comprise Al. Aluminum is sputtered from the first and second targets 409,410 during the negative potential half-cycle of AC power applied to the first and second targets 409,410 and provides seed layer 108 over the upper surface 107 of the first electrode 103. During the forming of the seed layer 108, Ar is flowed to one of the gas inlets 403, 404, 405 and from one of the gas outlets 406, 407; and no other gases are flowed from the other gas outlet 406, 407. As a result, Ar plasma created in the reaction chamber 401 results in the sputter deposition of a substantially pure aluminum seed layer from the first and second targets 409,410 and over the upper surface 107 of the first electrode 103. Notably, the longer AC power is applied between the first and second targets 409,410, the thicker the seed layer 108 that is formed.
At 503, and after the seed layer 108 is formed, the method 500 comprises flowing a first component of the piezoelectric layer and sputtering the piezoelectric layer 104 over the substrate 101. In a representative embodiment used to form AlN, the first component comprises nitrogen (N2) gas. The flowing of nitrogen into the reaction chamber 401 comprises providing nitrogen to one of the gas inlets 403, 404, 405 and from one of the gas outlets 406, 407, 408, while continuing the flow of Ar to another of the gas inlets 403, 404, 405 and from the other of the gas outlets 406, 407, 408. During the flowing of nitrogen, AC power is supplied between the first and second targets 409,410, which comprise the second component (e.g., Al) of the piezoelectric material (e.g., AlN), and the piezoelectric material is formed over the surface of the first and second targets 409,410. In a representative embodiment, the AC power has a frequency in the range of approximately 20 kHz to approximately 100 kHz, and power in the range of approximately 4 kW to approximately 7 kW. Illustratively, the AC power has a frequency of 7 kW and a frequency of 40 kHz.
The Ar/N2 plasma is maintained, and sputters the AlN from the first and second targets 409,410 to the seed layer 108, in a preferred orientation to provide type CN AlN over the seed layer 108. Beneficially, the depositing of the piezoelectric layer 104 in the portion of the method is effected without breaking vacuum conditions in the system 400, and comparatively rapidly after completion of the forming of the seed layer 108. Maintaining vacuum and relatively rapidly beginning the deposition of the piezoelectric layer 104 is believed to substantially prevent adsorption of oxides and nitrides or the formation of other contaminants over the exposed surface(s) of the seed layer 108.
It is believed that because the Al seed layer 108 is comparatively free from contaminants due to the cleaning step in Ar, a substantially electropositive surface of Al is formed over the upper surface 107 of the first electrode 103. The Al seed layer 108 is comparatively highly reactive, and attracts nitrogen of the sputtered AlN. As such, it is believed that AlN is oriented with the nitrogen bonded to the electropositive seed layer of aluminum, and the aluminum of the AlN not being bonded is exposed (i.e., in a structure: seed layer-NAl). Sputtered AlN is then bonded to the exposed aluminum, with the nitrogen bonded to the exposed aluminum (i.e., in a structure: seed layer-N-AL-N-AL). This sequence results in the forming of the crystal structure of type-CN AlN piezoelectric material, and continues until a suitable thickness of the type-CN AlN (e.g., piezoelectric layer 104) is realized. In one embodiment, the AlN layer has a thickness of approximately 12,000 Å.
The flow rates of Ar and N2 are set to control the stress of the resultant AlN. Notably, a higher flow rate of Ar results in tensile stress in the AlN; a lower the flow rate of Ar results in compressive stress in the AlN. Similarly, a higher the flow rate of N2 results in tensile stress in the AlN; and a lower flow rate of N2 results in compressive stress in the AlN. In representative embodiments, the flow rate of Ar is in the range of approximately 6 sccm to approximately 25 sccm, and the flow rate of N2 is in the range of approximately 39 sccm to approximately 50 sccm.
After the piezoelectric layer 104 is formed, the second electrode 105 is formed over the piezoelectric layer 104. The second electrode 105 comprises a metal that is sputter-deposited over the piezoelectric layer 104 by a known method. Illustratively, the second electrode 105 comprises the same material as the first electrode 103. Notably, different materials may be used for the electrodes as may be beneficial to the FBAR (BAW resonator) 100.
After the forming of the second electrode 105, the release of the sacrificial material to form the cavity 106 is carried out using a suitable etchant such as HF. As should be appreciated, if unprotected the seed layer 108 may be etched by the etchant as well. In order to prevent this from significantly deteriorating the seed layer 108, a protective layer (not shown) over and/or around the acoustic stack 102 comprising the first electrode 103, the seed layer 108, the piezoelectric layer 104 and the second electrode 105. The protective layer may comprise a metal ‘dam’ formed from the same metal as the first and second electrodes 103, 105, for example; or may be formed of a material impervious to the etchant (e.g., HF). Such protective layers are formed by known deposition, lithography and etching sequences. Alternatively, a comparatively thin (e.g., 50 Å) seed layer 108 may be provided. It is believed that a comparatively thin seed layer will not be appreciably etched by the etchant used to release the sacrificial material from the cavity 106. Of course, if instead of the cavity 106, the acoustic isolator 110 is implemented as in FBAR 109, the release of sacrificial material and thus the passivation material would not be necessary.
The FBARs 100, 109 described in connection with the method 500 comprise a single piezoelectric layer. As noted above, the acoustic stack of certain resonator structures comprises more than one piezoelectric layer. It is emphasized that the method 500 can be repeated to form a second type-CN AlN piezoelectric layer. For example, by repeating the method 500, BAW resonator 300 comprising first and second piezoelectric layers 304, 311 is fabricated by forming first and second seed layers 308, 310 respectively over respective upper surfaces 307,309 of first and second electrodes 303, 305.
In certain applications, two or more piezoelectric layers may be included in the acoustic stack, and have opposing C-axes. For example, in an acoustic stack described U.S. Pat. No. 7,515,018, the C-axes of the piezoelectric layers may be antiparallel. As can be appreciated, in a structure comprising two piezoelectric layers in an acoustic stack, the first piezoelectric may be type-CN piezoelectric material (e.g., first piezoelectric layer 304), and the second piezoelectric layer 311 may be type-CP piezoelectric material. In such an embodiment, the deposition system 400 and method 500 could be used to form the type-CN piezoelectric layer by method 500, and the type-CP piezoelectric layer would be formed by a known method using deposition system 400. For example, the first electrode 103 may be formed as described in 501 above; and the CP piezoelectric layer may be formed by flowing the first component of the piezoelectric material as described in 503 above. Notably, in forming a CP piezoelectric layer, the sequence of 502 is not performed.
The method 600 is described with direct reference to the components of
At 601 the method comprises providing a substrate. Illustratively, the substrate formed in 601 comprises first electrode 103, which is formed over the substrate 101. For purposes of description of the method 600, the first electrode 103 comprises a metal that is sputter-deposited over the substrate 101 by a known method. Notably, the formation of the cavity 106 in the substrate 101 may be carried out before fabrication of the layers of the acoustic stack 102 of FBAR 100, with the cavity 106 filled with a sacrificial material (not shown) such as phospho-silicate glass (PSG) during the fabrication of layers of the acoustic stack 102, and released after forming the layers of the acoustic stack 102. Alternatively, the acoustic isolator 110 is formed in the substrate 101 before forming of the first electrode 103 of FBAR 109.
At 602, the fabrication of the piezoelectric layer 104 begins with cleaning an upper surface 107 of the first electrode 103 before the forming of the piezoelectric layer 104. In a representative embodiment, this cleaning step comprises flowing Ar and H2 to respective gas inlets 403, 404,405 and from one of the gas outlets 406, 407, 408. An RF bias is applied to the first electrode 103 and the reaction chamber 401 is maintained at ground, so that the first electrode 103 functions as a cathode. As in method 500, an Ar plasma is formed and bombards the upper surface 107 of the first electrode 103. Illustratively, the RF power is provided in the range of approximately 15 W to approximately 1 kW, and the Ar bombardment of the upper surface 107 of the first electrode is maintained for a few seconds to a few minutes to ensure proper removal of contaminants. Notably, during this cleaning step, no voltage is applied to the first and second targets 409,410; and therefore sputtering of material (e.g., Al) from first and second targets 409,410 is insignificant. As such, and in contrast to the method 500, no seed layer (e.g., seed layer 108) is formed over the upper surface 107 of the first electrode 103.
