The present invention relates generally to optical projection lithography methods and photolithography, and particularly to optical photolithography systems utilizing ultraviolet light (UV) wavelengths below 200 nm, such as UV lithography systems utilizing wavelengths in the 193 nm region.
Projection optical photolithography methods/systems that utilize the ultraviolet wavelengths of light below 200 nm provide benefits in terms of achieving smaller feature dimensions. Such methods/systems that utilize ultraviolet wavelengths in the 193 nm wavelength regions have the potential of improving the manufacturing of integrated circuits with smaller feature sizes but the commercial use and adoption of below 200 nm UV in high volume mass production of integrated circuits has been slow. Part of the slow progression to below 200 nm UV by the semiconductor industry has been due to the lack of economically manufacturable optical photolithography element high purity fused silica glass with high quality optical performance. For the benefit of ultraviolet photolithography in the 193 nm region such as the ArF excimer laser emission spectrum to be utilized in the manufacturing of integrated circuits there is a need for optical photolithography element fused silica glass and optical elements thereof that have beneficial optical properties and that can be manufactured economically and utilized with below 200 nm UV photons.
There is a need for photolytically improving below 300 nm transmission of lithography optical element fused silica glass.
There is a need for photolytically inducing below 300 nm transmission of fused silica glass.
There is a need for photolytically inducing below 300 nm transmission of lithography element fused silica glass which has non-impregnated hydrogen wherein H2 is incorporated into the fused silica glass at the time the glass is made by molten fusing silica particles together.
There is a need for quality improvement and photolytically inducing below 300 nm transmission of fused silica glass which includes SiH* species.
There is a need for quality improvement and photolytically inducing below 300 nm transmission of fused silica glass which includes SiH* species and a H2 content less than 2×1017 molecules/cm3.
The invention includes a deep ultraviolet lithography method. The deep ultraviolet lithography method includes providing a lithography UV λ radiation source for producing photons, providing a photolytically improved transmitting fused silica glass lithography optical element, and transmitting the produced lithography photons through the photolytically improved transmitting fused silica glass lithography optical element. The method includes forming a lithography pattern with the photons and projecting the lithography pattern onto a radiation sensitive lithography printing medium to form a printed lithography pattern.
The invention further includes a method of making an optical element fused silica glass. The method of making includes providing an optical element fused silica glass having a below 300 nm internal transmission T (%/cm) and photolytically exposing the fused silica glass with a <300 nm photonic exposure to provide a photolytically improved transmitting fused silica glass with a below 300 nm increased internal transmittance IN (%/cm) in which IN−T=Δ transmittance (%/cm) and Δ transmittance ≧0.07.
The invention includes an ultraviolet lithography method. As shown in
Providing photolytically improved transmitting fused silica glass lithography optical element preform body 40 includes providing an optical element fused silica glass body 50 having a below 200 nm unbleached internal transmission T (%/cm) and photolytically exposing the fused silica glass with a <300 nm photonic exposure to provide a photolytically improved transmitting fused silica glass body with a below 200 nm increased internal transmittance IN (%/cm) with IN−T=Δ transmittance (%/cm) and Δ transmittance >0.07. As shown in
In a preferred embodiment of the invention, providing fused silica glass having below 300 nm unbleached transmission T (%/cm) includes providing a non-impregnated hydrogen doped fused silica glass. Preferably hydrogen is indigenous to the fused silica glass and is not imported into the glass from the outside such as by a post-glass-forming impregnation process. As shown in
The invention further includes a method of making an optical element fused silica glass 40. As shown in
Preferably providing an optical element fused silica glass 50 having a below 300 nm unbleached internal transmission T (%/cm) includes providing an optical element fused silica glass 50 having a below 300 nm unbleached transmission T no greater than 99.92%/cm.
Photolytically exposing the glass 50 preferably provides a below 300 nm increased transmittance IN of at least 99.98%/cm.
