Method of forming a FET having ultra-low on-resistance and low gate charge

Information

  • Patent Grant
  • 7745289
  • Patent Number
    7,745,289
  • Date Filed
    Wednesday, November 24, 2004
    20 years ago
  • Date Issued
    Tuesday, June 29, 2010
    14 years ago
Abstract
In accordance with an exemplary embodiment of the invention, a substrate of a first conductivity type silicon is provided. A substrate cap region of the first conductivity type silicon is formed such that a junction is formed between the substrate cap region and the substrate. A body region of a second conductivity type silicon is formed such that a junction is formed between the body region and the substrate cap region. A trench extending through at least the body region is then formed. A source region of the first conductivity type is then formed in an upper portion of the body region. An out-diffusion region of the first conductivity type is formed in a lower portion of the body region as a result of one or more temperature cycles such that a spacing between the source region and the out-diffusion region defines a channel length of the field effect transistor.
Description
BACKGROUND OF THE INVENTION

The present invention relates to field effect transistors (FETs) and, in particular, to trench metal-oxide-semiconductor (MOS) transistors and methods of fabricating the same.


Power Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) are well known in the semiconductor industry. One type of MOSFET is a double-diffused trench MOSFET, or what is known as a “trench DMOS” transistor. A cross-sectional view of a portion of a typical n-channel trench DMOS transistor 10 is shown in FIG. 1. It should be pointed out that the relative thickness of the various layers is not necessarily drawn to scale.


The trench DMOS transistor 10, shown in FIG. 1, includes an n-type substrate 100. An n-type epitaxial layer 102 is formed over substrate 100, and a p-type body region 108 is formed in epitaxial layer 102 through an implant/diffusion process. One or more trenches 109 extend through body region 108 and into region 102a of epitaxial layer 102. Gate oxide layer 104 lines the sidewalls and bottom of each trench 109 and a conductive material 106, typically doped polysilicon, lines gate oxide layer 104 and fills each trench 109. N+ source regions 110 flank each trench 109 and extend a predetermined distance into body region 108. Heavy body regions 112 are positioned within body region 108, between source regions 110, and extend a predetermined distance into body region 108. During the high temperature cycles of the process (e.g., the anneal steps for activating the dopants in body region 108, source regions 110, and heavily doped body regions 112) the n-type dopants in substrate 100 tend to diffuse into epitaxial layer 102 thus forming the substrate out-diffusion region 101. Finally, dielectric caps 114 cover the filled trenches 109 and also partially cover source regions 110. Note that trench DMOS transistor 10 also typically includes one or more metal layers, which contact source regions 110, with adjacent metal layers separated by an insulating material. These metal layers are not shown in FIG. 1.



FIG. 2 shows a doping concentration profile, taken along a cross-section labeled “xx” in FIG. 1. Cross section xx is representative of the resistance path 116 that a drain-to-source current, IDS, encounters as charge carriers travel from source region 110 to the drain of trench DMOS transistor 10, when trench DMOS transistor is on. The various regions that comprise path 116 are source region 110, body region 108, portion 102a of epitaxial layer 102, substrate out-diffusion region 101 and substrate 100.


The resistance encountered by IDS due to the presence of these various regions is typically quantified as the drain-to-source resistance, RDS(on). A high RDS(on) limits certain performance characteristics of the transistor. For example, both the transconductance, gm, of the device, which is a measure of the current carrying capability of the device (given a certain gate voltage) and the frequency response of the device, which characterizes the speed of the device, are reduced for higher RDS(on). Another factor that limits the speed of the trench DMOS transistor is the gate oxide charge, Qg. The higher Qg is the larger the gate-to-drain overlap capacitance becomes and, consequently, the lower the switching capability of the device becomes.


Because the drain-source voltage is dropped almost entirely across the channel region, which comprises the body and epitaxial layers, the channel length, channel resistance and channel concentration profile are critical characteristics that affect the operating performance of a trench MOSFET. Whereas the absolute values of these characteristics are important, so too is the controllability of their variation. Wide device-to-device variations negatively affect the reproducibility of a device having desired performance capabilities.


BRIEF SUMMARY OF THE INVENTION

In accordance with the present invention, a trench DMOS transistor is characterized by an ultra-low on resistance RDS(on) and a low gate charge. The structure and method of manufacturing the DMOS transistor minimizes variations in the transistor characteristics by controlling substrate out-diffusion.


In accordance with an embodiment of the invention, a field effect transistor is manufactured as follows. A substrate cap region of a first conductivity type silicon is formed such that the substrate cap region forms a junction with a substrate of the first conductivity type silicon. A body region of a second conductivity type silicon is formed such that the body region forms a junction with the substrate cap region. A trench extending through at least the body region is formed. A source region of the first conductivity type is formed in the body region, wherein during one or more temperature cycles, dopants of the first conductivity type out-diffuse into a lower portion of the body region to form an out-diffusion region of the first conductivity type in the lower portion of the body region such that a spacing between the source region and the substrate out-diffusion region defines a length of a channel region of the field effect transistor.


