Ultra-shallow semiconductor junctions are formed by ion implantation of dopant impurities into a semiconductor crystalline material. Such junctions consist of a P-type doped region interfacing with an N-type doped region of the semiconductor material, so that such junctions may be referred to as PN junctions. The ion implantation process places most of the implanted dopant atoms into interstitial sites in the semiconductor crystal lattice and damage from the ion implant process transforms much of the semiconductor material from a crystalline to an amorphous state. At this point, therefore, the implanted dopant atoms are not chemically bonded with the silicon atoms of the wafer surface and therefore do not significantly affect the properties of the material, until the material is re-crystallized and the implanted atoms are somehow moved to substitutional sites in the crystal lattice. Returning the semiconductor material to its crystalline state and moving the implanted dopant atoms into substitutional sites in the crystal lattice requires a post ion implant annealing step. The best post-implant annealing process, particularly for devices with feature sizes smaller than 65 nm, is dynamic surface annealing. Dynamic surface annealing uses a single intense laser beam from an array of coherent CW lasers formed as a thin (10's or 100's of microns wide) long beam. This beam scanned in the direction of its narrow dimension across the wafer surface, typically in a raster pattern for example, until the entire wafer surface has been scanned. This process is preferred above all others because the wafer temperature is elevated to re-crystallization levels (e.g., near the melting temperature of the semiconductor material) over an extremely small zone that moves with the scanning of the beam. This zone is confined approximately to the width of the narrow line beam and to a below-surface depth in the wafer of only 10's of microns. The bulk of the wafer remains at a much cooler temperature so that each region is immediately cooled to its prior (ambient) temperature as soon as the laser beam moves beyond the region. Moreover, each point on the wafer surface is raised to the re-crystallization (near melting) temperature for an extremely short amount of time (e.g., a few milliseconds) before being immediately cooled back to its ambient temperature by conduction to the surrounding bulk of the wafer. As a result, diffusion or movement of the implanted dopant atoms is reduced to the smallest average distance heretofore attained, thus solving a fundamental problem in the fabrication of below-65 nanometer semiconductor devices.
One problem inherent in the dynamic surface anneal process is that the extremely narrow surface region illuminated by the intense line beam expands and bulges relative to the remainder of the surface, thereby creating significant stress in the underlying thin film structures. One problem this creates is that the stress in the interface between the gate insulator (the thin gate oxide) and the underlying semiconductor layer (the source-drain channel) increases defects in the bonds between the silicon dioxide material of the gate insulator and the underlying crystalline silicon material. These defects correspond to surface states in the gate oxide-silicon interface that interact with charge flowing in the source-drain channel and thereby detract from the device performance. Increasing the number of such defects, or density of surface states detracts from device performance. The surface state density is measured by well-known techniques involving an observation of the change in capacitance across the gate oxide-silicon interface with applied voltage. The problem with the dynamic surface anneal process is that the surface state density increases as the result of the stresses arising during annealing, and specifically from the stress of the expansion of the narrow illuminated portion of the wafer surface. There has seemed to be no way of avoiding this problem.
A method of forming transistors on a wafer includes forming gates over gate insulators on a surface of the wafer and ion implanting dopant impurity atoms into the wafer to form source and drain regions aligned on opposite sides of each gate. The wafer is then annealed by pre-heating the bulk of the wafer to an elevated temperature over 350 degrees C. but below a temperature at which the dopant atoms tend to cluster. Meanwhile, an intense line beam is produced having a narrow dimension along a fast axis from an array of coherent CW lasers of a selected wavelength. This line beam is scanned across the surface of the heated wafer along the direction of the fast axis, so as to heat, up to a peak surface temperature near a melting temperature of the wafer, a moving localized region on the surface of the wafer having (a) a width corresponding to the narrow beam width and (b) an extremely shallow below-surface depth. During the scanning step, the surface state density at the interface between the semiconductor material and the gate insulator is minimized by continuing to maintain the temperature of the bulk of the wafer outside of the moving localized region at said elevated temperature, while maintaining the rate at which the line beam is scanned along the fast axis at a rate in excess of 300 mm/sec.
Referring to
To solve such problems, one approach might be to decrease the DSA peak temperature, for example by reducing the power of the laser beam. But this would compromise the level of dopant activation (which is directly related to transistor performance), quality and productivity of the dynamic surface anneal process.
