1. Field
This disclosure relates generally to semiconductors, and more specifically, to memory and data storage devices circuitry having two gates.
2. Related Art
A particular type of memory cell is known as a split gate memory which indicates the presence of a control gate and a select gate. Split gate memory cells function as one form of non-volatile memory (NVM). Both gate electrodes affect the operation of the memory cell. A split gate memory cell has two distinguishable channel regions, respectively controlled by a select gate and a control gate, which are electrically separated by a dielectric. The select gate channel acts as an access device to select the memory cell under the control gate during read or program operations. One form of a split gate memory cell uses a control gate and a select gate of a same conductivity type. The threshold voltage of the channel is typically controlled by substrate doping within the channel region.
The present invention is illustrated by way of example and is not limited by the accompanying figures, in which like references indicate similar elements. Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale.
For efficient operation of a split gate memory device with thin control gate dielectrics, it is desirable to have a low-magnitude natural threshold voltage, Vtn, for the control gate channel. The low magnitude Vtn is desirable because a high control gate bias is required during read if the Vtn is high, which results in large electric fields in the dielectric surrounding the charge storage regions. For thin dielectric layers, such high fields may disturb the programmed charge in the biased cells. Furthermore, it is desirable to have a sufficiently high threshold voltage, Vt, for the select gate channel in order to minimize leakage current for an unselected cell. A low threshold voltage for the control gate is desired to be able to read the memory cell with low voltage and not disturb the programmed charge of the selected memory cell. A high threshold voltage for the select gate is desired because leakage current through the channel is minimized in unselected memory cells. The natural threshold voltage associated with the control gate and select gate portions of a split gate memory cell is largely determined by a difference in the work function of each gate and the underlying channel region. There is herein provided a method and resulting memory structure in which the work function of the select gate is greater than the work function of the control gate for an N-type memory cell (electron majority carrier). For a P-type (hole majority carrier) memory cell an opposite relationship in work function is implemented. As a result, for a memory cell which has channel regions of similar work function underlying the control gate and select gate, the control gate portion has a lower threshold voltage relative to the threshold voltage of the select gate for an N-type split gate memory cell. In one embodiment the method described herein implements a select gate having a work function that is larger than that of a channel below it and implements a control gate having a work function that is lower than that of the channel below it.
Illustrated in
Illustrated in
Illustrated in
Illustrated in
Illustrated in
Illustrated in
Illustrated in
Illustrated in
Illustrated in
Illustrated in
Illustrated in
Illustrated in
Illustrated in
Illustrated in
Illustrated in
Illustrated in
Illustrated in
In another embodiment the process to form a split-gate memory uses the same steps disclosed in connection with
By now it should be appreciated that there has been provided a split-gate memory having a select gate of P conductivity and a control gate of N conductivity for an N-channel memory cell. The P conductivity of the select gate provides a high threshold voltage for the select function. The N conductivity of the control gate provides a low threshold voltage for the biasing function to read the memory cell and avoid disturbing the cell or adjacent memory cells. In other words the work function of the select gate is greater than the work function of the control gate. Typically the differential between the work function of the select gate and the control gate is an amount on the order of equal to or greater than 300 milli-electron volts (meV). Therefore, for N-channel memory cells the work function of the select gate is greater than the work function of the control gate by an amount on the order of greater than 300 milli-electron volts. As used herein the term “work function” is defined as the minimum energy, typically measured in electron volts, needed to remove an electron from a solid to a point immediately outside the solid surface (or energy needed to move an electron from the Fermi energy level into vacuum). Here “immediately” means that the final electron position is far from the surface on the atomic scale but still close to the solid on the macroscopic scale. The work function relationship between the select gate and the control gate of a split gate memory cell is specifically adjusted. When the majority carriers in the channel of the split-gate memory are electrons and the majority carrier type is N conductivity, the threshold voltage of the control gate is lower than the threshold voltage of the select gate in the case that the work functions of the channel regions underlying the control gate and select gate are similar. Because, for the case of an N-type cell with a P-type substrate in the absence of counterdoping, the work function of the select gate is higher than the work function of the channel below it and the work function of the control gate is lower than the channel below it, counter-doping of the channel is not required, although may be optional. It should be understood that embodiments that are discussed apply to both N-channel transistors and P-channel transistors wherein complementary conductivity is implemented when implementing N-channel and P-channel devices. Therefore, when the majority carriers are holes and the majority carrier type is P conductivity, the threshold voltage of the control gate is higher than the threshold voltage of the select gate in the case where the work functions of the channel regions underlying the control gate and the select gate are similar. In this conductivity form the work function of the select gate is lower than the work function of the channel below it and the work function of the control gate is higher than the channel below it for the case of a substrate that is doped N-type. Numerous embodiments described herein may be used and the selection of which embodiment may depend upon processing requirements and desired transistor specifications.