In one embodiment, the trench further extends through the out-diffusion region and the substrate cap region, and the conductive material extends through a substantial depth of the out-diffusion region.


In another embodiment, the dielectric material is thicker along the bottom of the trench than along its sidewalls.


In another embodiment, the out-diffusion region extends from an interface between the body region and the substrate cap region into the body region.


In another embodiment, during the one or more temperature cycles the substrate cap region influences said out-diffusion of the dopants of the first conductivity type into the body region such that the length of the channel region varies less and thus is substantially predictable.


In one embodiment, the substrate cap region has a thickness of less than or equal to two micrometers.


In accordance with another embodiment of the invention, a field effect transistor includes a substrate of a first conductivity type silicon. A substrate cap region of the first conductivity type silicon forms a junction with the substrate. A body region of a second conductivity type silicon forms a junction with the substrate cap region. A trench extends at least through the body region. A source region of the first conductivity type is in an upper portion of the body region. An out-diffusion region of the first conductivity type is in a lower portion of the body region such that a spacing between the source region and the out-diffusion region defines a channel length of the field effect transistor.


In one embodiment, the out-diffusion region extends from an interface between the body region and the substrate cap region into the body region.


In another embodiment, the substrate cap region and the body region are epitaxial layers.


In another embodiment, the substrate cap region has a thickness of less than or equal to two micrometers.


A further understanding of the nature and advantages of the invention may be realized by reference to the remaining portions of the specification and the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a cross-sectional view of a conventional trench DMOS transistor;



FIG. 2 shows a doping concentration profile along a cross-section “xx” of the trench DMOS transistor shown in FIG. 1;



FIG. 3 shows a cross-sectional view of an exemplary n-channel trench DMOS transistor 30 according to one embodiment of the present invention;



FIG. 4 shows an exemplary doping concentration profile, taken along a cross-section “yy” of the trench DMOS transistor shown in FIG. 3;



FIG. 5 shows an exemplary process flow, according to another aspect of the invention, for fabricating the trench DMOS transistor shown in FIG. 3; and



FIGS. 6A-6J show cross-sectional views of the formation of the trench DMOS transistor according to the process flow shown in FIG. 5.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to a trench MOSFET device, and its method of manufacture, that can be used in applications such as cellular phone power supplies and battery switching. The trench MOSFET of the present invention is defined by a structure having a low drain-to-source resistance, low gate charge and a method of fabrication that minimizes device-to-device variations in operating characteristics by controlling out-diffusion from the transistor substrate.



FIG. 3 shows a cross-sectional illustration of an exemplary n-channel trench DMOS transistor 30 according to one embodiment of the present invention. Trench DMOS transistor 30 includes an n-type substrate 300, which has a resistivity of, for example, 1-5 mΩ-cm, over which a substrate cap region 301 is formed. Substrate cap region 301 is heavily doped and has a resistivity of, for example, 1 mΩ-cm. Substrate cap region 301 functions to provide a more constant resistivity range than what substrate vendors typically guarantee. For example, substrate vendors typically guarantee that the resistivity of an Arsenic n-type substrate be only somewhere within the range of 1-5 mΩ-cm. As explained below, the more precisely controlled resistivity of substrate cap region 301, relative to substrate resistivities, ensures a more predictable and stable channel length.


A p-type body region 308 is epitaxially formed over substrate cap region 301. The thickness and resistivity of p-type body region 308 are, for example, 4 μm and 0.1 Ω-cm, respectively. One or more trenches 309 extend through body region 308, substrate cap region 301 and, preferably, a portion of substrate 300. Gate oxide layer 304 lines the sidewalls and bottom of each trench 309 and a conductive material 306, for example, doped polysilicon, lines gate oxide layer 304 and fills each trench 309. The thickness of gate oxide layer 304 is preferably thicker at the bottom of each trench 309 than on the sidewalls of the trench 309.


N+ source regions 310 flank each trench 309 and extend a predetermined distance into body region 308. Heavy body regions 312 are positioned within body region 308, between source regions 310, and extend a predetermined distance into body region 308. Dielectric caps 314 cover the filled trenches 309 and also partially cover source regions 310.


An n-type substrate out-diffusion region 302 extends up from the interface between body region 308 and substrate cap region 301 into body region 308. Substrate out diffusion region 302 is formed as a result of n-type dopants in substrate cap region 301 out-diffusing into body region 308 during high temperature cycles such as the oxide layer formation and anneals to activate the dopants in source regions 310 and heavily doped body regions 312.


Because the resistivity of cap layer 301 varies far less than that of substrate 300, the extent to which substrate out-diffusion region 302 extends into body 308 can be predicted more accurately. Since channel length 318 of DMOS 30 is defined by the spacing between source 310 and substrate out-diffusion 302, the improved predictability and controllability of the out-diffusion of region 302 enables tighter control over and the reduction of channel length 308. Better control of channel length 308 leads to a more predictable and reproducible RDS(on), Qg and breakdown voltage.


Trench DMOS transistor 30 also includes one or more metal layers, which contact source regions 310, with adjacent metal layers separated by an insulating material. These metal layers are not shown in FIG. 3.