In a preferred embodiment the method includes photolytically exposing the glass to increase the transmission of the glass such that Δ transmittance ≧0.09, more preferably such that Δ transmittance ≧0.16. The method of photolytically exposing fused silica glass 50 with a <300 nm photonic exposure includes providing a <300 nm light and impinging a <300 nm light 44 on the fused silica glass. As shown in
The method of providing a fused silica glass having a below 300 nm unbleached transmission T (%/cm) includes providing a non-impregnated hydrogen doped fused silica glass 50. Preferably the glass 50 contains hydrogen that is indigenous to the glass, and not imported into the glass with an impregnation treatment. Preferably providing a fused silica glass 50 having a below 300 nm transmission T (%/cm) includes providing a plurality of silica particles 58 together in the presence of hydrogen wherein H2 is incorporated into the fused silica glass 56, such as shown in the direct deposition processes of
Preferably providing the fused silica glass having a below 300 nm unbleached transmission T (%/cm) includes providing a fused silica glass with a H2 content <2×1018H2/cm3. Preferably providing the fused silica glass having a below 300 nm unbleached transmission T (%/cm) includes providing a fused silica glass with a homogeneous Na contaminant level, preferably with a contamination level less than 20 ppb at both the glass surface region and the interior of the glass. The invention further includes a method wherein providing the fused silica glass 50 includes providing a high purity fused silica glass member having a large dimension D>17 cm and a thickness TH>7 cm, preferably a disk shape with >8 inch diameter, 4 inch thick. High purity fused silica has high internal transmittance in the UV, high refractive index homogeneity, low birefringence and can be formed, shaped and polished into optical elements. Because the light sources used in modern lithographic stepper tools are excimer lasers, resistance to pulsed, high-energy light is also an important lifetime parameter.
Non-reacted molecular hydrogen (H2) present in the fused silica glass can diminish the amount of induced absorption in the glass by reacting with laser radiation formed color centers to give hydrogen-containing species that are much less absorbing in the UV than the unpaired electron species depicted on the left side of equation 1.
Molecular H2 is therefore normally viewed as a desirable entity in high purity fused silica. There are several ways of ensuring that H2 is incorporated into the glass. A simple, but time-consuming method, is high-pressure infiltration impregnation of bulk pieces of glass with H2 gas. This method is time intensive in that one has to rely on the diffusion constant of H2 into silica. For practical purposes, a lens blank sized part (>8″ diameter with a thickness of ˜4 inches) would require 2282 days to load at a temperature of 350° C. With a loading temperature of 800° C., this time is decreased to 68 days. It is also noted that as higher loading temperatures are used to infiltrate the glass, H2 reacts with the glass to yield SiOH and SiH. As will be demonstrated, this process and the reaction product SiH can be detrimental to the transmittance properties of the material. It is clear that not only is this a time intensive process but there are also considerable practical industrial manufacturing issues of using high temperature, high pressure H2 gas to impregnate fused silica glass.
Producing the glass with incorporation of the H2 during the actual formation of the high purity fused silica glass is the preferred method of providing optical element fused silica glass with a below 300 nm unbleached internal transmission and indigenous non-imported non-impregnated hydrogen in accordance with the invention. The preferred method of the invention as shown in
By balancing fuel (CH4, H2), oxidant (O2) and feed gases (SiCl4, OMCTS cyclic siloxane) it is possible to achieve indigenous H2 concentrations in the high purity fused silica glass from <1016 molecules H2/cc SiO2 to 1018 molecules H2/cc SiO2, as measured by the stretch of the H2 molecule by Raman spectroscopy.