Although the invention has been described with respect to specific conductivity types or polarity of potentials, skilled artisans appreciated that conductivity types and polarities of potentials may be reversed. Moreover, the terms “front,” “back,” “top,” “bottom,” “over,” “under”, “above”, “below” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.
In one form there is herein provided a method of forming a split-gate memory device wherein a select gate is formed having a first work function overlying a first portion of a substrate. A control gate having a second work function is formed overlying a second portion of the substrate proximate the first portion. For a first majority carrier type split-gate memory device, the first majority carrier type are electrons and the first work function is greater than the second work function. For a second majority carrier type split-gate memory device, the second majority carrier type are holes and the first work function is less than the second work function. A first current electrode is formed in the substrate and a second current electrode is formed in the substrate separated from the first current electrode by a channel underlying the control gate and select gate. In one form for the first majority carrier type, the first work function is greater than the second work function by an amount on the order of greater than 300 milli-electron volts. In another form for the second majority carrier type, the first work function is less than the second work function by an amount on the order of greater than 300 milli-electron volts. In another form the select gate and the substrate are of a common conductivity type. In one form prior to forming the select gate and the control gate a counter doped region proximate a top surface of the substrate is formed in at least the first and second portions. The counter doped region is configured to modify a work function of a channel region within the first and second portions of the substrate. The counter doped region includes a conductivity type opposite to a conductivity type of the substrate. In another form the counter doped region is formed by implanting N-type dopant species for the first majority carrier type split-gate memory device. In another form for an N-type split gate memory device, the counter doped region is configured to lower the work function of the channel region. For a P-type split gate memory device, the counter doped region is configured to raise the work function of the channel region. In another form the select gate is formed by forming a layer of select gate dielectric over at least the first portion of the substrate. A layer of select gate material is formed overlying the layer of select gate dielectric. Dopant is implanted into the layer of select gate material, wherein the dopant comprises a conductivity type suitable for establishing the first work function. In another form forming the select gate is formed by forming an implant blocking layer overlying the layer of select gate material. A first edge of the select gate is defined in the layer of select gate material, wherein defining the first edge includes etching to remove the implant blocking layer, the layer of select gate material and the layer of select gate dielectric in at least a region overlying the second portion of the substrate intended for use with respect to the control gate. The control gate is formed by forming a discrete charge storage layer overlying (i) the implant blocking layer, (ii) the layer of select gate material, (iii) the first edge of the select gate, and (iv) a surface of the substrate exposed by defining the first edge of the select gate. A layer of control gate material is formed overlying the discrete charge storage layer. The control gate is defined in the layer of control gate material. Defining the control gate includes etching to remove the layer of control gate material and the discrete charge storage layer in at least a region not intended for use as the control gate. A portion of the control gate overlies the second portion of the substrate. In another form the implant blocking layer is a nitride antireflective coating (ARC) layer. In another form a portion of the control gate also overlies the first edge of the select gate. In yet another form the select gate is formed by defining a second edge of the select gate. Defining the second edge includes etching to remove the implant blocking layer, the layer of select gate material and the layer of select gate dielectric in at least portions thereof outside of a region overlying the first portion of the substrate intended for use with respect to the select gate. Temporary sidewall spacers are formed along exposed sidewalls of the select gate and the control gate. Deep source/drain implant regions are formed within the substrate that are aligned to the temporary sidewall spacers and proximate to the second edge of the select gate and an edge of the control gate opposite to the second edge of the select gate. The temporary sidewall spacers are removed. Source/drain extension implant regions are formed within the substrate in at least regions of the substrate underlying the temporary sidewall spacers prior to their removal. The implant blocking layer overlying the select gate is removed. Sidewall spacers along exposed sidewalls of the select gate and the control gate are formed. In another form the implant blocking layer overlying the select gate is removed by removing substantially all portions, wherein a portion of the implant blocking layer remains proximate the first edge of the select gate, underlying a portion of the discrete charge storage layer of the control gate proximate the first edge of the select gate. In another form the discrete charge storage layer is one selected from the group consisting of a nanocluster layer and a nitride layer containing trap locations.
