Not Applicable.
Not Applicable.
Not Applicable.
The disclosure relates generally to high voltage phasing voltmeters and more particularly, to implementation of a peak hold function.
Electrical power distribution systems often include overhead electrical power distribution lines mounted upon poles by a wide variety of mounting structure. Other distribution systems include underground distribution lines in which protected cables run under the ground surface. It is often necessary to take phase-to-phase voltage measurements across transmission lines while testing for induced or live power lines or equipment.
Known high voltage safety line detectors, meters and testers comprise high resistance probes connected in series with a calibrated panel meter to read the voltage across the phase-to-phase or phase-to-ground terminals. They are designed for use as safety tools by high voltage line maintenance workers to verify the status of the line or equipment as nominal, induced or de-energized. Known devices for providing such measurements include contact type and non-contact type. With contact type a reference probe or transmitter and a meter probe or receiver are connected in series with a cable as the loop is closed with load terminals.
Under normal conditions, a meter reading is valid only while the probes are electrically connected to load terminals. Once the probes are removed from the load terminals, the meter does not show the measured value. If long extension poles are being used, then the meter is spaced a distance from the lineman. This can make it difficult for the lineman to read the meter while taking measurements.
Existing meters have functionality to store the peak rms value of an AC voltage. However, these systems use a microcontroller approach which requires software development time, and additional hardware costs for the microcontrollers and analog to digital converters and the like. Moreover, these devices do not show true rms value of the voltage on the line. Instead, such devices are generally providing a calculated value based on peak voltage which does not correspond to the true rms value.
The present disclosure is directed to improvements in high voltage phasing voltmeters.
The disclosure relates to a high voltage phasing voltmeter that displays the true rms voltage of the line on a display even after removing the probes from the load terminals.
In one aspect there is disclosed a high voltage phasing voltmeter comprising first and second probes. Each probe comprises an electrode for contacting a high voltage electrical conductor. The electrodes are connected in series with a resistor. A meter comprises a housing enclosing an electrical circuit for measuring true rms voltage. The electrical circuit comprises an input circuit for connection to the first and second probes and developing a scaled voltage representing measured voltage across the electrodes. A converter circuit converts the scaled voltage to a DC signal representing true rms value of the measured voltage. A peak hold circuit is connected to the converter circuit to hold a peak value of the true rms value. A display is connected to the peak hold circuit for displaying the peak value of the true rms value.
The input circuit may comprise a filter circuit. The converter circuit may convert an AC input signal to a DC output signal. The peak hold circuit may comprise a rectifier circuit having an input connected to the converter circuit and having an output connected to a capacitor to hold the peak value of the true rms value. The capacitor may be connected by a buffer to the display. The rectifier circuit may comprise an operational amplifier connected to a transistor switch. The capacitor may have high isolation resistance. The housing may be integral with the hand held shield for one of the probes and further comprises a cable electrically connected between the electrical circuit and the other of the probes. The electrical circuit may comprise a battery operated circuit.
There is disclosed in accordance with another aspect a portable high voltage phasing voltmeter comprising a first probe and a second probe each comprising an elongate insulated shield. An electrode extends from a distal end of the shield for contacting a high voltage electrical conductor. A resistor in the shield is connected in a series with the electrode. A meter comprises a housing enclosing an electrical circuit for measuring true rms voltage. The electrical circuit comprises an input circuit for connection to the first and second probe resistors and developing a scaled voltage representing measured voltage across the electrodes. A converter circuit converts the scaled voltage to a DC signal representing true rms value of the measured voltage. A peak hold circuit is connected to the converter circuit to hold a peak value of the true rms value. A display is connected to the peak hold circuit for displaying the peak value of the true rms value.
Other features and advantages will be apparent from a review of the entire specification, including the appended claims and drawings.
