The present disclosure relates to a method of manufacturing a semiconductor device having an insulation layer on selective trench sidewalls.
Many applications use fast switching, low loss insulated gate bipolar transistors (IGBTs) or metal oxide semiconductor field-effect transistors (MOSFETs). Trench gate IGBTs with uniform thin oxide have high turn on energy (EON) and turn off energy (EOFF) losses due to high gate collector capacitance (CGC) and gate emitter capacitance (CGE)
Asymmetric trench oxide (thin oxide in a portion of one trench sidewall and thick oxide in the remaining areas) to improve performance in trench gate IGBTs and MOSFETs with Silicon and SiC. For example, within IGBTs it is advantageous to provide thick oxide in trench sidewall regions not used as a conduction channel and to provide thin oxide in regions where conduction channels are formed. This reduces the gate collector capacitance (CGC) and gate emitter capacitance (CGE)and improves the switching speed. This also reduces the turn on energy loss (EON) and the turn off energy loss (EOFF). In the case of SiC where electric field is 10× higher that silicon, the gate structure also enhance breakdown voltage (BV) capability.
Currently available processes for manufacturing a trench with a non-constant oxide layer are unreliable and result in low yields.
Traditional processing methods rely on using the photolithographic exposure dose to determine etch depth. Due to inherent inaccuracy, the etch depth has the tendency to vary significantly from one site to another across a wafer, from wafer to wafer, and between batches.
“IGBT with superior long-term switching behaviour by asymmetric trench oxide”, Proceedings of the 30th International Symposium on Power Semiconductor Devices & ICs 2018, pp 24-27 relates to an IGBT chip with a trench having an asymmetric thick oxide layer and process for manufacturing the chip.
This method of manufacture results in large variation of X from wafer to wafer and die to die on a wafer. There is also reduced integrity and stability of the photoresist within the trench during the etch process.
Aspects and preferred features are set out in the accompanying claims.
According to an embodiment of the present disclosure, there is provided a method of manufacturing a semiconductor device having one or more trenches with an insulation layer, wherein the one or more trenches with an insulation layer are manufactured using the steps of:
Forming a first insulation layer may comprise forming a thick insulation layer, and the hydrophilic layer may be deposited over the thick insulation layer, and forming a second insulation layer may comprise forming a thin insulation layer on the sidewall of the first side of the one or more trenches, wherein the thin insulation layer is thinner than the thick insulation layer.
Alternatively, forming a first insulation layer may comprise forming a thin insulation layer, and forming a second insulation layer may comprise forming a thick insulation layer over the thin insulation layer, wherein the thin insulation layer is thinner than the thick insulation layer.
The presently disclosed method of manufacturing a semiconductor device includes a step of depositing a hydrophilic layer. The hydrophilic layer means that the etchant, in the later step of performing a wet etch, uses capillary action to etch the insulation layer on the sidewalls, below the surface of the photoresist material. The capillary action etches down a channel between the hydrophilic layer and the material (for example, silicon) of the semiconductor device outside the trench. This also allows etching below the surface of the insulation layer, allowing deeper channels to be etched. Furthermore, this helps to achieve uniformity and consistency in both the etching process and the width and depth of the etched portion of the insulation layer. This also increases the controllability of the manufacturing process, in particular the width and depth of the etched portion.
The disclosed manufacturing process includes performing a wet etch that etches down a channel along the sidewall of the trench. This process facilitates the manufacture of devices having trenches with asymmetric or symmetric trench gate regions, having two different insulation layer thicknesses on a sidewall of a trench.
The herein disclosed manufacturing process improves uniformity of channel etch depth and width, and therefore improves electrical performance uniformity from die to die. The disclosed process also has improved process control and yield. The disclosed process results in a reduced number of defects caused by instability of photoresist during wet etch down deep trenches, compared to state-of-the-art methods of manufacturing trenches.
The method may be used to process devices of Silicon, SiC, GaN, and other materials used in semiconductor devices.
The method may be used to manufacture insulated gate bipolar transistors (IGBTs), metal oxide semiconductor field-effect transistors (MOSFETs), MOS-Controlled Thyristors, or other semiconductor power devices.
Depositing a photoresist material may be a two-step process that includes depositing a photoresist material and then exposing the hydrophilic layer on an upper region of a first side of the one or more trenches.
The method may further comprise depositing a filling material after growing the thin insulation layer.
The hydrophilic layer may comprise nitride. The hydrophilic layer may comprise SixNy (silicon nitride) or another material with good wettability or a high degree of wetting. The wettability modulates etch rate down trench side-walls, and enables uniformity of etch distance and repeatability of the process. If wettability is not sufficient, some areas will etch faster than others down the trench walls by the capillary action. A material with high degree of wetting improves the capillary action that etches down a channel. The wettability property of the hydrophilic layer allows accurate control of etch depth and ensures uniformity of the etch process down the etched channel.
