1. Field of the Invention
The present invention relates to metal traces and, more particularly, to an etched metal trace with reduced RF impedance resulting from the skin effect.
2. Description of the Related Art
Metal traces are common integrated circuit elements that are used in a multi-level interconnect structure to connect together various elements of a circuit. In addition, a metal trace can be used to form an integrated circuit inductor by forming the trace to have a number of coils or loops. Inductors are common circuit elements in radio frequency (RF) applications, such as digital cellular telephones.
As shown in
As further shown in
One important measure of a metal trace is the RF impedance of the trace, which affects the quality factor or Q of an inductor formed from the metal trace. High Q inductors are desirable in a number of RF circuits, such as resonant circuits. The Q of an inductor is a measure of the ratio of magnetic energy stored in the inductor versus the total energy fed into the inductor, and is given by equation (EQ.) 1 as:
Q=ωL/Z, EQ. 1
where ω is related to the frequency f of the signal applied to the inductor (ω=2(pi)(f)), L represents the inductance of the inductor, and Z represents the RF impedance of the inductor. (Impedance is the vector sum of resistance and reactance, and introduces a phase shift.) Thus, as indicated by EQ. 1, the smaller the impedance, the higher the Q of the inductor.
One problem with metal traces is that when gigahertz-frequency signals are placed on the trace, the skin effect causes current to flow primarily at the surface. This effectively increases the RF impedance of the trace which, in turn, lowers the Q of an inductor formed from the trace.
One common approach to reducing the impedance of an integrated circuit inductor is to increase the size of the metal trace. However, in integrated circuit applications, there are practical limitations to the size of the metal trace. As a result, there is a need for a metal trace with reduced RF impedance which, in turn, allows a high Q integrated circuit inductor to be realized from the trace.
The present invention provides a metal trace that has reduced RF impedance at gigahertz frequencies. When the metal trace is formed to have a number of loops, the looping metal trace forms an integrated circuit inductor, while the reduced RF impedance increases the Q of the inductor.
A semiconductor structure in accordance with the present invention includes a layer of insulation material that is formed over a semiconductor substrate. In addition, the semiconductor structure includes a metal trace that is formed in the layer of insulation material. The metal trace has a base region and a plurality of spaced-apart fingers that extend away from the base region. The metal trace can be formed to have a number of loops, and the loops can be formed to lie substantially in the same plane.
The present invention also includes a method of forming a semiconductor structure that includes the step of forming a layer of insulation material over a semiconductor substrate. The method further includes the steps of forming a layer of conductive material on the layer of insulation material, and etching the layer of conductive material to form a trace. The trace has a top surface. In addition, the method includes the step of etching the trace to form a number of slot openings in the top surface of the trace.
A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description and accompanying drawings that set forth an illustrative embodiment in which the principles of the invention are utilized.
As shown in
As further shown in
In operation, when a signal in the gigahertz frequency range is placed on metal trace 214 by circuit 210 or circuit 212, current flows primarily at the surface of metal trace 214 due to the skin effect. Thus, in accordance with the present invention, since current flows primarily at the surface and fingers 222 substantially increase the surface area of metal trace 214, fingers 222 allow more current to flow. As a result, fingers 222 effectively reduce the RF impedance of metal trace 214.
Thus, the present invention reduces the RF impedance of a metal trace that interconnects two gigahertz frequency devices. (The metal trace connecting together two gigahertz frequency devices can be formed from any one of the layers of metal used to form the metal interconnect structure, such as the first layer of metal, or a combination of metal layers and vias.)
As described in greater detail below, inductor 300 is formed from a metal trace that has been formed to have an increased surface area. The increased surface area, in turn, reduces the RF impedance of the metal trace when gigahertz-frequency signals are placed on the trace. As a result, the metal trace of the present invention can be used to form integrated circuit inductors with an increased Q.
In the example shown in
As further shown in
In addition, metal trace 314 has a first end 320 that is formed over via 312 to make an electrical connection with via 312, and a second end 322. (In this example, second end 322 can be connected to a via connected to a metal-4 trace, or a via connected to a pad or another overlying metal trace.)
Metal trace 314 also has a width W (of approximately four microns) and a depth D (of approximately four microns). Further, metal trace 314 makes one and a half loops in the same plane. (Trace 314 is not limited to one and a half loops, but can be formed with a different number of loops.)