We have observed an absorption feature in the Raman spectrum at 2260 cm−1 in high purity fused silica glasses that were H2-loaded and subsequently heated that correlates with the magnitude of the subsequent absorption spike behavior. The spectral position is close to where the SiH vibration is found in photolyzed samples of H2-containing silicas (2280 cm−1). We believe that the vibration at 2260 cm−1 is due to an H-bonded SiH species (that we represent as SiH*) that is formed by the high temperature reaction of H2 with silica and that this species is the photolyzable precursor that yields the Si E′ center. The decrease in absorption is believed to be due to the reaction of the E′ with H, the geminate recombination in equation C, which yields the SiH. To explain the decrease in absorption it is believed that the absorption cross-section of the SiH is significantly less than that of SiH*. The reactions are shown in equations A and B, where the precursor related to the initial absorption spike is denoted as SiH*. Equation C is written below, illustrating the reaction of the E′ center with H to yield the SiH species.
Si—O—Si+H2+heat→SiH*+SiOH* Equation (A)
SiH*+hv→[E′+H] Equation (B)
[E′+H]→SiH Equation (C)
We have discovered that a consequence of the existence of SiH* that transmission of the fused silica glass can be improved by photolytically exposing the glass. We have found that the absorption in fused silica glass with the SiH* species is ultimately seen to go below the initial absorption measurement, that is, the glass becomes more transmitting with this treatment exposure. At short below 200 nm lithography wavelengths such as 193-nm there is absorption due to the low energy tail from the SiH* species that is removed by the photolytic exposure such as with the intense excimer source photolytic exposure. It is believed that the absorption cross-section of the SiH* is significantly larger than that of SiH.
An important practical consideration of SiH* is its influence on the initial transmittance at 193-nm and the removal of the SiH* to provide a fused silica glass with improved and induced transmission. In accordance with the invention high purity fused silica glass was measured with a spectrophotometer to provide a high precision internal transmittance measurement, then the glass was exposed to 193-nm excimer laser irradiation and then re-measured in the spectrophotometer. The spectrophotometric data showed an increase of 0.17% in transmittance at 193-nm, as a consequence of the disappearance of the SiH*.
In accordance with the invention the, photolytic exposure of the fused silica glass to UV light <300 nm results in increased transmittance of the glass at wavelengths below 300-nm. Excimer irradiation and continuous UV lamp sources have been shown to be efficient in this process.
In accordance with the invention the process of forming the fused silica glass at high temperature with conditions of high molecular H2 ambient has been shown to result in the formation of a species in the glass referred to as SiH*. Within a given set of experimental or processing conditions the strength of the SiH* is well correlated with the final molecular H2 content of the glass. This species is presumed to have an electronic transition at high energy (>6.4 eV); it is the low energy, long wavelength tail of this that absorbs at 193-nm. Photolysis of the SiH* diminishes its intensity by cleaving the Si—H* bond. Recombination of the silicon and hydrogen atoms yields a related SiH species that is different from the original SiH* radical. In accordance with the invention the resultant SiH species has a smaller absorption cross-section than that of the SiH* so that formation of this species is not detrimental to transmittance at 193-nm. The conversion of SiH* to SiH via a photolytic process by pre-exposure is the invented procedure for increasing transmittance at wavelengths below 300-nm.
In an embodiment, for exposure of large preform pieces (flood exposure) with respect to industrial manufacturing considerations, a beam expander is utilized to expand an excimer laser beam to provide the excimer irradiations. For lamp exposures a reflective vessel interior, such as that of an integrating sphere, large enough to hold the fused silica optical element preform parts is utilized to ensure homogenous exposure.
It has been observed (
A similar set of experiments were run using 248-nm excimer irradiation. For this set of experiments a fluence of 15 mJ/cm2/pulse was used for 1E6 pulses. Based on laser-induced compaction work, excitation using 248-nm irradiation requires roughly 10× the fluence that 193-nm does, to achieve the same effect. That result suggests that the exposure conditions used for the 193 and 248 exposures are comparable. The 193-nm internal transmittance results, measured before and after the 248 exposure are shown in Table 1.
It was also noted that the transmittance at 248-nm is also increased after exposure as the data in Table 2 show.