Comparing trench DMOS transistor 30 to trench DMOS transistor 10 in FIG. 1 reveals some important distinctions. First, as was described above, it is preferred that the thickness of gate oxide layer 304 be larger at the bottoms of each trench 309 than on the sidewalls of each trench 309. The reason for this is that a thicker gate oxide at the bottom of trenches 309 alleviates high electric fields in the vicinity of the bottom of trenches 309, thereby providing a higher breakdown voltage, BVdss. The relatively greater thickness also has the effect of reducing the gate-drain overlap capacitance, so that the gate charge, Qg, is reduced.


Second, trench DMOS transistor 30 does not incorporate an n-type epitaxial layer as trench DMOS transistor 10 does (see, layer 102 in FIG. 1). The primary purpose of the n-type epitaxial layer is to provide a region for depletion to avoid reach through. However, while not necessarily limited to, the trench DMOS transistor of the present invention is envisioned to be mainly for low voltage applications. A benefit of the absence of any n-type epitaxial layer in trench DMOS transistor 30 is that a reduced current path is realized so that RDS(on) is lowered. As explained above, a lower RDS(on) improves certain performance capabilities of the device, which are characterized by, for example, a higher transconductance, gm, and an improved frequency response.


Finally, body region 308 is formed by epitaxial deposition, as compared to an implant/diffusion process used in forming body region 108 in the trench DMOS transistor shown in FIG. 1. The diffusion step in the manufacture of a trench DMOS is typically performed at high temperature and operates to drive all junctions, including substrate out-diffusion region 101 in trench DMOS transistor 10 shown in FIG. 1. A typical diffusion cycle used in the manufacture of trench DMOS transistor 10 of FIG. 1 can result in a substrate out-diffusion region thickness of over 2 μm. Because a diffusion cycle is not required for forming body region 308 of trench DMOS transistor 30, the thickness of substrate out-diffusion region 302 can be made much thinner, for example, less than or equal to 1 μm. Moreover, for a given channel length, channel 318 can hold more charge than that of a conventional trench DMOS transistor having a body region formed using an implant/diffusion process. Because channel 318 of trench DMOS transistor 30 can hold more charge, it is less likely that drain-to-source punch-through will occur. Hence, channel length 318 of trench DMOS 30 can be reduced. The reduction in channel length 318 and the thickness of substrate out-diffusion region 302 result in lower RDS(on).


Referring now to FIG. 4, there is shown an exemplary doping concentration profile taken along a cross-section labeled “yy” for trench DMOS transistor 30 shown in FIG. 3. Comparing this doping profile to the doping profile in FIG. 2 of the conventional trench DMOS transistor 10 in FIG. 1, shows that (1) no n-type epitaxial layer is used in the trench DMOS transistor 30 of the present invention; (2) channel length 318 of DMOS transistor 30 of the present invention is shorter; and (3) substrate out-diffusion region 302 of DMOS transistor 30 is thinner and has a steeper concentration gradient than that of conventional DMOS transistor 10. All of these characteristics have the effect of reducing the overall drain to source current path, thereby making RDS(on) smaller.


Referring now to FIG. 5, there is shown an exemplary process flow, according to another aspect of the invention, for fabricating a trench DMOS transistor. This process flow can be used, for example, to fabricate the trench DMOS transistor shown in FIG. 3. The process flow shown in FIG. 5 will now be described in reference to FIGS. 6A through 6J.


Initially, a substrate 300, having a resistivity of, for example 1 to 5 mΩ-cm is provided in step 500. This is shown in FIG. 6A. Next, in step 502, a substrate cap region 301 is epitaxially formed over substrate 300. Substrate cap region 301 has a resistivity of, for example less than or approximately equal to 1 mΩ-cm and a thickness less than or equal to 2 μm. In one embodiment, substrate cap region 301 has a thickness of approximately 1 μm. The structure corresponding to step 502 is shown in FIG. 6B.


In step 504, a p-type body region 308 is epitaxially formed over substrate cap region 301. In one embodiment, body region 308 has a depth of approximately 4 μm, and a resistivity of about 0.1 mΩ-cm. The structure corresponding to step 504 is shown in FIG. 6C. Next, in step 506, an initial oxide layer is formed over the p-type body region 308, over which an active area of transistor 30 is defined using conventional photolithography techniques.


After the active area has been defined, trenches 309 are formed in step 508. This step is shown in FIG. 6D. An anisotropic etch may be used to create trenches 309. The anisotropic etch is in the form of a plasma, which is an almost neutral mixture of energetic molecules, ions and electrons that have been excited in a radio-frequency electric field. Different gases are used depending on the material to be etched. The principal consideration is that the reaction products must be volatile. For etching silicon, the reactants may be, for example, He:O2, NF3 and HBr the pressure may be, for example, 140 mTorr and the duration of the etch may be approximately 3 minutes. In this example, the trenches have a depth of approximately 2.5 μm. As shown in FIG. 6D, each trench 309 extends vertically downward from an exposed surface of body region 308, into and through body region 308, through substrate out-diffusion layer 302, through substrate cap region 301 and partially into substrate 300.