The hydrogen plasma formed in the reaction chamber 401 bombards the upper surface 107 of the first electrode 103. The flow of H2 in 402 provides ionized hydrogen (e.g., H2+ or H+) in the reaction chamber 401 that provides a reducing agent at the upper surface 107. The ionized hydrogen is believed to react with many contaminants such as water, adsorbed oxides, nitrides and native oxides that may be present on the upper surface 107, and fosters their removal to provide a comparatively clean surface. Moreover, it is believed that the ionized hydrogen forms metal hydrides by saturating dangling bonds on the surface of the metal of the first electrode 103. Furthermore, in an embodiment where the first electrode 103 comprises Pt, by the cleaning step with H2, it is believed that contaminants such as adsorbed water, oxides and nitrides are believed to be removed on Pt, which does not readily form native oxides. Notably, however, because no electrical potential is applied to the first and second targets 409,410 during 602, Al is not appreciably sputtered from the first and second targets 409,410.
At 603 the method 600 comprises flowing a first component of the piezoelectric layer 104. In a representative embodiment used to form AlN, the first component comprises nitrogen (N2) gas. The flowing of nitrogen into the reaction chamber 401 comprises providing nitrogen to one of the gas inlets 403, 404, 405 and from one of the gas outlets 406, 407, 408, while continuing the flow of Ar to another of the gas inlets 403, 404, 405 and from the other of the gas outlets 406, 407, 408.
Notably, H2 may be provided to the same gas outlet 406, 407, 408 that provides Ar; or a separate outlet (not shown) may be provided into the reaction chamber to provide an Ar/N/H atmosphere. Alternatively, after the completion of 602, hydrogen flow may be terminated. The flow rates of Ar and N2 are set to control the stress of the resultant AlN. As described previously, a higher the flow rate of Ar results in tensile stress in the AlN; and a lower the flow rate of Ar results in compressive stress in the AlN. Similarly, a higher the flow rate of N2 results in tensile stress in the AlN; and a lower the flow rate of N2 results in compressive stress in the AlN. In representative embodiments, the flow rate of Ar is in the range of approximately 6 sccm to approximately 25 sccm, and the flow rate of N2 is in the range of approximately 39 sccm to approximately 50 sccm.
During the flowing of nitrogen, AC power is supplied between the first and second targets 409,410, and AlN—H compounds are formed over the surface of the first and second targets 409,410. Moreover, NHx compounds are believed to be formed in the reaction chamber 401. It is believed that NHx compounds formed in the reaction chamber 401 fosters the formation of form an AlN—H compound, due to reactions on the surface of the first and second targets 409,410 between Al and NHx.
The greater the frequency of the AC power, the lower the deposition rate of AlN. Accordingly, the frequency of the AC power generally should not exceed 100 kHz. Notably, if the flow of hydrogen is maintained during 603, the cleaning action of hydrogen is realized, but due to its comparatively small atomic mass, hydrogen does not appreciably sputter Al—N from the first and second targets 409,410.
At 604 piezoelectric material is sputtered from the first and second targets 409,410 over the substrate 101. In a specific embodiment, AlN—H formed on the first and second targets 409,410 is sputtered to the upper surface 107 of the first electrode 103. The metal hydrides formed at the upper surface 107 are believed to present an electronegative surface that attracts the aluminum of the AlN—H sputtered from the target. Accordingly, the desired orientation (i.e., metal hydride-AlN—AlN—AlN) to form the crystal structure of type-CN AlN piezoelectric material is provided and 603 continues until a suitable thickness of the type-CN AlN (e.g., piezoelectric layer 104) is realized. In one embodiment, the AlN layer has a thickness of approximately 12,000 Å.
It is believed that hydrogen gas molecules (H2) and atoms (H) attach to the AlN on the surface of the metal of the first electrode 103. The hydrogen atoms then penetrate into the interior next to Al side of AlN molecule to form an aluminum-hydride-nitride substance. The AlN molecules are stretched apart to accommodate the hydrogen atoms. The physical structure of the H—AlN molecule may also change. Then as a result of adsorption, the hydrided part of H—AlN aligns and migrates to the surface of the metal hydride formed on the first electrode 103, combines into hydrogen molecules H2 and pulls the Al part of AlN toward to first electrode 103.
As noted above, the H2 flow into the reaction chamber 401 may be continuous during the forming of the piezoelectric material. As described above, it is believed that the presence of ionized hydrogen in the reaction chamber provides a reducing agent that can remove contaminants such as oxides, nitrides and water, which can interfere with the forming of type-CN piezoelectric material, or can reduce the coupling coefficient (kt2) and therefore degrade the quality (Q) factor of the piezoelectric material, or both. In a representative embodiment, the flow rate of H2 during the forming of the AlN is at least approximately 8 sccm. In certain embodiments, the flow rate of H2 during the forming of the AlN is as great as approximately 30 sccm. Illustratively, a flow rate of H2 of approximately 14 sccm provides a CN AlN piezoelectric material with kt2 of approximately 5.5%. As described below, the coupling coefficient kt2 of AlN fabricated with continuous flow of H2 at the flow rates noted provides CN AlN piezoelectric material with kt2 of approximately 2% to approximately 6.6%.
After the piezoelectric layer 104 is formed, the second electrode 105 is formed over the piezoelectric layer 104. The second electrode 105 comprises a metal that is sputter-deposited over the piezoelectric layer 104 by a known method. Illustratively, the second electrode 105 comprises the same material as the first electrode 103.
The FBARs 200, 201 described in connection with the method 600 comprise a single piezoelectric layer. As noted above, the acoustic stack of certain resonator structures comprises more than one piezoelectric layer. It is emphasized that the method 600 may be repeated to form a second type-CN AlN piezoelectric layer. For example, by repeating the method 600 in a selected sequence, BAW resonator 302 comprising first and second piezoelectric layers 304, 311, respectively, are formed over respective upper surfaces 307, 309 of first and second electrodes 303, 305.
In certain applications, two or more piezoelectric layers may be included in the acoustic stack, and have opposing C-axes. For example, in an acoustic stack described in U.S. Pat. No. 7,515,018, the C-axes of the piezoelectric layers may be antiparallel. As can be appreciated, in a structure comprising two piezoelectric layers in an acoustic stack, the first piezoelectric may be type-CN piezoelectric (e.g., first and second piezoelectric layer 304), and the second piezoelectric layer 311 may be type-CP piezoelectric. In such an embodiment, the deposition system 400 would be used to form the type-CN piezoelectric layer by method 600, and the type-CP piezoelectric layer would be formed by a known method using deposition system 400.
If the second piezoelectric layer (e.g., second piezoelectric layer 311) is type-CN AlN, the cleaning step of method 600 would be carried out to remove contaminants from the electrode over which the second piezoelectric layer is formed (e.g., second electrode 305). If there is no intervening acoustic decoupling layer or intervening electrode, the cleaning step of the method 600 would be carried out to remove contaminants from the surface (e.g., upper surface 309) of the second electrode 305. The forming of the second piezoelectric layer would be effected by repeating 603 of the method 600.
In certain applications, two or more piezoelectric layers may be included in the acoustic stack, and have opposing C-axes. For example, in the acoustic stacks described in U.S. patent application Ser. No. 12/201,641 and U.S. Pat. No. 7,515,018, the C-axes of the piezoelectric layers may be antiparallel. As can be appreciated, in a structure comprising two piezoelectric layers in an acoustic stack, the first piezoelectric may be type-CN (e.g., first piezoelectric layer 304), and the second piezoelectric layer (e.g., second piezoelectric layer 311) may be type-CP. In such an embodiment, the deposition system 400 would be used to form the type-CN piezoelectric layer by method 600, and the type-CP piezoelectric layer would be formed by a known method using deposition system 400.
