The invention, in certain embodiments, relates to methods of making flush door skins and assembled doors from universal master boards, to methods of creating ornamental surface designs on flush doors skins, and to the universal master boards, flush door skins, and assembled doors.
There are several known techniques for manufacturing composite, hollow-core doors with ornamental features such as simulated panels and simulated wood grains. Standard wood composite door skins are formed from a relatively thick non-solid mat or bat of material, which is compressed in a press to a reduced thickness door skin. The door skin may optionally then be post-formed in a reforming process, and subsequently finished using primers, pigments, and the like. Respective finished door skins then are secured to opposing sides of a support frame to define a hollow-core door.
A flush door skin is substantially flat or planar, especially along its interior surface which is secured to the support frame. Because flush door skins do not require three-dimensional reshaping in contoured mold cavities, flush door skins are less expensive to manufacture than three-dimensional molded door skins having contoured interior and exterior surfaces. Although flush door skins are principally flat, the exterior surface of a flush door skin may be embossed or otherwise cut or machined to create depressions that give the exterior door skin surface an ornamental appearance. The depressions may, for example, be formed as grooves extending over a significant portion of the door skin to define the boundaries of simulated stiles, rails and other planks and interior panels. It is also known to form patterns of smaller discrete depressions in the exterior surfaces of flush door skins to simulate natural wood grain textures. Such depressions are typically embossed into the exterior surface during compression of the mat or bat into the door blank, or in a subsequent reformation step against a mold die or embossing plate.
One problem that arises in the manufacture of flush door skins is that the uniform ornamental design produced by certain die mold equipment might not appease the distinguishing yet variable tastes and preferences of consumers. One consumer may prefer flush door skins with a single simulated interior panel, while another consumer may desire multiple simulated internal panels, for example. Other ornamental design options that consumers may differ on include the number, shape, site and location of stiles, rails, and other planks and the directional flow of wood grain patterns. The potential number of design options and combinations of ornamental features are many. However, conventional production of each different door design requires its own die sets for pressing the desired ornamental features into the surface of the door skin. In addition, a separate die set may be required for different length door skins, even if the panel design is similar, given the panel dimensions may proportionally change with the overall size of the door. The use of multiple die sets presents considerable storage, costs, operational problems.
One option for addressing these problems is to implement printing technologies such as ink-jet printing to apply graphics simulating wood grain and panels to the exterior surfaces of door skins in a post-pressing step. However, ink decorations alone are not always realistic and aesthetically acceptable to discriminate consumers. Ink decorations alone also lack the textural feel simulation of an authentic object such as natural wood.
Veneering is another post-pressing step for creating ornamental designs such as stiles, rails, and wood graining on the exterior surface of a door skin. Veneering, however, has its own drawbacks, such as lack of realistic texture, the extensive production times required for proper alignment and laying of the veneers, and high cost. Further, veneers can conceal smaller discrete embossments simulating wood grain texture in the exterior surface of the door skin.
Certain conveniences and manufacturing efficiencies could be realized if ornamental features such as stiles, rails, interior panels, and grain direction could be formed in or selected for flush door skins after the skins or precursor boards are pressed in a mold die. The downstream transition of decorating and design selection steps in the manufacturing process would permit the stocking of large numbers of universal or generic flush door skins or door skin precursor boards in inventory while improving production rates. The ornamental designs of the universal/generic flush door skins and/or precursor boards could then be individually tailored to specific customer orders in a post-pressing step or steps.
A first aspect of the invention provides a method of converting universal master boards into flush door skins having different assortments of simulated wood grain patterns. A plurality of universal master boards each having an expansive surface is provided. Each expansive surface has a graphic design of at least first depressions and second depressions in at least first and second surface regions, respectively. The first depressions are substantially parallel to one another and substantially aligned in a first direction to simulate a first wood grain pattern in the first surface region. The second depressions are substantially parallel to one another and substantially aligned in a second direction that is different than the first direction to simulate a second wood grain pattern in the second surface region. The first universal master board is cut to form a first flush door skin having a first exterior surface with a first assortment of simulated wood grains including at least one pattern selected from the simulated first wood grain pattern and the simulated second wood grain pattern. The second universal master board is also cut to form a second flush door skin having a second exterior surface with a second assortment of simulated wood grains including at least one pattern selected from the simulated first wood grain pattern and the simulated second wood grain pattern. The second assortment of simulated wood grains differs from the first assortment of simulated wood grains.