Next, an oxide plug 303 is formed at the bottom of each trench 309 as shown in FIG. 6E. These oxide plugs 303 can be formed in a variety of ways. Two embodiments are shown in FIG. 5 by steps 510-516 and steps 520-522. In the embodiment of steps 510-516, in step 510, sub-atmospheric chemical vapor deposition (SA-CVD) is used to deposit oxide on the sidewalls, bottom and over the upper and lower corners of each trench 309. Then, in step 512, the oxide is etched back so that only an oxide plug 303 remains at the bottom of each trench 309. A sacrificial oxide, having a thickness of about 500 Å may then be deposited (step 514) and then stripped (step 516) to prepare the trench sidewalls for a gate oxide. The sacrificial oxide and strip steps are optional.


Oxide plug 303 can be alternatively formed using a process known as high-density plasma chemical vapor deposition (HDP-CVD) as shown by the embodiment of steps 520-522. In step 520, oxide is deposited on the sidewalls, bottom and over the upper and lower corners of each trench 309. Then, in step 522, the oxide is etched back using a wet etch to leave an oxide plug 303 at the bottom of each trench 309.


Next, in step 524, a gate oxide 304 is formed on the sidewalls of trenches 309 as shown in FIG. 6F. The thickness of gate oxide 304 in this example, is about 200 Å. Next, in step 526, trenches 309 are lined and at least partially filled with polysilicon 306 and then doped using, for example, an n-type implant or by administering a conventional POCL3 doping process. Doping can also be performed using an in-situ process, i.e., as the polysilicon is deposited. The structure corresponding to step 528 is shown in FIG. 6G. Next, in optional step 528, the threshold voltage of the structure can be adjusted by administering a p-type implant having, for example, an energy and dose of 70 keV and 3×1013/cm2, respectively.


Next, in another optional step 530, p+ heavy body regions 312 can be formed between adjacent trenches 309 as shown in FIG. 6H. This is accomplished by defining the surface areas through which heavy body regions 312 are to be formed using, for example, conventional photolithography. Through the defined surface areas, two separate p-type (e.g., boron) implants are performed, although in some applications a single implant may be sufficient. In this example, a first implant is performed at a dose and energy of, for example, 2×1015/cm2 and 135 keV, respectively and a second implant is performed at a dose and energy of 5×1014/cm2 and 70 keV, respectively. The primary purpose of the first implant is to bring the depth of heavy body regions 312 as deep as is necessary to compensate for the n+ source regions which are formed later in the process. The second implant has a low energy but a high dose. The purpose of this implant is to extend high concentration of the p+ heavy body from the first implant to the surface so that an ohmic contact can be formed. The dose is made high enough to accomplish this but not so high as to overcompensate the n+ source region. In an alternative embodiment, heavy body region 312 can be formed following a contact defining step (step 536), which is performed later in the process.


In step 532 source regions 310 are formed as shown in FIG. 6I. Similar to formation of heavy body region 312, in this example a double implant may be used. In this example, surface areas through which source regions 310 are to be formed are defined using, for example, conventional photolithography. Through these surface areas, two separate n-type implants are performed, although in some applications a single implant may be sufficient. In this example, a first implant of arsenic is performed at a dose and energy of, for example, 8×1015 cm2 and 80 keV, respectively and a second implant of phosphorous is performed at a dose and energy of 5×1015/cm2 and 60 keV, respectively. The purpose of the first implant is to form source regions 310 and the purpose of the second implant is to extend source regions 310 to the surface so that a source contact can be formed.


Whereas the above description described formation of heavy body regions 312 prior to the formation of source regions 310, in an alternative embodiment heavy body regions 312 could be formed following formation of source regions 310.


Next, in step 534, an insulating layer, e.g., borophosphosilicate glass, having a thickness in the range of about 5 to 15 kÅ is deposited over the exposed surface of the entire structure. Then the insulating layer is densified or “flowed”.


In step 536, the insulating layer is patterned and etched using, for example, standard photolithography, to define electrical contact areas for the trench DMOS structure. As shown in FIG. 6J, the dielectric etch is controlled to preserve insulating caps 314 over trenches 309. After step 536, metallization and passivation steps are performed, although they are not shown in the process diagramed in FIGS. 5 and 6. One skilled in the art would understand, however, what is necessary to perform these steps.


In the above process flow, the temperature cycles associated with formation of dielectric layers (steps 506 and 524) results in the out-diffusion of the n-type dopants from substrate cap region 301 into body region 308, thus forming substrate out-diffusion region 302 in body region 308 as shown in FIGS. 6D through 6F. A further out-diffusion of dopants into body region 308 occurs during the temperature cycles associated with formation of heavy body regions 312 (step 530) and source regions 310 (step 532). The thickness and doping concentration/gradient of substrate out-diffusion region 302 are primarily determined by the characteristics of substrate cap region 301 (e.g., its doping concentration and thickness), and the total process DT (the product of diffusion coefficient and time). Therefore, to minimize the extent of out-diffusion of region 302 into body region 308, RTP (rapid thermal processing) can be used everywhere possible in the process flow to minimize the overall DT.