In accordance with illustrative embodiments, methods of fabricating piezoelectric materials and acoustic resonators for various applications such as in electrical filters are described. One of ordinary skill in the art appreciates that many variations that are in accordance with the present teachings are possible and remain within the scope of the appended claims. These and other variations would become clear to one of ordinary skill in the art after inspection of the specification, drawings and claims herein. The invention therefore is not to be restricted except within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3174122 | Fowler et al. | Mar 1965 | A |
3189851 | Fowler | Jun 1965 | A |
3321648 | Kolm | May 1967 | A |
3422371 | Poirier et al. | Jan 1969 | A |
3568108 | Poirier et al. | Mar 1971 | A |
3582839 | Pim et al. | Jun 1971 | A |
3590287 | Berlincourt et al. | Jun 1971 | A |
3610969 | Clawson et al. | Oct 1971 | A |
3826931 | Hammond | Jul 1974 | A |
3845402 | Nupp | Oct 1974 | A |
4084217 | Brandli et al. | Apr 1978 | A |
4172277 | Pinson | Oct 1979 | A |
4320365 | Black et al. | Nov 1980 | A |
4272742 | Lewis | Jun 1981 | A |
4281299 | Newbold | Jul 1981 | A |
4344004 | Okubo | Aug 1982 | A |
4355408 | Scarrott | Oct 1982 | A |
4419202 | Gibson | Dec 1983 | A |
4456850 | Inoue et al. | Jun 1984 | A |
4529904 | Hattersley | Jul 1985 | A |
4608541 | Moriwaki et al. | Aug 1986 | A |
4625138 | Ballato | Nov 1986 | A |
4633285 | Hunsinger et al. | Dec 1986 | A |
4640756 | Wang et al. | Feb 1987 | A |
4719383 | Wang et al. | Jan 1988 | A |
4769272 | Byrne et al. | Sep 1988 | A |
4798990 | Henoch | Jan 1989 | A |
4819215 | Yokoyama et al. | Apr 1989 | A |
4836882 | Ballato | Jun 1989 | A |
4841429 | McClanahan et al. | Jun 1989 | A |
4906840 | Zdeblick et al. | Mar 1990 | A |
4916520 | Kurashima | Apr 1990 | A |
4933743 | Thomas et al. | Jun 1990 | A |
5006478 | Kobayashi et al. | Apr 1991 | A |
5048036 | Scifres et al. | Sep 1991 | A |
5048038 | Brennan et al. | Sep 1991 | A |
5066925 | Freitag | Nov 1991 | A |
5075641 | Weber et al. | Dec 1991 | A |
5067959 | Omori et al. | Feb 1992 | A |
5111157 | Komiak | May 1992 | A |
5118982 | Inoue et al. | Jun 1992 | A |
5129132 | Zdeblick et al. | Jul 1992 | A |
5162691 | Mariani et al. | Nov 1992 | A |
5166646 | Avanic et al. | Nov 1992 | A |
5185589 | Krishnaswamy et al. | Feb 1993 | A |
5214392 | Kobayashi et al. | May 1993 | A |
5233259 | Krishnaswamy et al. | Aug 1993 | A |
5241209 | Sasaki | Aug 1993 | A |
5241456 | Marcinkiewicz et al. | Aug 1993 | A |
5262347 | Sands | Nov 1993 | A |
5270492 | Fukui | Dec 1993 | A |
5294898 | Dworsky et al. | Mar 1994 | A |
5361077 | Weber | Nov 1994 | A |
5382930 | Stokes et al. | Jan 1995 | A |
5384808 | Van Brunt et al. | Jan 1995 | A |
5448014 | Kong et al. | Sep 1995 | A |
5465725 | Seyed-Boloforosh | Nov 1995 | A |
5475351 | Uematsu et al. | Dec 1995 | A |
5548189 | Williams | Aug 1996 | A |
5567334 | Baker et al. | Oct 1996 | A |
5714917 | Ella | Oct 1996 | A |
5587620 | Ruby et al. | Dec 1996 | A |
5589858 | Kadowaki et al. | Dec 1996 | A |
5594705 | Connor et al. | Jan 1997 | A |
5603324 | Oppelt et al. | Feb 1997 | A |
5616208 | Lee | Apr 1997 | A |
5633574 | Sage | May 1997 | A |
5671242 | Takiguchi et al. | Sep 1997 | A |
5692279 | Mang et al. | Dec 1997 | A |
5698928 | Mang et al. | Dec 1997 | A |
5704037 | Chen | Dec 1997 | A |
5705877 | Shimada | Jan 1998 | A |
5729008 | Blalock et al. | Mar 1998 | A |
5789845 | Wadaka et al. | Aug 1998 | A |
5817446 | Lammert | Oct 1998 | A |
5825092 | Delgado et al. | Oct 1998 | A |
5835142 | Nakamura et al. | Nov 1998 | A |
5853601 | Krishnaswamy et al. | Dec 1998 | A |
5864261 | Weber | Jan 1999 | A |
5866969 | Shimada et al. | Feb 1999 | A |
5872493 | Ella | Feb 1999 | A |
5873153 | Ruby et al. | Feb 1999 | A |
5873154 | Ylilammi et al. | Feb 1999 | A |
5894184 | Furuhashi et al. | Apr 1999 | A |
5894647 | Lakin | Apr 1999 | A |
5910756 | Ella | Jun 1999 | A |
5932953 | Drees et al. | Aug 1999 | A |
5936150 | Kobrin et al. | Aug 1999 | A |
5953479 | Zhou et al. | Sep 1999 | A |
5955926 | Uda et al. | Sep 1999 | A |
5962787 | Okada et al. | Oct 1999 | A |
5969463 | Tomita | Nov 1999 | A |
5982297 | Welle | Nov 1999 | A |
6001664 | Swirhun et al. | Dec 1999 | A |
6016052 | Vaughn | Jan 2000 | A |
6040962 | Kanazawa et al. | Mar 2000 | A |
6051907 | Ylilammi | Apr 2000 | A |
6060818 | Ruby et al. | May 2000 | A |
6114795 | Tajima et al. | May 2000 | A |
6087198 | Panasik | Jul 2000 | A |
6090687 | Merchant et al. | Jul 2000 | A |
6099700 | Lee et al. | Aug 2000 | A |
6107721 | Lakin | Aug 2000 | A |
6111341 | Hirama | Aug 2000 | A |
6111480 | lyama et al. | Aug 2000 | A |
6118181 | Merchant et al. | Sep 2000 | A |
6124678 | Bishop et al. | Sep 2000 | A |
6124756 | Yaklin et al. | Sep 2000 | A |
6131256 | Dydyk | Oct 2000 | A |
6150703 | Cushman et al. | Nov 2000 | A |
6187513 | Katakura | Feb 2001 | B1 |
6198208 | Yano et al. | Mar 2001 | B1 |
6215375 | Larson et al. | Apr 2001 | B1 |
6219032 | Rosenberg et al. | Apr 2001 | B1 |
6219263 | Wuidart | Apr 2001 | B1 |
6228675 | Ruby et al. | May 2001 | B1 |
6229247 | Bishop | May 2001 | B1 |
6252229 | Hays et al. | Jun 2001 | B1 |
6262600 | Haigh et al. | Jul 2001 | B1 |
6263735 | Nakatani et al. | Jul 2001 | B1 |
6265246 | Ruby et al. | Jul 2001 | B1 |
6278342 | Ella | Aug 2001 | B1 |
6284121 | Reid | Sep 2001 | B1 |
6292336 | Horng et al. | Sep 2001 | B1 |
6306755 | Zheng | Oct 2001 | B1 |
6307447 | Barber et al. | Oct 2001 | B1 |
6307761 | Nakagawa | Oct 2001 | B1 |
6335548 | Roberts et al. | Jan 2002 | B1 |
6355498 | Chan et al. | Mar 2002 | B1 |
6366006 | Boyd | Apr 2002 | B1 |
6376280 | Ruby et al. | Apr 2002 | B1 |
6377137 | Ruby | Apr 2002 | B1 |
6384697 | Ruby | May 2002 | B1 |
6396200 | Misu et al. | May 2002 | B2 |
6407649 | Tikka et al. | Jun 2002 | B1 |
6414569 | Nakafuku | Jul 2002 | B1 |
6420820 | Larson | Jul 2002 | B1 |
6424237 | Ruby et al. | Jul 2002 | B1 |
6429511 | Ruby et al. | Aug 2002 | B2 |
6434030 | Rehm et al. | Aug 2002 | B1 |
6437482 | Shibata | Aug 2002 | B1 |