As further shown in
In operation, when a signal in the gigahertz frequency range is input to inductor 300, current flows primarily at the surface of metal trace 314 due to the skin effect. Thus, in accordance with the present invention, since current flows primarily at the surface and fingers 326 substantially increase the surface area of metal trace 314, fingers 326 allow more current to flow.
As a result, fingers 326 effectively reduce the RF impedance of metal trace 314, thereby increasing the Q of inductor 300. In addition, as illustrated by
In addition, insulation layer 410 can be formed on the surface of the substrate of the device, or on top of a metal trace that is formed from any of the layers of metal that are used to form the metal interconnect structure of the device. For example, when a semiconductor integrated circuit is fabricated with a five layer metal process, insulation layer 410 can be formed on the metal-4 layer.
As further shown in
Trace 416 can be formed to have a number of loops that lie substantially in the same plane, thereby forming an inductor. In addition, trace 416 can be connected to a contact or a via formed in insulation material 410. (Trace 416 can contact more than one contact or via, or no vias if an overlying metal layer and vias are used to make an electrical connection to trace 416). Once trace 416 has been formed, mask 414 is removed.
After this, as shown in
Following this, as shown in
As further shown in
Further, the line of triangles represent an inductor formed from a metal trace in accordance with the present invention that has three slot openings that are each two microns deep and 0.2 microns wide. As shown in
It should be understood that the above descriptions are examples of the present invention, and that various alternatives of the invention described herein may be employed in practicing the invention. Thus, it is intended that the following claims define the scope of the invention and that structures and methods within the scope of these claims and their equivalents be covered thereby.
This is a divisional application of application Ser. No. 10/219,212 filed on Aug. 15, 2002, now U.S. Pat. No. 6,864,581 issued on Mar. 8, 2005. The present invention is related to application Ser. No. 10/727,451 filed on Dec. 3, 2003 for “Method of Forming a Dual Damascene Metal Trace with Reduced RF Impedance Resulting from the Skin Effect” by Peter J. Hopper et al., application Ser. No. 10/820,476 filed on Apr. 8, 2004 for “Method of Forming a Metal Trace with Reduced RF Impedance Resulting from the Skin Effect” by Peter J. Hopper et al., and application Ser. No. 11/013,490 filed on Dec. 15, 2004 for “Method of Forming a Conductive Trace with Reduced RF Impedance Resulting from the Skin Effect” by Peter J. Hopper et al.
Number | Name | Date | Kind |
---|---|---|---|
3573540 | Osepchuk | Apr 1971 | A |
4165558 | Armitage, Jr. et al. | Aug 1979 | A |
4541893 | Knight | Sep 1985 | A |
5434094 | Kobiki et al. | Jul 1995 | A |
5472901 | Kapoor | Dec 1995 | A |
5741741 | Tseng | Apr 1998 | A |
5952704 | Yu et al. | Sep 1999 | A |
5976972 | Inohara et al. | Nov 1999 | A |
5986346 | Katoh | Nov 1999 | A |
5998299 | Krishnan | Dec 1999 | A |
6051470 | An et al. | Apr 2000 | A |
6107177 | Lu et al. | Aug 2000 | A |
6150725 | Misawa et al. | Nov 2000 | A |
6191023 | Chen | Feb 2001 | B1 |
6218302 | Braeckelmann et al. | Apr 2001 | B1 |
6232215 | Yang | May 2001 | B1 |
6258720 | Gris | Jul 2001 | B1 |
6277727 | Kuo et al. | Aug 2001 | B1 |
6326673 | Liou | Dec 2001 | B1 |
6362012 | Chi et al. | Mar 2002 | B1 |
6413832 | Wu et al. | Jul 2002 | B1 |
6417087 | Chittipeddi et al. | Jul 2002 | B1 |
6444517 | Hsu et al. | Sep 2002 | B1 |
6495469 | Yang et al. | Dec 2002 | B1 |
6566242 | Adams et al. | May 2003 | B1 |
6613668 | Meijer et al. | Sep 2003 | B1 |
6703710 | Hopper et al. | Mar 2004 | B1 |
6740956 | Hopper et al. | May 2004 | B1 |
6853079 | Hopper et al. | Feb 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
Parent | 10219212 | Aug 2002 | US |
Child | 10759621 | US |