Although the invention has been described in terms of specific processes and structures, it will be obvious to those skilled in the art that many modifications and alterations may be made to the disclosed embodiment without departing from the invention. For example, an alternative to epitaxially forming substrate cap region 301 is to form substrate cap region 301 within substrate 300 by implanting dopants and driving the dopants into substrate 300. As another example, an alternative to epitaxially forming body region 308a is to initially form an n-type epitaxial layer over substrate cap region 301 followed by implanting p-type dopants and driving the dopants into the n-type epitaxial layer such that the body region is formed within the epitaxial layer. This particular variation is advantageous in that: (i) it allows integration of the transistor cell structure of the invention with a wider variety of termination structures, and (ii) a body region formed by diffusion (as opposed to an epitaxially formed body region) leads to less variations in threshold voltage. As yet another example, a p-channel trench DMOS may be formed by using silicon layers with complementary conductivity types relative to those of the trench DMOS structure shown in FIG. 3. Also, all of the values provided such as for dimensions, temperatures, and doping concentrations, are for illustrative purposes only and may be varied to refine and/or enhance particular performance characteristics of the trench DMOS transistor. Hence, these modifications and alterations are intended to be within the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. A method of forming a field effect transistor, comprising: epitaxially forming a substrate cap region of a first conductivity type silicon over and in contact with a substrate of the first conductivity type silicon;epitaxially forming a body region of a second conductivity type silicon over and in contact with the substrate cap region;forming a plurality of trenches each extending at least through the body region;lining the sidewalls and bottom of each trench with a dielectric material;at least partially filling each trench with a conductive material; andforming a plurality of source regions of the first conductivity type in an upper portion of the body region,wherein during one or more temperature cycles, dopants of the first conductivity type in the substrate cap region out-diffuse into a lower portion of the body region to form an out-diffusion region of the first conductivity type extending from an interface between the body region and the substrate cap region into the body region such that a spacing between the source regions and the out-diffusion region defines a length of a channel region of the field effect transistor.
  • 2. The method of claim 1 wherein: each trench extends through the out-diffusion region, andthe conductive material in each trench extends through a substantial depth of the out-diffusion region.
  • 3. The method of claim 1 wherein during the one or more temperature cycles the substrate cap region influences said out-diffusion of the dopants of the first conductivity type into the body region such that the length of the channel region varies less and is thus substantially predictable.
  • 4. The method of claim 1 wherein the substrate cap region has a thickness less than or equal to 2 μm.
  • 5. The method of claim 1 wherein the out-diffusion region has a graded doping concentration decreasing in a direction away from an interface between the out-diffusion region and the substrate cap region.
  • 6. A method of forming a field effect transistor, comprising: providing a substrate of a first conductivity type silicon;forming a substrate cap region of the first conductivity type silicon such that a junction is formed between the substrate cap region and the substrate;forming an epitaxial layer of the first conductivity type silicon over the substrate cap region;implanting dopants of a second conductivity type into the epitaxial layer and driving the dopants into the epitaxial layer to thereby form a body region having a junction with the substrate cap region;forming a plurality of trenches each extending at least through the body region;lining the sidewalls and bottom of each trench with a dielectric material;at least partially filling each trench with a conductive material; andforming a plurality of source regions of the first conductivity type in an upper portion of the body region,wherein during one or more temperature cycles, dopants of the first conductivity type in the substrate cap region out-diffuse into a lower portion of the body region to form an out-diffusion region of the first conductivity type extending from the junction between the body region and the substrate cap region into the body region such that a spacing between the source regions and the out-diffusion region defines a length of a channel region of the field effect transistor.
  • 7. The method of claim 6 wherein the substrate cap region is epitaxially formed over and in contact with the substrate.
  • 8. The method of claim 6 wherein the substrate cap region is formed in the substrate by implanting dopants of the first conductivity type into the substrate.
  • 9. A field effect transistor, comprising: a substrate of a first conductivity type silicon;an epitaxial substrate cap region of the first conductivity type silicon over and in contact with the substrate;an epitaxial body region of a second conductivity type over and in contact with the substrate cap region;a plurality of trenches each extending at least through the body region;a dielectric material lining the sidewalls and bottom of each trench;a conductive material at least partially filling each trench;a plurality of source regions of the first conductivity type in an upper portion of the body region; andan out-diffusion region of the first conductivity type extending from an interface between the body region and the substrate cap region into the body region such that a spacing between each source region and the out-diffusion region defines a length of a channel region of the field effect transistor, the channel region extending vertically along a sidewall of each trench.
  • 10. The field effect transistor of claim 9 wherein: each trench extends through the out-diffusion region, andthe conductive material in each trench extends through a substantial depth of the out-diffusion region.
  • 11. The field effect transistor of claim 9 wherein the dielectric material in each trench is thicker along the bottom of each trench than along the sidewalls of each trench.
  • 12. The field effect transistor of claim 9 wherein the out-diffusion region has a graded doping concentration decreasing in a direction away from an interface between the out-diffusion region and the substrate cap region.
  • 13. The field effect transistor of claim 9 wherein the substrate cap region has a thickness of less than or equal to two micrometers.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 10/754,276, filed Jan. 8, 2004, which is a divisional of U.S. application Ser. No. 09/640,955, filed Aug. 16, 2000, now U.S. Pat. No. 6,696,726, entitled “Vertical MOSFET with Ultra-low Resistance and Low Gate Charge”, which disclosures are incorporated herein by reference in their entirety. Two other related patents are U.S. Pat. No. 6,437,386, entitled “Method for Creating Thick Oxide on the Bottom Surface of a Trench Structure in Silicon” and U.S. Pat. No. 6,444,528, entitled “Selective Oxide Deposition in the Bottom of a Trench,” both of which are assigned to the present assignee and are incorporated herein by reference for all purposes.