6441539 | Kitamura et al. | Aug 2002 | B1 |
6441702 | Ella et al. | Aug 2002 | B1 |
6462631 | Bradley et al. | Oct 2002 | B2 |
6466105 | Lobl et al. | Oct 2002 | B1 |
6466418 | Horng et al. | Oct 2002 | B1 |
6469597 | Ruby et al. | Oct 2002 | B2 |
6469909 | Simmons | Oct 2002 | B2 |
6472954 | Ruby et al. | Oct 2002 | B1 |
6476536 | Pensala | Nov 2002 | B1 |
6479320 | Gooch | Nov 2002 | B1 |
6483229 | Larson et al. | Nov 2002 | B2 |
6486751 | Barber et al. | Nov 2002 | B1 |
6489688 | Baumann et al. | Dec 2002 | B1 |
6492883 | Liang et al. | Dec 2002 | B2 |
6496085 | Ella et al. | Dec 2002 | B2 |
6498604 | Jensen | Dec 2002 | B1 |
6507983 | Ruby et al. | Jan 2003 | B1 |
6515558 | Ylilammi | Feb 2003 | B1 |
6518860 | Ella et al. | Feb 2003 | B2 |
6525996 | Miyazawa | Feb 2003 | B1 |
6528344 | Kang | Mar 2003 | B2 |
6530515 | Glenn et al. | Mar 2003 | B1 |
6534900 | Aigner et al. | Mar 2003 | B2 |
6542055 | Frank et al. | Apr 2003 | B1 |
6548942 | Panasik | Apr 2003 | B1 |
6548943 | Kaitila et al. | Apr 2003 | B2 |
6549394 | Williams | Apr 2003 | B1 |
6550664 | Bradley et al. | Apr 2003 | B2 |
6559487 | Kang et al. | May 2003 | B1 |
6559530 | Hinzel et al. | May 2003 | B2 |
6564448 | Oura et al. | May 2003 | B1 |
6566956 | Ohnishi et al. | May 2003 | B2 |
6566979 | Larson et al. | May 2003 | B2 |
6580159 | Fusaro et al. | Jun 2003 | B1 |
6583374 | Knieser et al. | Jun 2003 | B2 |
6583688 | Klee et al. | Jun 2003 | B2 |
6593870 | Dummermuth et al. | Jul 2003 | B2 |
6594165 | Duerbaum et al. | Jul 2003 | B2 |
6600390 | Frank | Jul 2003 | B2 |
6601276 | Barber | Aug 2003 | B2 |
6603182 | Low et al. | Aug 2003 | B1 |
6607934 | Chang et al. | Aug 2003 | B2 |
6617249 | Ruby et al. | Sep 2003 | B2 |
6617750 | Dummermuth et al. | Sep 2003 | B2 |
6617751 | Sunwoo et al. | Sep 2003 | B2 |
6621137 | Ma et al. | Sep 2003 | B1 |
6630753 | Malik et al. | Oct 2003 | B2 |
6635509 | Ouellet | Oct 2003 | B1 |
6639872 | Rein | Oct 2003 | B1 |
6651488 | Larson et al. | Nov 2003 | B2 |
6657363 | Aigner | Dec 2003 | B1 |
6668618 | Larson et al. | Dec 2003 | B2 |
6670866 | Ella et al. | Dec 2003 | B2 |
6677929 | Gordon et al. | Jan 2004 | B2 |
6693500 | Yang et al. | Feb 2004 | B2 |
6710508 | Ruby et al. | Mar 2004 | B2 |
6710681 | Figueredo et al. | Mar 2004 | B2 |
6713314 | Wong et al. | Mar 2004 | B2 |
6714102 | Ruby et al. | Mar 2004 | B2 |
6720844 | Lakin | Apr 2004 | B1 |
6720846 | Iwashita et al. | Apr 2004 | B2 |
6724266 | Piazza et al. | Apr 2004 | B2 |
6738267 | Navas Sabater et al. | May 2004 | B1 |
6750593 | Iwata | Jun 2004 | B2 |
6774746 | Whatmore et al. | Aug 2004 | B2 |
6777263 | Gan et al. | Aug 2004 | B1 |
6787048 | Bradley et al. | Sep 2004 | B2 |
6788170 | Kaitila et al. | Sep 2004 | B1 |
6803835 | Frank | Oct 2004 | B2 |
6812619 | Kaitila et al. | Nov 2004 | B1 |
6820469 | Adkins et al. | Nov 2004 | B1 |
6828713 | Bradley et al. | Dec 2004 | B2 |
6842088 | Yamada et al. | Jan 2005 | B2 |
6842089 | Lee | Jan 2005 | B2 |
6849475 | Kim | Feb 2005 | B2 |
6853534 | Williams | Feb 2005 | B2 |
6861920 | Ishikawa et al. | Mar 2005 | B2 |
6872931 | Liess et al. | Mar 2005 | B2 |
6873065 | Haigh et al. | Mar 2005 | B2 |
6873529 | Ikuta | Mar 2005 | B2 |
6874211 | Bradley et al. | Apr 2005 | B2 |
6874212 | Larson | Apr 2005 | B2 |
6888424 | Takeuchi et al. | May 2005 | B2 |
6900705 | Nakamura et al. | May 2005 | B2 |
6903452 | Ma et al. | Jun 2005 | B2 |
6906451 | Yamada et al. | Jun 2005 | B2 |
6911708 | Park | Jun 2005 | B2 |
6917261 | Unterberger | Jul 2005 | B2 |
6924583 | Lin et al. | Aug 2005 | B2 |
6924717 | Ginsburg et al. | Aug 2005 | B2 |
6927651 | Larson, III et al. | Aug 2005 | B2 |
6936837 | Yamada et al. | Aug 2005 | B2 |
6936928 | Hedler et al. | Aug 2005 | B2 |
6936954 | Peczalski | Aug 2005 | B2 |
6941036 | Lucero | Sep 2005 | B2 |
6943647 | Aigner et al. | Sep 2005 | B2 |
6943648 | Maiz et al. | Sep 2005 | B2 |
6946928 | Larson et al. | Sep 2005 | B2 |
6954121 | Bradley et al. | Oct 2005 | B2 |
6963257 | Ella et al. | Nov 2005 | B2 |
6970365 | Turchi | Nov 2005 | B2 |
6975183 | Aigner et al. | Dec 2005 | B2 |
6977563 | Komuro et al. | Dec 2005 | B2 |
6985051 | Nguyen et al. | Jan 2006 | B2 |
6985052 | Tikka | Jan 2006 | B2 |
6987433 | Larson, III et al. | Jan 2006 | B2 |
6989723 | Komuro et al. | Jan 2006 | B2 |
6998940 | Metzger | Feb 2006 | B2 |
7002437 | Takeuchi et al. | Feb 2006 | B2 |
7019604 | Gotoh et al. | Mar 2006 | B2 |
7019605 | Larson | Mar 2006 | B2 |
7026876 | Esfandiari et al. | Apr 2006 | B1 |
7053456 | Matsuo | May 2006 | B2 |
7057476 | Hwu | Jun 2006 | B2 |
7057478 | Korden et al. | Jun 2006 | B2 |
7064606 | Louis | Jun 2006 | B2 |
7084553 | Ludwiczak | Aug 2006 | B2 |
7091649 | Larson, III et al. | Aug 2006 | B2 |
7098758 | Wang et al. | Aug 2006 | B2 |
7102460 | Schmidhammer et al. | Sep 2006 | B2 |
7109826 | Ginsburg et al. | Sep 2006 | B2 |
7128941 | Lee | Oct 2006 | B2 |
7129806 | Sato | Oct 2006 | B2 |
7138889 | Lakin | Nov 2006 | B2 |
7161448 | Feng et al. | Jan 2007 | B2 |
7170215 | Namba et al. | Jan 2007 | B2 |
7173504 | Larson et al. | Feb 2007 | B2 |
7187254 | Su et al. | Mar 2007 | B2 |
7199683 | Liu | Apr 2007 | B2 |
7209374 | Noro | Apr 2007 | B2 |
7212083 | Inoue et al. | May 2007 | B2 |
7212085 | Wu | May 2007 | B2 |
7230509 | Stoemmer | Jun 2007 | B2 |
7230511 | Onishi et al. | Jun 2007 | B2 |
7233218 | Park et al. | Jun 2007 | B2 |
6262637 | Bradley et al. | Jul 2007 | B1 |
7242270 | Larson et al. | Jul 2007 | B2 |
7259498 | Nakatsuka et al. | Aug 2007 | B2 |
7268647 | Sano et al. | Sep 2007 | B2 |
7275292 | Ruby et al. | Oct 2007 | B2 |
7276994 | Takeuchi et al. | Oct 2007 | B2 |
7280007 | Feng et al. | Oct 2007 | B2 |
7281304 | Kim et al. | Oct 2007 | B2 |
7294919 | Bai | Nov 2007 | B2 |
7301258 | Tanaka | Nov 2007 | B2 |
7310861 | Aigner et al. | Dec 2007 | B2 |
7313255 | Machida et al. | Dec 2007 | B2 |
7332985 | Larson et al. | Feb 2008 | B2 |
7345410 | Grannen et al. | Mar 2008 | B2 |
7358831 | Larson et al. | Apr 2008 | B2 |
7367095 | Larson et al. | May 2008 | B2 |
7368857 | Tanaka | May 2008 | B2 |
7369013 | Fazzio et al. | May 2008 | B2 |
