None.
Not Applicable.
A variety of roofing products have historically been used to provide a final environmental barrier or covering over a roof deck of a building. With respect to buildings that have a pitched roof, shingles are the most common choice for a top layer protective covering. Shingles are typically installed on top of a waterproof underlayer that has been applied to the roof deck, and are arranged in a series of partially overlapping rows. This overlapping serves to reduce the potential pathways of water and other debris around the perimeter of each shingle to the roof deck, and to cover up any attachment points where fasteners or other means are used to attach the given shingle to the roof deck. Thus, shingles provide a protective layer that will block out various items (e.g., snow and ice, tree limbs, rodents, etc.) from reaching the roof deck. Common materials used to make roofing shingles include asphalt, wood, slate, concrete, and composites, but may include other natural or synthetic materials.
The use of slate as a roofing shingle material is quite popular due to the perception that slate is very durable and provides a “solid” look to a building. Homeowners often utilize slate shingles to upgrade the quality of their roof covering and to increase the value of their home. Certain retail establishments and the like also choose slate shingles to present the customer with a building that is neat in appearance and has a reassuring strength.
While slate can be a long lasting shingle material, significant manual labor is required to shape a natural piece of slate into a number of individual shingles. Slate is also subject to fracture and/or cracking if it is dropped on a hard surface or trampled on, and is relatively heavy and expensive when compared to other widely accepted shingle materials. Thus, in recent years, other materials have been developed to function in the same way as slate shingles, and with a similar look. Concrete shingles are a popular roof covering choice due to the structural stability of concrete and the ability to paint such shingles with a variety of colors that replicate various types of natural slate. Unfortunately, concrete shingles also relatively heavy, which makes them difficult to install and their usage may require additional load bearing members to be integrated into the design of structural reinforcement for the building roof. Another popular alternative to natural slate shingles are composite shingles manufactured with a faux slate finish, i.e., “composite slate” shingles. These shingles can be made relatively rigid out of variety of materials, such as thermoplastics and other composites, and are also much easier to produce than a true slate shingle; unlike natural slate, composite slate shingles do not have to be cut and shaped from materials extracted from the earth, but may be fabricated with a mold in mass production. This also allows composite shingles to be produced at a fraction of the cost of forming natural slate shingles. Additionally, continuing improvements in the design of composite shingles have lead to increased life spans for these products.
Even with the significant cost saving realized by using composite slate shingles over natural slate shingles, though, wide acceptance of these composite shingles often hinges on how “real” they look. To achieve a proper faux finish that is suggestive of real slate, composite shingles must have irregularities or other texturing formed into portions of the top surface thereof, i.e., the “exposed” surface. One impediment to producing such a faux finish relates to the machining of the base mold used in fabricating the shingles. To form a molding surface of the base mold, computer-controlled rotating steel cutters are used to carve out the reverse of the pattern desired to be formed in the shingle. The cutters, however, typically leave machining marks or other imperfections on the molding surface that are transferred to the part being molded. With composite slate shingles, these marks are undesirable as they make the shingle look artificially made, eliminating their appeal as a slate substitute. Manually sanding or texturing the mold may diminish the cutting marks, but this adds significant labor costs and delay to mold manufacture. It is also difficult for the cutters to create desired or planned irregularities in the mold that provide the molded shingle with a realistic slate look, as opposed to undesirable imperfections created by the cutters that look artificial.
As such, there is a desire for a better process for shaping and forming the molding surface of a mold used to manufacture composite shingles. Improvements to composite shingle manufacture that would provide such shingles with the look of real slate or other naturally occurring shingle materials would result in increased marketability of the product.
The present invention facilitates the manufacture of composite shingles that have the appearance of shingles made from natural materials, such as slate. A base mold used for shingle production first has a general pattern cut therein to form a molding surface, which defines a primary shape for a composite shingle. The general pattern is preferably digitized such that the pattern may be cut into the base mold by computer controlled cutting machines. Then, to create the final detailed shape of the molding surface needed to replicate the look of natural slate, an acid etch solution is applied to desired areas of the molding surface. The acid etch may be used to create irregularities or other generally minor effects in the molding surface. The base mold may then be used in conventional molding processes to create shingles with a surface designed for exposure having the look of natural slate. For example, the shingle may present the look of scattered grains of minerals in the exposed surface thereof, or may have graduated material layers or contours in the exposed surface, especially near the shingle perimeter.
With the processes of the present invention use to form the surfaces of molds, more realistic looking composite slate shingles may be manufactured. The invention also reduces the amount of labor needed to attain the “natural” shingle look.
Turning now to the drawings, wherein like reference numerals represent like elements, and in particular
The process 100 begins in step 102 where a specific pattern is selected that will form the general overall dimensions of the molding surface. This pattern serves to define the primary shape for composite shingles molded with the base mold; specific details such as minor contouring and texturing are substantially selected for the molding surface at later steps. Then, in step 104, the base mold is machined to produce the molding surface with the pattern defining the primary shape. This machining is preferably conducted by computer controlled machine tools, such as by implementing computer numeric control (CNC) rotating cutters. In this way, the pattern to be cut into the mold may be digitized for use by the CNC rotating cutters, or other machine tools. Finer details, such as texturing and contouring, are then added to the molding surface in step 106 by applying an acid etch solution to the base mold. The acid etch solution may be selected from a variety of solutions that can cut into metallic surfaces. One preferred acid etch solution is a liquid solution of 35-40% by weight of Ferric Chloride (FeCl3) in water. Selected application of the acid etch solution to the molding surface allows such surface to have texturing and contouring in repeating patterns, with irregularities, or in any other form according to the desired look for the composite shingle formed within the mold. Further, the acid etch solution can eliminate any machining marks or other imperfections created on the molding surface by the machining tools/cutters that could potentially be transferred to the shingle being molded. At this point, the molding surface of the base mold may be cleaned to remove any excess acid etch solution or other substances and is ready for repeated use in the molding of composite shingles having exposed surfaces with the look of natural materials, such as slate.
Therefore, it can be seen that the present invention makes possible the manufacture of composite shingles with features designed to give the same a more “natural” look. Texturing and contouring may be selectively added to the exposed surface of each shingle while artificial looking machining marks may easily be removed. It should also be understood that high pH alkaline or basic solutions that are effective in cutting into metals or other materials used as the base mold or tool may be substituted for low pH acid etch solutions. Furthermore, since certain changes may be made in the above invention without departing from the scope hereof, it is intended that all matter contained in the above description or shown in the accompanying drawing be interpreted as illustrative and not in a limiting sense. It is also to be understood that the following claims are to cover certain generic and specific features described herein.