US Referenced Citations (257)
Number Name Date Kind
3404295 Wamer et al. Oct 1968 A
3412297 Amlinger Nov 1968 A
3497777 Teszner et al. Feb 1970 A
3564356 Wilson Feb 1971 A
3660697 Berglund et al. May 1972 A
4003072 Matsushita et al. Jan 1977 A
4300150 Colak Nov 1981 A
4326332 Kenney et al. Apr 1982 A
4337474 Yukimoto Jun 1982 A
4345265 Blanchard Aug 1982 A
4445202 Goetze et al. Apr 1984 A
4546367 Schutten et al. Oct 1985 A
4579621 Hine Apr 1986 A
4636281 Buiguez et al. Jan 1987 A
4638344 Cardwell, Jr. Jan 1987 A
4639761 Singer et al. Jan 1987 A
4698653 Cardwell, Jr. Oct 1987 A
4716126 Cogan Dec 1987 A
4746630 Hui et al. May 1988 A
4754310 Coe Jun 1988 A
4774556 Fujii et al. Sep 1988 A
4801986 Chang et al. Jan 1989 A
4821095 Temple Apr 1989 A
4823176 Baliga et al. Apr 1989 A
4853345 Himelick Aug 1989 A
4868624 Grung et al. Sep 1989 A
4893160 Blanchard Jan 1990 A
4914058 Blanchard Apr 1990 A
4941026 Temple Jul 1990 A
4967245 Cogan et al. Oct 1990 A
4974059 Kinzer Nov 1990 A
4990463 Mori Feb 1991 A
4992390 Chang Feb 1991 A
5027180 Nishizawa et al. Jun 1991 A
5034785 Blanchard Jul 1991 A
5071782 Mori Dec 1991 A
5072266 Bulucea Dec 1991 A
5079608 Wodarczyk et al. Jan 1992 A
5105243 Nakagawa et al. Apr 1992 A
5111253 Korman et al. May 1992 A
5142640 Iwanatsu Aug 1992 A
5164325 Cogan et al. Nov 1992 A
5164802 Jones et al. Nov 1992 A
5216275 Chen Jun 1993 A
5219777 Kang Jun 1993 A
5219793 Cooper et al. Jun 1993 A
5233215 Baliga Aug 1993 A
5262336 Pike, Jr. et al. Nov 1993 A
5268311 Euen et al. Dec 1993 A
5275965 Manning Jan 1994 A
5294824 Okada Mar 1994 A
5298781 Cogan et al. Mar 1994 A
5300447 Anderson Apr 1994 A
5326711 Malhi Jul 1994 A
5350937 Yamazaki et al. Sep 1994 A
5365102 Mehrotra et al. Nov 1994 A
5366914 Takahashi et al. Nov 1994 A
5389815 Takahashi Feb 1995 A
5405794 Kim Apr 1995 A
5410170 Bulucea et al. Apr 1995 A
5418376 Muraoka et al. May 1995 A
5424231 Yang Jun 1995 A
5429977 Lu et al. Jul 1995 A
5430311 Murakami et al. Jul 1995 A
5430324 Bencuya Jul 1995 A
5434435 Baliga Jul 1995 A
5436189 Beasom Jul 1995 A
5438215 Tihanyi Aug 1995 A
5442214 Yang Aug 1995 A
5473176 Kakumoto Dec 1995 A
5473180 Ludikhuize Dec 1995 A
5474943 Hshieh et al. Dec 1995 A
5486772 Hshieh et al. Jan 1996 A
5519245 Tokura et al. May 1996 A
5541425 Nishihara Jul 1996 A
5554862 Omura et al. Sep 1996 A
5567634 Hebert et al. Oct 1996 A
5567635 Acovic et al. Oct 1996 A
5572048 Sugawara Nov 1996 A
5576245 Cogan et al. Nov 1996 A
5578851 Hshieh et al. Nov 1996 A
5581100 Ajit Dec 1996 A
5583065 Miwa Dec 1996 A
5592005 Floyd et al. Jan 1997 A
5595927 Chen et al. Jan 1997 A
5597765 Yilmaz et al. Jan 1997 A
5605852 Bencuya Feb 1997 A
5616945 Williams Apr 1997 A
5623152 Majumdar et al. Apr 1997 A
5629543 Hshieh et al. May 1997 A
5637898 Baliga Jun 1997 A
5639676 Hshieh et al. Jun 1997 A
5640034 Malhi Jun 1997 A
5648670 Blanchard Jul 1997 A
5656843 Goodyear et al. Aug 1997 A
5665619 Kwan et al. Sep 1997 A
5670803 Beilstein, Jr. et al. Sep 1997 A
5689128 Hshieh et al. Nov 1997 A
5693569 Ueno Dec 1997 A
5705409 Witek Jan 1998 A