In another form there is provided a method of forming a split-gate memory device wherein a counter doped region is formed proximate a top surface of a substrate in at least first and second portions. The counter doped region is configured to modify a work function of a channel region within the first and second portions of the substrate. A select gate having a first work function is formed overlying a first portion of a substrate. Forming the select gate includes (i) forming a layer of select gate dielectric over at least the first portion of the substrate, (ii) forming a layer of select gate material overlying the layer of select gate dielectric, and (iii) implanting dopant into the layer of select gate material. The dopant is a conductivity type suitable for establishing the first work function. A control gate is formed having a second work function overlying a second portion of the substrate proximate the first portion. For a first majority carrier type split-gate memory device, wherein the first majority carrier type comprises electrons, the first work function is greater than the second work function. For a second majority carrier type split-gate memory device, wherein the second majority carrier type comprises holes, the first work function is less than the second work function. A first current electrode is formed in the substrate. A second current electrode is formed in the substrate separated from the first current electrode by a channel underlying the control gate and select gate. In another form the select gate is formed by forming an implant blocking layer overlying the layer of select gate material. A first edge of the select gate is defined in the layer of select gate material, wherein defining the first edge includes etching to remove the implant blocking layer, the layer of select gate material and the layer of select gate dielectric in at least a region overlying the second portion of the substrate intended for use with respect to the control gate. The control gate in one form is formed by forming a discrete charge storage layer overlying (i) the implant blocking layer, (ii) the layer of select gate material, (iii) the first edge of the select gate, and (iv) a surface of the substrate exposed by defining the first edge of the select gate. A layer of control gate material is formed overlying the discrete charge storage layer. The control gate is defined in the layer of control gate material by etching to remove the layer of control gate material and the discrete charge storage layer in at least a region not intended for use as the control gate. A portion of the control gate overlies the second portion of the substrate.
In another form there is herein provided a split-gate memory device having a select gate having a first work function overlying a first portion of a substrate. A control gate has a second work function overlying a second portion of the substrate proximate the first portion, wherein (i) for a first majority carrier type split-gate memory device, wherein the first majority carrier type comprises electrons, the first work function is greater than the second work function and (ii) for a second majority carrier type split-gate memory device, wherein the second majority carrier type comprises holes, the first work function is less than the second work function. A first current electrode in the substrate and a second current electrode in the substrate is separated from the first current electrode by a channel underlying the control gate and select gate. In another form a counter doped region is proximate a top surface of the substrate in at least the first and second portions. The counter doped region is configured to modify a third work function of a channel region within the first and second portions of the substrate. For an N-type split gate memory device, the counter doped region is configured to lower the third work function of the channel region. For a P-type split gate memory device, the counter doped region is configured to raise the work function of the channel region. In another form the select gate has a layer of select gate dielectric over at least the first portion of the substrate. A layer of select gate material overlies the layer of select gate dielectric, wherein the layer of select gate material includes a dopant layer, wherein the dopant comprises a conductivity type suitable for establishing the first work function.
Although the invention is described herein with reference to specific embodiments, various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. For example, the sequence of etches leading to formation of the select gate and control gate may be modified or reversed. The shapes and exact position of the select gate relative to the control gate may be modified. Various forms of ion implementation may be used including angled or halo implants. Various semiconductor technologies, including gallium arsenide and metal semiconductor oxide (MOS) may be used to implement the split-gate memory cells.
Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present invention. Any benefits, advantages, or solutions to problems that are described herein with regard to specific embodiments are not intended to be construed as a critical, required, or essential feature or element of any or all the claims.
The terms “a” or “an,” as used herein, are defined as one or more than one. Also, the use of introductory phrases such as “at least one” and “one or more” in the claims should not be construed to imply that the introduction of another claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an.” The same holds true for the use of definite articles.
Unless stated otherwise, terms such as “first” and “second” are used to arbitrarily distinguish between the elements such terms describe. Thus, these terms are not necessarily intended to indicate temporal or other prioritization of such elements.