7377168 | Liu | May 2008 | B2 |
7385467 | Stoemmer et al. | Jun 2008 | B2 |
7388318 | Yamada et al. | Jun 2008 | B2 |
7388454 | Ruby et al. | Jun 2008 | B2 |
7388455 | Larson | Jun 2008 | B2 |
7391286 | Jamneala et al. | Jun 2008 | B2 |
7400217 | Larson et al. | Jul 2008 | B2 |
7408428 | Larson | Aug 2008 | B2 |
7414349 | Sasaki | Aug 2008 | B2 |
7414495 | Iwasaki et al. | Aug 2008 | B2 |
7420320 | Sano et al. | Sep 2008 | B2 |
7423503 | Larson et al. | Sep 2008 | B2 |
7425787 | Larson | Sep 2008 | B2 |
7439824 | Aigner | Oct 2008 | B2 |
7463118 | Jacobsen | Dec 2008 | B2 |
7466213 | Lobl et al. | Dec 2008 | B2 |
7482737 | Yamada et al. | Jan 2009 | B2 |
7508286 | Ruby et al. | Mar 2009 | B2 |
7515018 | Handtmann et al. | Apr 2009 | B2 |
7535324 | Fattinger et al. | May 2009 | B2 |
7545532 | Muramoto | Jun 2009 | B2 |
7561009 | Larson et al. | Jul 2009 | B2 |
7576471 | Solai | Aug 2009 | B1 |
7602101 | Hara et al. | Oct 2009 | B2 |
7619493 | Uno et al. | Nov 2009 | B2 |
7629865 | Ruby | Dec 2009 | B2 |
7642693 | Akiyama et al. | Jan 2010 | B2 |
7655963 | Sadaka et al. | Feb 2010 | B2 |
7684109 | Godshalk et al. | Mar 2010 | B2 |
7714684 | Ruby et al. | May 2010 | B2 |
7768364 | Hart et al. | Aug 2010 | B2 |
7791434 | Fazzio et al. | Sep 2010 | B2 |
7795781 | Barber et al. | Sep 2010 | B2 |
7889024 | Bradley et al. | Feb 2011 | B2 |
8188810 | Fazzio et al. | May 2012 | B2 |
8248185 | Choy et al. | Aug 2012 | B2 |
8283999 | Elbrecht et al. | Oct 2012 | B2 |
8507919 | Ishikura | Aug 2013 | B2 |
8575820 | Shirakawa et al. | Nov 2013 | B2 |
8673121 | Larson et al. | Mar 2014 | B2 |
8872604 | Burak et al. | Oct 2014 | B2 |
8930301 | Traupman et al. | Jan 2015 | B2 |
9136818 | Burak et al. | Sep 2015 | B2 |
9136819 | Grannen et al. | Sep 2015 | B2 |
9154112 | Burak | Oct 2015 | B2 |
20010026951 | Vergani et al. | Oct 2001 | A1 |
20020000646 | Gooch et al. | Jan 2002 | A1 |
20020063497 | Panasik | May 2002 | A1 |
20020070463 | Chang et al. | Jun 2002 | A1 |
20020126517 | Matsukawa et al. | Sep 2002 | A1 |
20020140520 | Hikita et al. | Oct 2002 | A1 |
20020190814 | Yamada et al. | Dec 2002 | A1 |
20030001251 | Cheever et al. | Jan 2003 | A1 |
20030006502 | Karpman | Jan 2003 | A1 |
20030011285 | Ossman | Jan 2003 | A1 |
20030011446 | Bradley | Jan 2003 | A1 |
20030051550 | Nguyen et al. | Mar 2003 | A1 |
20030087469 | Ma | May 2003 | A1 |
20030102776 | Takeda et al. | Jun 2003 | A1 |
20030111439 | Fetter et al. | Jun 2003 | A1 |
20030132493 | Kang et al. | Jul 2003 | A1 |
20030132809 | Senthilkumar et al. | Jul 2003 | A1 |
20030141946 | Ruby et al. | Jul 2003 | A1 |
20030155574 | Doolittle | Aug 2003 | A1 |
20030179053 | Aigner et al. | Sep 2003 | A1 |
20040016995 | Kuo et al. | Jan 2004 | A1 |
20040017130 | Wang et al. | Jan 2004 | A1 |
20040056735 | Nomura et al. | Mar 2004 | A1 |
20040092234 | Pohjonen | May 2004 | A1 |
20040099898 | Grivna et al. | May 2004 | A1 |
20040129079 | Kato et al. | Jul 2004 | A1 |
20040150296 | Park et al. | Aug 2004 | A1 |
20040166603 | Carley | Aug 2004 | A1 |
20040195937 | Shogo Matsubara et al. | Oct 2004 | A1 |
20040257171 | Park et al. | Dec 2004 | A1 |
20050012716 | Mikulin et al. | Jan 2005 | A1 |
20050023931 | Bouche et al. | Feb 2005 | A1 |
20050036604 | Scott et al. | Feb 2005 | A1 |
20050082626 | Leedy | Apr 2005 | A1 |
20050093396 | Larson et al. | May 2005 | A1 |
20050093655 | Larson et al. | May 2005 | A1 |
20050093657 | Larson et al. | May 2005 | A1 |
20050093658 | Larson et al. | May 2005 | A1 |
20050167795 | Higashi | Aug 2005 | A1 |
20050206271 | Higuchi et al. | Sep 2005 | A1 |
20050206479 | Nguyen et al. | Sep 2005 | A1 |
20050206483 | Pashby et al. | Sep 2005 | A1 |
20050248232 | Itaya et al. | Nov 2005 | A1 |
20050269904 | Oka | Dec 2005 | A1 |
20060017352 | Tanielian | Jan 2006 | A1 |
20060071736 | Ruby et al. | Apr 2006 | A1 |
20060081048 | Mikado et al. | Apr 2006 | A1 |
20060087199 | Larson et al. | Apr 2006 | A1 |
20060103492 | Feng et al. | May 2006 | A1 |
20060119453 | Fattinger et al. | Jun 2006 | A1 |
20060121686 | Wei et al. | Jun 2006 | A1 |
20060125489 | Feucht et al. | Jun 2006 | A1 |
20060132262 | Fazzio et al. | Jun 2006 | A1 |
20060160353 | Gueneau de Mussy et al. | Jul 2006 | A1 |
20060164183 | Tikka et al. | Jul 2006 | A1 |
20060164186 | Stoemmer et al. | Jul 2006 | A1 |
20060197411 | Hoen et al. | Sep 2006 | A1 |
20060238070 | Costa et al. | Oct 2006 | A1 |
20060284707 | Larson et al. | Dec 2006 | A1 |
20060290446 | Aigner et al. | Dec 2006 | A1 |
20070035364 | Sridhar et al. | Feb 2007 | A1 |
20070037311 | Izumi et al. | Feb 2007 | A1 |
20070085213 | Anh et al. | Apr 2007 | A1 |
20070085632 | Larson et al. | Apr 2007 | A1 |
20070086080 | Larson et al. | Apr 2007 | A1 |
20070086274 | Nishimura et al. | Apr 2007 | A1 |
20070090892 | Larson | Apr 2007 | A1 |
20070170815 | Unkrich | Jul 2007 | A1 |
20070171002 | Unkrich | Jul 2007 | A1 |
20070176710 | Jamneala et al. | Aug 2007 | A1 |
20070205850 | Jamneala et al. | Sep 2007 | A1 |
20070279153 | Ruby | Dec 2007 | A1 |
20080055020 | Handtmann et al. | Mar 2008 | A1 |
20080297278 | Handtmann et al. | Dec 2008 | A1 |
20080297279 | Thalhammer et al. | Dec 2008 | A1 |
20080297280 | Thalhammer et al. | Dec 2008 | A1 |
20090064498 | Mok et al. | Mar 2009 | A1 |
20090079302 | Wall et al. | Mar 2009 | A1 |
20090096550 | Handtmann et al. | Apr 2009 | A1 |
20090127978 | Asai et al. | May 2009 | A1 |
20090153268 | Milson et al. | Jun 2009 | A1 |
20100013573 | Umeda | Jan 2010 | A1 |
20100052176 | Kamada et al. | Mar 2010 | A1 |
20100052815 | Bradley et al. | Mar 2010 | A1 |
20100091370 | Mahrt et al. | Apr 2010 | A1 |
20100102358 | Lanzien et al. | Apr 2010 | A1 |
20100148637 | Satou | Jul 2010 | A1 |
20100176899 | Schaufele et al. | Jul 2010 | A1 |
20100180391 | Larson et al. | Jul 2010 | A1 |
20100187948 | Sinha et al. | Jul 2010 | A1 |
20100187949 | Sinha et al. | Jul 2010 | A1 |
20100260453 | Block | Oct 2010 | A1 |
20100327994 | Choy et al. | Dec 2010 | A1 |
20120218056 | Burak | Feb 2011 | A1 |
20120218055 | Burak et al. | Mar 2011 | A1 |