5710072 Krautschneider et al. Jan 1998 A
5714781 Yamamoto et al. Feb 1998 A
5719409 Singh et al. Feb 1998 A
5770878 Beasom Jun 1998 A
5776813 Huang et al. Jul 1998 A
5780343 Bashir Jul 1998 A
5801417 Tsang et al. Sep 1998 A
5814858 Williams Sep 1998 A
5877528 So Mar 1999 A
5879971 Witek Mar 1999 A
5879994 Kwan et al. Mar 1999 A
5895951 So et al. Apr 1999 A
5895952 Darwish et al. Apr 1999 A
5897343 Mathew et al. Apr 1999 A
5897360 Kawaguchi Apr 1999 A
5900663 Johnson et al. May 1999 A
5906680 Meyerson May 1999 A
5917216 Floyd et al. Jun 1999 A
5929481 Hshieh et al. Jul 1999 A
5943581 Lu et al. Aug 1999 A
5949104 D'Anna et al. Sep 1999 A
5949124 Hadizad et al. Sep 1999 A
5959324 Kohyama Sep 1999 A
5960271 Wollesen et al. Sep 1999 A
5972741 Kubo et al. Oct 1999 A
5973360 Tihanyi Oct 1999 A
5973367 Williams Oct 1999 A
5976936 Miyajima et al. Nov 1999 A
5981344 Hshieh et al. Nov 1999 A
5981996 Fujishima Nov 1999 A
5998833 Baliga Dec 1999 A
6005271 Hshieh Dec 1999 A
6008097 Yoon et al. Dec 1999 A
6011298 Blanchard Jan 2000 A
6015727 Wanlass Jan 2000 A
6020250 Kenney et al. Feb 2000 A
6034415 Johnson et al. Mar 2000 A
6037202 Witek Mar 2000 A
6037628 Huang Mar 2000 A
6037632 Omura et al. Mar 2000 A
6040600 Uenishi et al. Mar 2000 A
6048772 D'Anna Apr 2000 A
6049108 Williams et al. Apr 2000 A
6057558 Yamamoto et al. May 2000 A
6063678 D'Anna May 2000 A
6064088 D'Anna May 2000 A
6066878 Neilson May 2000 A
6069043 Floyd et al. May 2000 A
6081009 Neilson Jun 2000 A
6084264 Darwish Jul 2000 A
6084268 de Frésart et al. Jul 2000 A
6087232 Kim et al. Jul 2000 A
6096608 Williams Aug 2000 A
6097063 Fujihira Aug 2000 A
6103578 Uenishi et al. Aug 2000 A
6104054 Corsi et al. Aug 2000 A
6110799 Huang Aug 2000 A
6114727 Ogura et al. Sep 2000 A
6137152 Wu Oct 2000 A
6150697 Teshigahara et al. Nov 2000 A
6156606 Michaelis Dec 2000 A
6156611 Lan et al. Dec 2000 A
6163052 Liu et al. Dec 2000 A
6165870 Shim et al. Dec 2000 A
6168983 Rumennik et al. Jan 2001 B1
6168996 Numazawa et al. Jan 2001 B1
6171935 Nance et al. Jan 2001 B1
6174773 Fujishima Jan 2001 B1
6174785 Parekh et al. Jan 2001 B1
6184545 Werner et al. Feb 2001 B1
6184555 Tihanyi et al. Feb 2001 B1
6188104 Choi et al. Feb 2001 B1
6188105 Kocon et al. Feb 2001 B1
6190978 D'Anna Feb 2001 B1
6191447 Baliga Feb 2001 B1
6194741 Kinzer et al. Feb 2001 B1
6198127 Kocon Mar 2001 B1
6201278 Gardner et al. Mar 2001 B1
6201279 Pfirsch Mar 2001 B1
6204097 Shen et al. Mar 2001 B1
6207994 Rumennik et al. Mar 2001 B1
6222233 D'Anna Apr 2001 B1
6225649 Minato May 2001 B1
6228727 Lim et al. May 2001 B1
6239463 Williams et al. May 2001 B1
6239464 Tsuchitani et al. May 2001 B1
6265269 Chen et al. Jul 2001 B1
6271100 Ballantine et al. Aug 2001 B1
6271552 D'Anna Aug 2001 B1
6271562 Deboy et al. Aug 2001 B1
6274904 Tihanyi Aug 2001 B1
6274905 Mo Aug 2001 B1
6277706 Ishikawa Aug 2001 B1
6281547 So et al. Aug 2001 B1
6285060 Korec et al. Sep 2001 B1
6291298 Williams et al. Sep 2001 B1
6291856 Miyasaka et al. Sep 2001 B1
6294818 Fujihira Sep 2001 B1
6297534 Kawaguchi et al. Oct 2001 B1