The hydrophilic layer may have a thickness between 1000 Å and 2500 Å. The thickness of the hydrophilic layer mains integrity during the wet etch/capillary etch process.
The step of performing a wet etch may be carried out using a buffered oxide etch (BOE). The semiconductor device or wafer may be immersed in the BOE in order to etch the insulation layer along any exposed mesa region and trench sidewalls. Exposure to the bottom of deep trenches is difficult except for very wide trenches. The use of a wet etch means that exposure to the bottom of the trench is not required. The wet etch makes use of capillary action of the etch solution (such as BOE 7:1 HCL) to etch down the exposed sidewall and up the second trench sidewall to a desired distance.
The buffered oxide etch may comprise hydrofluoric (HF) acid. Hydrofluoric acid is a suitable solution for use in semiconductor manufacturing, and provides sufficient etch rate to make the process manufacturable.
Forming a thick insulation layer may comprise thermally growing a thick oxide layer using a local oxidation of silicon process.
Alternatively, forming a thick insulation layer may comprise depositing a thick oxide layer.
Depositing a thick oxide layer may be carried out using Tetraethyl Orthosilicate (TEOS) deposition. TEOS deposition is very conformal.
The thick insulation layer may have a thickness between 1800 Å and 5000 Å.
Growing a thin insulation layer may comprise thermally growing a thin oxide layer at 900° C. to 1100° C.
The thin insulation layer may have a thickness between 500 Å to 1800 Å.
The method may comprise manufacturing one or more trenches with an asymmetric insulation layer. The one or more trenches may have one sidewall with an insulation layer of two different thicknesses, and one sidewall with an insulation layer of constant thickness. The step of performing a wet etch may be used to etch along only one sidewall of the one or more trenches.
Alternatively or additionally, the method may comprise manufacturing one or more trenches with a symmetric insulation layer. The one or more trenches may have both sidewalls each with an insulation layer of two different thicknesses. Depositing a photoresist material may comprise exposing the hydrophilic layer on an upper region of two sides of the one or more trenches. The method may further comprise performing a wet etch process to etch the insulation layer on two sidewalls of the one or more trenches to a predetermined distance below a surface of the photoresist material, and growing a thin insulation layer on the two sidewalls of the one or more trenches.
The method may comprise manufacturing at least two trenches each with an insulation layer. A first trench may be separated from a second trench by a mesa region between the two trenches. The first side of the first trench may be adjacent to the first side of the second trench. Depositing a photoresist material may comprise exposing the hydrophilic layer in the mesa region between the first and second trenches.
The method may further comprise removing the hydrophilic layer in the mesa region between the two trenches. This allows the thick oxide in the mesa region to be removed by etching, as the thick oxide in the mesa region is therefore not protected by the hydrophilic layer. This also removes the hydrophilic layer above the thick oxide on the trench sidewall so that the thick oxide on the sidewall can be etched.
Removing the hydrophilic layer in the mesa region may comprise removing the hydrophilic layer such that a top surface of the hydrophilic layer is recessed relative to a surface of the thick oxide layer.
The method may further comprise performing a wet etch process to etch the insulation layer on the mesa region. This removes the thick insulation layer on the mesa region.
The present disclosure will be understood, by way of example only, from the detailed description that follows and from the accompanying drawings in which:
The active trenches T1 shown in this embodiment each have an asymmetric oxide. In this embodiment only the electron conduction channel region has thin oxide 210, and the remaining sidewall and bottom of each of the active trenches T1 have thick oxide 204. The thin oxide 210 in the channel region reduces the input capacitance (Cin) and CGC. This results in reduced gate charge and faster turn-off and turn-on times, therefore reducing EON and EOFF respectively.
Whilst the auxiliary trenches T2 are shown as having thick oxide insulation 204, alternatively the disclosed method could be used to manufacture a semiconductor device having auxiliary trenches with symmetric thin oxide or having variable oxide thickness.
The skilled person will understand that in the preceding description and appended claims, positional terms such as ‘above’, ‘overlap’, ‘under’, ‘lateral’, etc. are made with reference to conceptual illustrations of an apparatus, such as those showing standard cross-sectional perspectives and those shown in the appended drawings. These terms are used for ease of reference but are not intended to be of limiting nature. These terms are therefore to be understood as referring to a device when in an orientation as shown in the accompanying drawings.
It will be appreciated that all doping polarities mentioned above could be reversed, the resulting devices still being in accordance with embodiments of the present invention.
Although the disclosure has been described in terms of preferred embodiments as set forth above, it should be understood that these embodiments are illustrative only and that the claims are not limited to those embodiments. Those skilled in the art will be able to make modifications and alternatives in view of the disclosure, which are contemplated as falling within the scope of the appended claims. Each feature disclosed or illustrated in the present specification may be incorporated in the disclosure, whether alone or in any appropriate combination with any other feature disclosed or illustrated herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/066909 | 6/18/2020 | WO |