We have discovered a DSA process in which such a large increase in surface state density is avoided regardless of peak wafer surface temperature, and in which the sensitivity of surface state density to peak DSA anneal temperature is significantly reduced. Specifically, we have discovered that the combination of a higher laser beam scan rate along the fast axis with a higher bulk wafer temperature (as distinguished from the peak DSA annealing temperature at the wafer surface) has the combined effect of (1) reducing the increase in surface state density and (2) reducing the sensitivity of surface state density to peak annealing temperature. A process for forming PN junctions in a semiconductor material embodying this concept is depicted in
The anneal process begins by depositing across the surface of the wafer a thin film constituting an amorphous carbon layer that serves as an optical absorber layer having a high extinction coefficient at 810 nm (block 430 of
(a) continuing to maintain the temperature of the bulk of the wafer (outside of the moving localized region) at the elevated temperature above 350 degrees C., preferably between about 400-475 degrees C. (block 472 of
(b) maintaining the rate at which the line beam is scanned along the fast axis at the highest allowable rate in excess of 300 mm/sec, e.g., at 400 mm/sec or preferably at a faster rate such as 600 mm/sec (block 474 of
These data demonstrate that the minimum surface state density is obtained with higher bulk wafer temperature and faster scan rate.
First working example: laser beam scan rate along the fast axis: 400 mm/sec, bulk wafer temperature: 400 degrees C.
Second working example: laser beam scan rate along the fast axis: 500 mm/sec, bulk wafer temperature: 425 degrees C.
Third working example: laser beam scan rate along the fast axis: 600 mm/sec, bulk wafer temperature: 450 degrees C.
While the invention has been described in detail by specific reference to preferred embodiments, it is understood that variations and modifications thereof may be made without departing from the true spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/856,622, filed Nov. 3, 2006.
Number | Name | Date | Kind |
---|---|---|---|
3778791 | Lewicki et al. | Dec 1973 | A |
4099875 | McMahon et al. | Jul 1978 | A |
4305640 | Cullis et al. | Dec 1981 | A |
4448547 | Wickersheim | May 1984 | A |
4647774 | Brisk et al. | Mar 1987 | A |
4730113 | Edwards | Mar 1988 | A |
5238858 | Matsushita | Aug 1993 | A |
5463202 | Kurosawa et al. | Oct 1995 | A |
5861992 | Gelbart | Jan 1999 | A |
6080236 | McCulloch et al. | Jun 2000 | A |
6240116 | Lang et al. | May 2001 | B1 |
6494371 | Rekow et al. | Dec 2002 | B1 |
6530687 | Suzuki et al. | Mar 2003 | B1 |
6531681 | Markle et al. | Mar 2003 | B1 |
6747245 | Talwar et al. | Jun 2004 | B2 |
6771686 | Ullman et al. | Aug 2004 | B1 |
6780692 | Tatsuiki et al. | Aug 2004 | B2 |
6809012 | Yamazaki et al. | Oct 2004 | B2 |
6895164 | Saccomanno | May 2005 | B2 |
6987240 | Jennings et al. | Jan 2006 | B2 |
7005601 | Jennings | Feb 2006 | B2 |
7129440 | Adams et al. | Oct 2006 | B2 |
7135392 | Adams et al. | Nov 2006 | B1 |
20030196996 | Jennings et al. | Oct 2003 | A1 |
20040095983 | Whitley | May 2004 | A1 |
20040149217 | Collins et al. | Aug 2004 | A1 |
20040179807 | Tanaka | Sep 2004 | A1 |
20040188399 | Smart | Sep 2004 | A1 |
20040198028 | Tanaka et al. | Oct 2004 | A1 |
20040263986 | Brown | Dec 2004 | A1 |
20050175285 | Reynolds et al. | Aug 2005 | A1 |
20060008237 | Imade | Jan 2006 | A1 |
20060102607 | Adams et al. | May 2006 | A1 |
20060105585 | Jennings et al. | May 2006 | A1 |
20070221640 | Jennings et al. | Sep 2007 | A1 |
20090084986 | Adams et al. | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
10339237 | Mar 2004 | DE |
0 231 794 | Aug 1987 | EP |
0458388 | Nov 1991 | EP |
57099747 | Jun 1982 | JP |
200191231 | Mar 2000 | JP |
WO 03089184 | Oct 2003 | WO |
WO 2004044955 | May 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20080108209 A1 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
60856622 | Nov 2006 | US |