6303969 Tan Oct 2001 B1
6307246 Nitta et al. Oct 2001 B1
6309920 Laska et al. Oct 2001 B1
6313482 Baliga Nov 2001 B1
6316806 Mo Nov 2001 B1
6326656 Tihanyi Dec 2001 B1
6337499 Werner Jan 2002 B1
6346464 Takeda et al. Feb 2002 B1
6346469 Greer Feb 2002 B1
6351018 Sapp Feb 2002 B1
6353252 Yasuhara et al. Mar 2002 B1
6359308 Hijzen et al. Mar 2002 B1
6362112 Hamerski Mar 2002 B1
6362505 Tihanyi Mar 2002 B1
6365462 Baliga Apr 2002 B2
6365930 Schillaci et al. Apr 2002 B1
6368920 Beasom Apr 2002 B1
6368921 Hijzen et al. Apr 2002 B1
6376314 Jerred Apr 2002 B1
6376878 Kocon Apr 2002 B1
6376890 Tihanyi Apr 2002 B1
6384456 Tihanyi May 2002 B1
6388286 Baliga May 2002 B1
6388287 Deboy et al. May 2002 B2
6400003 Huang Jun 2002 B1
6429481 Mo et al. Aug 2002 B1
6433385 Kocon et al. Aug 2002 B1
6436779 Hurkx et al. Aug 2002 B2
6437399 Huang Aug 2002 B1
6441454 Hijzen et al. Aug 2002 B2
6452230 Boden, Jr. Sep 2002 B1
6461918 Calafut Oct 2002 B1
6465304 Blanchard et al. Oct 2002 B1
6465843 Hirler et al. Oct 2002 B1
6465869 Ahlers et al. Oct 2002 B2
6472678 Hshieh et al. Oct 2002 B1
6472708 Hshieh et al. Oct 2002 B1
6475884 Hshieh et al. Nov 2002 B2
6476443 Kinzer Nov 2002 B1
6479352 Blanchard Nov 2002 B2
6489652 Jeon et al. Dec 2002 B1
6501146 Harada Dec 2002 B1
6580123 Thapar Jun 2003 B2
6608350 Kinzer et al. Aug 2003 B2
20010023961 Hsieh et al. Sep 2001 A1
20010028083 Onishi et al. Oct 2001 A1
20010032998 Iwamoto et al. Oct 2001 A1
20010041400 Ren et al. Nov 2001 A1
20010049167 Madson Dec 2001 A1
20010050394 Onishi et al. Dec 2001 A1
20020009832 Blanchard Jan 2002 A1
20020014658 Blanchard Feb 2002 A1
20020066924 Blanchard Jun 2002 A1
20020070418 Kinzer et al. Jun 2002 A1
20020100933 Marchant Aug 2002 A1
20030060013 Marchant Mar 2003 A1
20030132450 Minato et al. Jul 2003 A1
20030193067 Kim Oct 2003 A1
Foreign Referenced Citations (41)
Number Date Country
1036666 Oct 1989 CN
4300806 Dec 1993 DE
19736981 Aug 1998 DE
0975024 Jan 2000 EP
1026749 Aug 2000 EP
1054451 Nov 2000 EP
0747967 Feb 2002 EP
1205980 May 2002 EP
62-069562 Mar 1987 JP
63-186475 Aug 1988 JP
63-288047 Nov 1988 JP
64-022051 Jan 1989 JP
01-192174 Aug 1989 JP
05226638 Sep 1993 JP
2000-040822 Feb 2000 JP
2000-040872 Feb 2000 JP
2000-156978 Jun 2000 JP
2000-277726 Oct 2000 JP
2000-277728 Oct 2000 JP
2001-015448 Jan 2001 JP
2001-015752 Jan 2001 JP
2001-102577 Apr 2001 JP
2001-111041 Apr 2001 JP
2001-135819 May 2001 JP
2001-144292 May 2001 JP
2001-244461 Sep 2001 JP
2001-313391 Dec 2001 JP
2002-083976 Mar 2002 JP
WO 0033386 Jun 2000 WO
WO 0068997 Nov 2000 WO
WO 0068998 Nov 2000 WO
WO 0075965 Dec 2000 WO
WO 0106550 Jan 2001 WO
WO 0106557 Jan 2001 WO
WO 0145155 Jun 2001 WO
WO 0159847 Aug 2001 WO
WO 0171815 Sep 2001 WO
WO 0195385 Dec 2001 WO
WO 0195398 Dec 2001 WO
WO 0201644 Jan 2002 WO
WO 0247171 Jun 2002 WO
Related Publications (1)
Number Date Country
20050153497 A1 Jul 2005 US
Divisions (1)
Number Date Country
Parent 09640955 Aug 2000 US
Child 10754276 US
Continuation in Parts (1)
Number Date Country
Parent 10754276 Jan 2004 US
Child 10997818 US