20110092067 | Bonilla et al. | Apr 2011 | A1 |
20110121689 | Grannen et al. | May 2011 | A1 |
20110180391 | Larson et al. | Jul 2011 | A1 |
20110204997 | Elbrecht et al. | Aug 2011 | A1 |
20110266917 | Metzger et al. | Nov 2011 | A1 |
20120177816 | Larson et al. | Jul 2012 | A1 |
20120248941 | Shirakawa et al. | Oct 2012 | A1 |
20120326807 | Choy et al. | Dec 2012 | A1 |
20130003377 | Sakai et al. | Jan 2013 | A1 |
20130106534 | Burak et al. | May 2013 | A1 |
20130127300 | Umeda et al. | May 2013 | A1 |
20130221454 | Dunbar et al. | Aug 2013 | A1 |
20130334625 | Lin | Dec 2013 | A1 |
20140118089 | Bradley et al. | May 2014 | A1 |
20140132117 | Larson et al. | May 2014 | A1 |
20150311046 | Yeh et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
101170303 | Apr 2008 | CN |
10239317 | Mar 2004 | DE |
231892 | Aug 1987 | EP |
0637875 | Feb 1995 | EP |
0689254 | Dec 1995 | EP |
0865157 | Sep 1998 | EP |
880227 | Nov 1998 | EP |
1047189 | Oct 2000 | EP |
1096259 | May 2001 | EP |
1100196 | May 2001 | EP |
1180494 | Feb 2002 | EP |
1249932 | Oct 2002 | EP |
1258989 | Nov 2002 | EP |
1258990 | Nov 2002 | EP |
1517443 | Mar 2005 | EP |
1517444 | Mar 2005 | EP |
1528674 | May 2005 | EP |
1528675 | May 2005 | EP |
1528676 | May 2005 | EP |
1528677 | May 2005 | EP |
1542362 | Jun 2005 | EP |
1557945 | Jul 2005 | EP |
1575165 | Sep 2005 | EP |
0973256 | Sep 2006 | EP |
2299593 | Mar 2011 | EP |
1207974 | Oct 1970 | GB |
2013343 | Aug 1979 | GB |
2411239 | Aug 2005 | GB |
2418791 | Apr 2006 | GB |
2427773 | Jan 2007 | GB |
359023612 | Feb 1984 | JP |
61054686 | Mar 1986 | JP |
62109419 | May 1987 | JP |
62200813 | Sep 1987 | JP |
1295512 | Nov 1989 | JP |
210907 | Jan 1990 | JP |
06005944 | Jan 1994 | JP |
8330878 | Dec 1996 | JP |
09027729 | Jan 1997 | JP |
983029 | Mar 1997 | JP |
1032456 | Feb 1998 | JP |
10173479 | Jun 1998 | JP |
2000031552 | Jan 2000 | JP |
2000232334 | Aug 2000 | JP |
2000295065 | Oct 2000 | JP |
2000332568 | Nov 2000 | JP |
2001102901 | Apr 2001 | JP |
2001508630 | Jun 2001 | JP |
2002217676 | Aug 2002 | JP |
2003017964 | Jan 2003 | JP |
2003017974 | Jan 2003 | JP |
2003505905 | Feb 2003 | JP |
2003505906 | Feb 2003 | JP |
2000076295 | Mar 2003 | JP |
2003124779 | Apr 2003 | JP |
2003332872 | Nov 2003 | JP |
2006109472 | Apr 2006 | JP |
2006295924 | Oct 2006 | JP |
2006319796 | Nov 2006 | JP |
2007006501 | Jan 2007 | JP |
2007028669 | Feb 2007 | JP |
2007295306 | Nov 2007 | JP |
20030048917 | Jun 2003 | KR |
100806504 | Feb 2008 | KR |
WO9816957 | Apr 1998 | WO |
WO9838736 | Sep 1998 | WO |
WO9856049 | Dec 1998 | WO |
WO9937023 | Jul 1999 | WO |
WO0106646 | Jan 2001 | WO |
WO0106647 | Jan 2001 | WO |
WO0199276 | Dec 2001 | WO |
WO02103900 | Dec 2002 | WO |
WO03030358 | Apr 2003 | WO |
WO03043188 | May 2003 | WO |
WO03050950 | Jun 2003 | WO |
WO03058809 | Jul 2003 | WO |
W02004034579 | Apr 2004 | WO |
W02004051744 | Jun 2004 | WO |
W02004102688 | Nov 2004 | WO |
W02005043752 | May 2005 | WO |
W02005043753 | May 2005 | WO |
W02005043756 | May 2005 | WO |
W02006018788 | Feb 2006 | WO |
Entry |
---|
Chen, “Fabrication and Characterization of ALN Thin Film Bulk Acoustic Wave Resonator” Dissertation, University of Pittsburgh School of Engineering, 2006. |
Martin, et al. “Re-growth of c-axis oriented AIN thin films”, IEEE Ultrasonics Symposium, 2006, p. 169-172. |
Martin, et al. “Shear Mode Coupling and Tilted Gram Growth of AIN Thin Films in BAW Resonators”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Jul. 2006, p. 1339-1343, vol. 53, No. 7. |
Co-pending Application No. 13/161,946, filed Jun. 16, 2011. |
Machine Translation of JP2003505905 published Feb. 12, 2003. |
Machine Translation of JP2003505906 published Feb. 12, 2003. |
Machine Translation of WO2004034579 published Apr. 22, 2004. |
Machine Translation of WO2004102688 published Nov. 25, 2004. |
Machine Translation of JP2006109472 published Apr. 20, 2006. |
Machine Translation of JP2006295924 published Oct. 26, 2006. |
Machine Translation of JP2007028669 published Feb. 1, 2007. |
Machine Translation of JP2007006501 published Jan. 11, 2007. |
Machine Translation of JP2006319796 published Nov. 11, 2006. |
Machine Translation of JP2007295306 published Nov. 8, 2007. |
Machine Translation of WO9838736 published Sep. 3, 1998. |
Machine Translation of JP983029 published Mar. 28, 1997. |
Machine Translation of JP8330878 published Dec. 13, 1996. |
A partial copy of GB search report for Application No. GB0525884.3 Feb. 2, 2006, 4 pages. |
British search report Application No. GB0605222.9 Jul. 11, 2006. |
Examination report corresponding to application No. GB0605770.7 Aug. 25, 2006. |
Examination report from UK for application GB0605971.1 Aug. 24, 2006. |
Search report for Great Britain patent application No. 0617742.2 Dec. 13, 2006. |
Search report for Great Britain Patent Application No. 0617742.2 Mar. 29, 2007. |
Search report from corresponding application No. GB0605225.2 Jun. 26, 2006. |
Search report from Corresponding Application No. GB0620152.9 Nov. 15, 2006. |
Search report from Corresponding Application No. GB0620653.6 Nov. 17, 2006. |
Search report from Corresponding Application No. GB0620655.1 Nov. 17, 2006. |
Search report from Corresponding Application No. GB0620657.7 Nov. 23, 2006. |
Examination report from Corresponding Application No. GB0605779.8 Aug. 23, 2006. |
Search report in the Great Britain Patent Application No. GB0619698.4 Nov. 30, 2006. |
Akiyama, et al., “Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering”, Advanced Materials, vol. 21, 2009, pp. 593-596. |
Al-Ahmad, et al., “Piezoelectric-Based Tunable Microstrip Shunt Resonator”, Proceedings of Asia-Pacific Microwave Conference, 2006. |
Aoyama, et al., “Diffusion of Boron, Phosphorus, Arsenic and Antimony in Thermally Grown SiliconDioxide”, Journal of Electrochemical Society, vol. 146 (5), pp. 1879-1883, 1999. |
Auld, “Acoustic Resonators”, Acoustic Fields and Waves in Solids, Second Edition, vol. 2, 1990, pp. 250-259. |
Bauer, et al., “Properties of Silicon Implanted with Boron Ions through Thermal Silicon Dioxide”, Solid State Electronics, vol. 16, No. 3, 1973, pp. 289-300. |