Referring initially to
The voltmeter 10 comprises a first probe 20, also known as a meter probe, and a second probe 22, also known as a reference probe. A meter 24, see also
Referring also to
As shown in
Referring to
The cable 30 comprises a conventional coaxial cable. The cable is used for connecting the second probe 22 to the electrical circuit 50 in a conventional manner. This is illustrated generally in
The first probe 20 includes a high voltage resistor 52 in the shield 21 electrically connected between the first electrode 26 and a voltage sensing circuit 54. The second probe 22 includes a high voltage resistor 56 in the shield 23 electrically connected between the second electrode 28 and the voltage sensing circuit 54. The high voltage resistors 52 and 56 are illustrated to be 25 Megohm resistors. However, different resistance values could be used, as will be apparent.
As is conventional, the measured high voltage in the line system 12 is scaled down using the high resistance probes 20 and 22. The voltage sensing circuit 54 takes samples of the measured voltage between the electrodes 26 and 28. The scaled down voltage is filtered for high frequency and low frequency noise at a filtering and amplifier circuit 56 and fed to a true rms converter 58. The circuits 54 and 56 together define an input circuit. The true rms converter develops a DC output voltage fed to a precision rectifier circuit 60 which is connected in a loop with a peak hold element in the form of a capacitor 62 with high isolation resistance. The capacitor 66 holds the peak true rms value for a limited time. The output of the capacitor 66 is buffered at a buffer circuit 64 and fed to the digital panel meter 40, see also
Referring to
The DC signal corresponding to true rms voltage is connected to the positive input terminal of an operational amplifier U1. The operational amplifier U1 is also powered by the battery. The output of the operational amplifier U1 is connected to a transistor Q1 configured as a transistor switch which forms a precision rectifier circuit. Particularly, the base and emitter of the transistor Q1 are both connected to the output of the operational amplifier U1. The collector of the transistor Q1 is connected to the positive input terminal of a second operational amplifier U2 of the buffer circuit 64. The capacitor 62 is connected between the transistor Q1 and the second operational amplifier U2. The capacitor 62 is also connected to the negative input terminal of the first operational amplifier U1. The output of the second operational amplifier U2 is connected via a resistor R3 to the negative input terminal of the second operational amplifier U2. The output of the second operational amplifier U2 provides the signal to the digital panel meter 46, see
The voltmeter 10 can be used for measuring voltages of overhead lines, such as shown in
The meter 24 includes the selector button switch 44 which can be used to selectively enable the peak hold circuitry. This is indicated by illumination of the indicator 42. Alternatively, the meter 24 can display actual measured voltage without use of the peak hold circuitry, as will be apparent.
While the voltmeter 10 is described in connection with probes for making electrical contact with the mode terminals, the peak hold circuitry could be used with connectionless phasing volt meters and remote display of high voltage measurement and testing.
Although a few embodiments have been described in detail above, other modifications are possible. For example, the logic flows depicted in the figures do not require the particular order shown, or sequential order, to achieve desirable results. Other steps may be provided, or steps may be eliminated, from the described flows, and other components may be added to, or removed from, the described systems. Other embodiments may be within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3193765 | Bevins | Jul 1965 | A |
5117180 | Swerlein | May 1992 | A |
5136234 | Shaw | Aug 1992 | A |
5315168 | Norton, Jr. | May 1994 | A |
5453749 | Morita | Sep 1995 | A |
5471134 | Oudille et al. | Nov 1995 | A |
5581016 | Gonzalez et al. | Dec 1996 | A |
5714679 | Nichols | Feb 1998 | A |
6380726 | Szabo | Apr 2002 | B1 |
6392402 | Swift | May 2002 | B1 |
6429696 | Kao et al. | Aug 2002 | B1 |
6459252 | Bierer | Oct 2002 | B1 |
6498517 | Miyazaki | Dec 2002 | B2 |
7016796 | Damle et al. | Mar 2006 | B2 |
7642788 | Gallavan | Jan 2010 | B2 |
7746051 | Buchanan et al. | Jun 2010 | B1 |
9329215 | Endo | May 2016 | B2 |
20020135353 | Bierer | Sep 2002 | A1 |
20120074928 | Cs et al. | Mar 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20130069629 A1 | Mar 2013 | US |