A set of fused silica glasses of various H2 contents was also exposed to non-coherent continuous irradiation sources from lamps having output in the UV<300 nm range. The change in transmittance of glass having H2=2.3-3.2 molecules/cc that was subjected to 24 hours of exposure to a Xe lamp is shown in FIG. 21. An approximate increase of 0.15% was observed.
Low pressure mercury lamp exposure was also used to affect a transmittance increase. The data shown in
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
This application is a continuation under 35 U.S.C. §120 of U.S. patent application Ser. No. 09/967,398, entitled “OPTICAL LITHOGRAPHY AND A METHOD OF INDUCING TRANSMISSION IN OPTICAL LITHOGRAPHY PREFORMS,” filed on Sep. 28, 2001, now abandoned. Applicant claims the benefit of priority under 35 U.S.C. §120 of the above-referenced application. Applicant also claims the benefit of priority under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/244,682, filed Oct. 31, 2000.
Number | Name | Date | Kind |
---|---|---|---|
3220814 | Haven et al. | Nov 1965 | A |
4625120 | Caprari | Nov 1986 | A |
4789389 | Schermerhorn et al. | Dec 1988 | A |
4857092 | Meerman | Aug 1989 | A |
4961767 | Schermerhorn et al. | Oct 1990 | A |
5086352 | Yamagata et al. | Feb 1992 | A |
5161059 | Swanson et al. | Nov 1992 | A |
5210816 | Iino et al. | May 1993 | A |
5325230 | Yamagata et al. | Jun 1994 | A |
5410428 | Yamagata et al. | Apr 1995 | A |
5547482 | Chalk et al. | Aug 1996 | A |
5597395 | Bocko et al. | Jan 1997 | A |
5616159 | Araujo et al. | Apr 1997 | A |
5668067 | Araujo et al. | Sep 1997 | A |
5773486 | Chandross et al. | Jun 1998 | A |
5983673 | Urano et al. | Nov 1999 | A |
6058739 | Morton et al. | May 2000 | A |
6205818 | Seward, III | Mar 2001 | B1 |
6263706 | Deliso et al. | Jul 2001 | B1 |
6266978 | Oshima et al. | Jul 2001 | B1 |
6319634 | Berkey et al. | Nov 2001 | B1 |
6333283 | Urano et al. | Dec 2001 | B1 |
6333284 | Otsuka et al. | Dec 2001 | B1 |
6410192 | Priestly et al. | Jun 2002 | B1 |
6466365 | Maier et al. | Oct 2002 | B1 |
6497118 | Schermerhorn | Dec 2002 | B1 |
6541168 | Brown et al. | Apr 2003 | B2 |
6544914 | Kikugawa et al. | Apr 2003 | B1 |
6550277 | Uebbing et al. | Apr 2003 | B1 |
6653024 | Shiraishi et al. | Nov 2003 | B1 |
6782716 | Moore et al. | Aug 2004 | B2 |
20020018942 | Brown et al. | Feb 2002 | A1 |
20020160276 | Moore et al. | Oct 2002 | A1 |
20030121283 | Yu | Jul 2003 | A1 |
20040091798 | Moore et al. | May 2004 | A1 |
Number | Date | Country |
---|---|---|
0 483 752 | May 1992 | EP |
0 636 586 | Feb 1995 | EP |
0 972 753 | Jan 2000 | EP |
0 985 643 | Mar 2004 | EP |
60[1985]-90853 | May 1985 | JP |
1-201664 (1989) | Aug 1989 | JP |
05-152648 | Jun 1993 | JP |
6-24997 (1994) | Apr 1994 | JP |
6-48734 (1994) | Jun 1994 | JP |
6[1994]-166522 | Jun 1994 | JP |
6[1994]-166528 | Jun 1994 | JP |
6-53593 (1994) | Jul 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20040202968 A1 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
60244682 | Oct 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09967398 | Sep 2001 | US |
Child | 10835858 | US |