Bi, et al., “Bulk Acoustic Wave RF Technology”, IEEE Microwave Magazine, vol. 9, Issue 5, 2008, pp. 65-80. |
Choi, et al., “Design of Half-Bridge Piezo-Transformer Converters in the AC Adapter Applications”, APEC 2005, IEEE, Mar. 2005, pp. 244-248. |
Coombs, “Electronic Instrument Handbook”, Second Edition, McGraw-Hill Inc., 1995, pp. 5.1-5.29. |
C-S Lee, et al., “Copper-Airbridged Low-Noise GaAs PHEMT with Ti/Wnx/Ti Diffusion Barrier for High-Frequency Applications” IEEE Transactions on Electron Devices, vol. 53, Issue 8, 2006, pp. 1753-1758. |
Denisse, et al., “Plasma-Enhanced Growth and Composition of Silicon Oxynitride Films”, Journal of Applied Physics, vol. 60, No. 7, Oct. 1, 1986, pp. 2536-2542. |
Fattinger, et al., “Coupled Bulk Acoustic Wave Resonator Filters: Key technology for single-to-balanced RF filters”, IEEE MTT-S Digest, 2004, pp. 927-929. |
Fattinger, et al., “Single-to-balance Filters for Mobile Phones Using Coupled Resonator BAW Technology”, 2004 IEEE Ultrasonics Symposium, Aug. 2004, pp. 416-419. |
Fattinger, et al., “Spurious Mode Suppression in Coupled Resonator Filters”, IEEE MTT-S International Microwave Symposium Digest, 2005, pp. 409-412. |
Gilbert, “An Ultra-Miniature, Low Cost Single Ended to Differential Filter for ISM Band Applications”, Microwave Symposium Digest, 2008 IEEE MTT-S, Jun. 2008, pp. 839-842. |
Grill, et al., “Ultralow-K Dielectrics Prepared by Plasma-Enhanced Chemical Vapor Deposition”, Applied Physics Letters, vol. 79, 2001, pp. 803-805. |
Hadimioglu et al., “Polymer Films as Acoustic Matching Layers”, 1990 IEEE Ultrasonics Symposium Proceedings, vol. 3, Dec. 1990, pp. 1337-1340. |
Hara, “Surface Treatment of Quartz Oscillator Plate by Ion Implantation”, Oyo Buturi, vol. 47, No. 2, Feb. 1978, pp. 145-146. |
Holzlohner et al., “Accurate Calculation of Eye Diagrams and Bit Error Rates in Optical Transmission Systems Using Linearization”, Journal of Lightwave Technology, vol. 20, No. 3, Mar. 2002, pp. 389-400. |
lvensky, et al., “A Comparison of Piezoelectric Transformer AC/DC Converters with Current Doubler and voltage Doubler Rectifiers”, IEEE Transactions on Power Electronics, vol. 19, No. 6, Nov. 2004. |
Jamneala, et al., “Coupled Resonator Filter with Single-Layer Acoustic Coupler”, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, Oct. 2008, pp. 2320-2326. |
Jamneala, et al., “Ultra-Miniature Coupled Resonator Filter with Single-Layer Acoustic Coupler”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, No. 11, Nov. 2009, pp. 2553-2558. |
Jiang, et al., “A Novel Single-Phase Power Factor Correction Scheme”, IEEE, 1993, pp. 297-292. |
Jung, et al., “Experimental and Theoretical Investigation on the Relationship Between AIN Properties and AIN-Based FBAR Characteristics”, 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum Sep. 3, 2003, pp. 779-784. |
Kaitila, et al., “Measurement of Acoustical Parameters of Thin Films”, 2006 IEEE Ultrasonics Symposium, Oct. 2006, pp. 464-467. |
Spangenberg et al., “Dependence of the Layer of Resistance of Boron Implantation in Silicon and the Annealing Conditions”, Comptus Rendus de l'Academic Bulgares des Sciences, vol. 33, No. 3, 1980, pp. 325-327. |
Tas, et al., “Reducing Anchor Loss in Micromechanical Extensional Mode Resonators”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 57, No. 2, Feb. 2010, pp. 448-454. |
Thomsen, et al., “Surface Generation and Detection of Phonons by Picosecond Light Pulses”, Physical Review B, vol. 34, No. 6, Sep. 15 1986, pp. 4129-4138. |
Tiersten, et al., “An Analysis of Thickness-Extensional Trapped Energy Resonant Device Structures with Rectangular Electrodes in the Piezoelectric Thin Film on Silicon Configuration”, Journal of Applied Physics, 54 (10), Oct. 1983, pp. 5893-5910. |
Topich, et al., “Effects of Ion Implanted Fluorine in Silicon Dioxide”, Nuclear Instr. And Methods, Cecon Rec, Cleveland OH, May 1978, pp. 70-73. |
Tsubbouchi, et al., “Zero Temperature coefficient Surface Acoustic Wave Devices using Epitaxial AIN Films”, IEEE Ultrasonics Symposium, San Diego CA, 1982, pp. 240-245. |
Vasic, et al., “A New Method to Design Piezoelectric Transformer Used in MOSFET & IGBT Drive Circuits”, IEEE 34th Annual Power Electronics Specialists Conference, 2003, vol. 1, Jun. 15-19, 2003, pp. 307-312. |
Vasic, et al., “A New MOSFET & IGBT Gate Drive Insulated by a Piezoelectric Transformer”, IEEE 32nd Annual Power Electronics Specialists Conference, vol. 3, 2001, pp. 1479-1484. |
Yanagitani, et al., “Giant Shear Mode Electromechanical Coupling Coefficient k15 in C-Axis Tilted ScAIN Films”, IEEE International Ultrasonics Symposium, Oct. 2010, pp. 2095-2098. |
Yang, et al., “Highly C Axis Oriented AIN Film Using Mocvd for 5GHx Band FBAR Filter”, 2003 IEEE Ultrasonics Symposium, Oct. 5, 2003, pp. 170-173. |
Pensala, et al., “Spurious resonance suppression in gigahertz-range ZnO thin-film bulk acoustic wave resonators by the boundary frame method:modeling and experiment”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, No. 8, Aug. 2009, pp. 1731-1744. |
Lynch, “Precise Measurements on Dielectric and Magnetic Materials”, IEEE Transactions on Instrumentation and Measurement, vol. IM-23, No. 4, Dec. 1974, pp. 425-431. |
Ranjan, et al., “Strained Hexagonal ScN: A Material with Unusual Structural and Optical Properties”, Physical Review Letters, vol. 90, No. 25, Jun. 27, 2003. |
Farrer, et al., “Properties of Hexagonal ScN versus wurtzite GaN and InN”, Physical Review B 66, Nov. 20, 2002. |
Constantin, et al., “Composition-dependent structural properties in ScGaN alloy films: a combined experimental and theoretical study”, Journal of Applied Physics, vol. 98, Dec. 16, 2005. |
Suzuki, et al., “Influence of shadowing effect on shear mode acoustic properties in the c-axis tilted AI films”, IEEE Ultrasonics Symposium, Oct. 2010, pp. 1478-1481. |
Krishnaswamy, et al., “Film Bulk Acoustic Wave Resonator Technology”, 1990 Ultrasonics Symposium, May 29, 1990, pp. 529-536. |
Machine translation of JP2003332872 published Nov. 21, 2003. |
