This invention relates to an article, a method of forming a coating on a substrate, and an article formed of such a method which is suitable for, but not limited to, use as a casing.
The use of a magnetron sputtering physical vapour deposition (PVD) technique in forming a coating (in particular a decorative coating) on a substrate has the advantages that the coating is of good adhesion, has a smooth and closely packed structure, is deposited with a high deposition speed, and may be carried out in a clean working environment. The decorative coating performs both decorative and protective functions.
With the continuous development of technology and the complexity of the conditions and environments of use of various products with coatings, there is an ever increasingly high demand on the quality of decorative coatings. Such demands do not only relate to the colour and outward appearance, but also to such other qualities as corrosion resistance, erosion resistance and chemical-stability.
Titanium (Ti) and titanium-alloy targets have been used in the field of the formation of decorative coatings, and have been used in reactive magnetron sputtering in the presence of such gases as methane (CH4), acetylene (C2H2), nitrogen (N2) and oxygen (O2) to form decorative coatings of various colours, such as gun black, imitated gold, coffee, and rose gold. High quality coatings of titanium carbide (TiC), titanium nitride (TiN) and titanium carbo-nitride (TiCN) are of a high melting point, high hardness, and chemical stability and can satisfy the above requirements to a certain extent.
However, when forming titanium-based coatings by conventional magnetron sputtering methods, due to the small size of the particles and low ionization rate, the surface and transverse sectional view of the coating are (as shown in scanning electronic microscope (SEM) images) in the form of separated columns and/or pyramids with relatively large gaps therebetween.
It is thus an object of the present invention to provide an article, a method of forming a coating on a substrate, and an article formed of such a method in which the aforesaid shortcomings are mitigated or at least to provide a useful alternative to the trade and public.
According to a first aspect of the present invention, there is provided an article including a substrate comprising a metal or a metal alloy, and a coating deposited on said substrate, wherein said coating includes at least a first layer including a metal doped with silicon (Si) or boron (B).
According to a second aspect of the present invention, there is provided a method of forming a coating on a substrate, including steps (a) providing a metal or metal alloy substrate, and (b) depositing a first layer of a coating on said substrate by sputtering a metal together with silicon (Si) or boron (B) onto said substrate.
According to a third aspect of the present invention, there is provided an article manufactured according to a method of forming a coating on a substrate, including steps (a) providing a metal or metal alloy substrate, and (b) depositing a first layer of a coating on said substrate by sputtering a metal together with silicon (Si) or boron (B) onto said substrate.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
A schematic cross sectional view of an article (e.g. a casing for such products as watches, mobile phones, and tablet computers) with a coating according to the present invention is shown in
The article 10 has a substrate 12 made of a metal or a metal alloy, such as stainless steel. A coating 14 is deposited on the substrate 12. The coating 14 on this substrate 12 includes a total of three layers, namely a base layer 16, a transition later 18, and an outer decorative layer 20, with the base layer 16 deposited on the substrate 12, the transition layer 18 deposited on the base layer 16, and the outer decorative layer 20 deposited on the transition layer 18.
The base layer 16 is a layer of titanium (Ti) or chromium (Cr), which is doped with silicon (Si) or boron (B). The ratio of the number of titanium atoms or chromium atoms to the number of silicon atoms or boron atoms in the base layer 16 is from substantially 5:5 to substantially 8:2. As silicon and boron are capable of reducing the crystal size, the crystal of the metal base layer 16 as doped with silicon or boron is of a very small size and are dense and compact, even to the extent that the coating is non-crystallized, which provides a dense and planar interface suitable for deposition of other layer(s).
Generally speaking, a method of forming the coating 14 on the substrate 12 according to the present invention involves the following four stages:
The general technical parameters of a method of forming the coating 14 on the substrate 12 according to the present invention are shown in Table 1 below.
A champagne-coloured titanium-based corrosion-resistant decorative coating 14 was formed on a stainless steel substrate 12 to form an article 10 (such as a casing for such products as watches, mobile phones, and tablet computers) of a structure generally as shown in
The above champagne-coloured titanium-based corrosion-resistant decorative coating 14 was obtained by un-balanced magnetron sputtering deposition, involving the following steps:
A champagne-coloured titanium-based corrosion-resistant decorative coating 14 was formed on a stainless steel substrate 12 to form an article 10 (such as a casing for such products as watches, mobile phones, and tablet computers) of a structure generally as shown in
The process for obtaining the article 10 according to Example 2 was similar to that of Example 1, except that the titanium-based base layer 16 of the coating 14 was doped with boron.
Table 2 below shows results of tests carried out on the article 10 according to Example 1, the article 10 according to Example 2, and a reference article. The reference article included a substrate deposited with a coating including a titanium-based base layer, a titanium-nitride transition layer and a titanium-based outer decorative layer, with the only difference being that the titanium-based base layer of the reference article was not doped with Si or B.
It should be understood that the above only illustrates examples whereby the present invention may be carried out, and that various modifications and/or alterations may be made thereto without departing from the spirit of the invention.
It should also be understood that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any appropriate sub-combinations.