A partial copy of GB search report for Application No. GB0522393.8 Jan. 9, 2006, 4 pages. |
Lakin, “Bulk Acoustic Wave Coupled Resonator Filters”, 2002 IEEE International Frequency Control Symposium and PDA Exhibition, May 2002, pp. 8-14. |
Machine translation of KR20030048917 published Jun. 25, 2003. |
Machine translation of WO9937023 published Jul. 22, 1999. |
Machine translation of CN101170303 published Apr. 30, 2008. |
Machine translation of WO03030358 published Apr. 10, 2003. |
Machine translation of WO03043188 published May 22, 2003. |
Machine translation of WO03050950 published Jun. 19, 2003. |
Machine translation of DE10239317 published Mar. 11, 2004. |
Machine translation of JP2000232334 published Aug. 22, 2000. |
Machine translation of JP2000295065 published Oct. 20, 2000. |
Machine translation of JP2000031552 published Jan. 28, 2000. |
Machine translation of JP2000332568 published Nov. 30, 2000. |
Machine translation of JP2001102901 published Apr. 13, 2001. |
Machine translation of JP2001508630 published Jun. 26, 2001. |
Machine translation of JP2002217676 published Aug. 2, 2002. |
Machine translation of JP2003017964 published Jan. 17, 2003. |
Machine translation of JP2003124779 published Apr. 25, 2003. |
Machine translation of JP2003017974 published Jan. 17, 2003. |
Machine Translation of KR100806504 published Feb. 21, 2008. |
Machine Translation of WO02103900 published Dec. 27, 2002. |
Machine Translation of JP10173479 published Jun. 26, 1998. |
Machine Translation of KR20020050729 published Jun. 27, 2002. |
Machine Translation of JP2000076295 published Mar. 14, 2003. |
Lakin, “Coupled Resonator Filters”, 2002 IEEE Ultrasonics Symposium, Mar. 2, 2002, pp. 901-908. |
Lakin, et al., “High Performance Stacked Crystal Filters for GPS and Wide Bandwidth Applications”, 2001 IEEE Ultrasonics Symposium, Jan. 1, 2001, pp. 833-838. |
Lakin, et al., “Temperature Compensated Bulk Acoustic Thin Film Resonators”, 2000 IEEE Ultrasonics Symposium San Juan Puerto Rico, Oct. 2000, pp. 855-858. |
Lakin, “Thin Film BAW Filters for Wide Bandwidth and High Performance Applications”, IEEE Microwave Symposium Digest, 2004 MTT-S International, vol. 2, Jun. 6-11 2004, pp. 923-926. |
Lakin, “Thin Film Resonators and Filters”, IEEE Ultrasonics Symposium, Caesar's Tahoe, NV, vol. 2, Oct. 1999, pp. 895-906. |
Lakin, et al., “Wide Bandwidth Thin Film BAW Filters”, 2004 IEEE Ultrasonics, Ferroelectrics, and Frequemcy Control Joint 50th Anniversary Conference, vol. 1, Aug. 2004, pp. 407-410. |
Larson, et al., “Measurement of Effective Kt2,Q,Rp,Rs vs. Temperature for Mo/AIN FBAR Resonators”, IEEE Ultrasonics Symposium, 2002, pp. 939-943. |
Lee, et al., “Optimization of Frame-Like Film Bulk Acoustic Resonators for Suppression of Spurious Lateral Modes Using Finite Element Method”, IEEE Ultrasonics Symposium, vol. 1, 2004, pp. 278-281. |
Li, et al., “AC-DC Converter with Worldwide Range Input Voltage by Series and Parallel Piezoelectric Transformer Connection”, 35th Annual IEEE Power Electronics Specialists Conference, 2004, pp. 2668-2671. |
Lobl, et al., “Piezoelectric Materials for BAW Resonators and Filters”, 2001 IEEE Ultrasonics Symposium, Jan. 1, 2001, pp. 807-811. |
Loboda, “New Solutions for Intermetal Dielectrics Using Trimethylsilane-Based PECVD Processes”, Microelectronics Eng., vol. 50, 2000, pp. 15-23. |
Martin, et al., “Development of a Low Dielectric Constant Polymer for the Fabrication of Integrated Circuit Interconnect”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, No. 7, Jul. 2006, pp. 1339-1343. |
Martinez, et al., “High confinement suspended micro-ring resonators in silicon-on-insulator”, Optics Express, vol. 14, No. 13, Jun. 26, 2006, pp. 6259-6263. |
Navas, et al., “Miniaturised Battery Charger using Piezoelectric Transformers”, Applied Power Electronics Conference and Exposition, 2001 Sixteenth Annual IEEE, vol. 1, pp. 492-496. |
Ng, et al., “The Diffusion Ion-Implated Boron in Silicon Dioxide”, AIP Conf. Proceedings, No. 122, 1984, pp. 20-33. |
Ohta, et al., “Temperature Characteristics of Solidly Mounted Piezoelectric Thin Film Resonators”, IEEE Ultrasonics Symposium, Honolulu HI, Oct. 2003, pp. 2011-2015. |
Pandey, et al., “Anchor Loss Reduction in Resonant MEMS using MESA Structures”, Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok Thailand, Jan. 16-19, 2007, pp. 880-885. |
Pang, et al., “High Q Single-Mode High-Tone Bulk Acoustic Resonator Integrated with Surface-Machined FBAR Filter”, Microwave Symposium Digest, IEEE MTT-S International, 2005, pp. 413-416. |
Parker, et al., “Temperature-Compensated Surface Acoustic-Wave Devices with SiO2 Film Overlays”, Journal of Applied Physics, vol. 50, Mar. 1979, pp. 1360-1369. |
Pensala, “Thin film bulk acoustic wave devices: performance optimization and modeling”, http://www.vtt.fi/inf/pdf/publications/2011/P756.pdf. |
Reinhardt, et al., “Design of Coupled Resonator Filters Using Admittance and Scattering Matrices”, 2003 IEEE Ultrasonics Symposium, May 3, 2003, pp. 1428-1431. |
Ruby, “MicroMachined Thin Film Bulk Acoustic Resonators”, IEEE Internation Frequency Control Symposium, 1994, pp. 135-138. |
Ruby, et al., “The Effect of Perimeter Geometry on FBAR Resonator Electrical Performance”, Microwave Symposium Digest, 2005 IEEE MTT-S International, Jun. 12, 2005, pp. 217-221. |
Sanchez, et al., “Mixed Analytical and Numerical Design Method for Piezoelectric Transformers”, IEEE Xplore, 2003, pp. 841-846. |
Schoenholz, et al., “Plasma-Enhanced Deposition of Silicon Oxynitride Films”, Thin Solid Films, 1987, pp. 285-291. |
Schuessler, “Ceramic Filters and Resonators”, Reprinted from IEEE Trans Sonics Ultrason., vol. SU-21, Oct. 1974, pp. 257-268. |
Shirakawa, et al., “Bulk Acoustic Wave Coupled Resonator Filters Synthesis Methodology”, 2005 European Microwave Conference, vol. 1, Oct. 2005. |
Small, et al., “A De-Coupled Stacked Bulk Acoustic Resonator (DSBAR) Filter with 2 dB Bandwidth >4%”, 2007 IEEE Ultrasonics Symposium, Oct. 2007, pp. 604-607. |
Number | Date | Country | |
---|---|---|---|
20110180391 A1 | Jul 2011 | US |