A second aspect of the invention relates to a method of converting universal master boards into flush door skins having different assortments of simulated wood grain patterns. Universal master boards are provided, each board having an expansive surface. Each expansive surface has a graphic design of at least first depressions and second depressions in at least first and second surface regions, respectively. The first depressions are substantially parallel to one another and substantially aligned in a first direction to simulate a first wood grain pattern in the first surface region, the second depressions are substantially parallel to one another and substantially aligned in a second direction that is different than the first direction to simulate a second wood grain pattern in the second surface region. A first universal master board is cut to form a first flush door skin having a first exterior surface with a selected first assortment of simulated wood grains including at least one pattern selected from the simulated first wood grain pattern and the simulated second wood grain pattern. The first assortment of simulated wood grains is demarcated into a plurality of sections representing first ornamental features to establish a first ornamental surface design for the first flush door skin. A second universal master board is cut to form a second flush door skin having a second exterior surface with a selected second assortment of simulated wood grains including at least one pattern selected from the simulated first wood grain pattern and the simulated second wood grain pattern, the second assortment differing from the first assortment. The second assortment of simulated wood grains is demarcated into a plurality of sections representing second ornamental features to establish a second ornamental surface design for the second flush door skin.
A third aspect of the invention relates to a method of converting universal master boards into flush door skins having different assortments of simulated wood grain patterns. A plurality of flush universal master boards each having an expansive surface is provided. Each expansive surface has a graphic design of depressions that are substantially parallel to one another and substantially aligned in a direction to simulate a wood grain pattern. The expansive surface of a first flush universal master board is demarcated into a plurality of sections representing first ornamental features to establish a first ornamental surface design. The expansive surface of a second flush universal master board is demarcated into a plurality of sections representing second ornamental features to establish a second ornamental surface design differing from the first ornamental surface design.
According to a fourth aspect of the invention, a method is provided of making a flush door skin from a universal master board having a surface with a graphic design of first depressions and second depressions in the surface at first and second surface regions, respectively. The first depressions are substantially parallel to one another and substantially aligned in a first direction to simulate a first wood grain pattern in the first surface region. The second depressions are substantially parallel to one another and substantially aligned in a second direction that is different than the first direction to simulate a second wood grain pattern in the second surface region. The surface of the universal master board is sufficiently expansive to permit selective positioning of a hypothetical cutting template having a boundary commensurate with a perimeter of a flush door skin at any one of multiple positions on the surface of the universal master board. At each of the multiple positions, the boundary of the hypothetical cutting template captures a respective one of multiple possible assortments of simulated wood grains. Each of the assortments includes at least one pattern selected from the simulated first wood grain pattern and the simulated second wood grain pattern. The expansive surface of the universal master board is cut along the hypothetical cutting template at the selective position to provide the flush door skin having the selected assortment of simulated wood grains.
According to a fifth aspect of the invention, a universal master board is provided. The universal master board has an expansive surface with a graphic design containing at least first depressions and second depressions in at least first and second surface regions, respectively. The first depressions are substantially parallel to one another and substantially aligned in a first direction to simulate a first wood grain pattern in the first surface region. The second depressions are substantially parallel to one another and substantially aligned in a second direction that is different than the first direction to simulate a second wood grain pattern in the second surface region. The surface of the universal master board is sufficiently expansive to permit selective positioning of a hypothetical cutting template having a boundary commensurate with a perimeter of a flush door skin at any one of multiple possible positions on the surface of the universal master board. At each of the multiple positions the boundary of the hypothetical cutting template captures a respective one of multiple possible assortments of simulated wood grains. Each of the possible assortments comprises at least one pattern selected from the simulated first wood grain pattern and the simulated second wood grain pattern.
Other aspects of the invention, including articles such as pre-assembled doors, kits for assembling a door, methods of assuming doors, apparatus, systems, other methods, and the like which constitute part of the invention, will become more apparent upon reading the following detailed description of the exemplary embodiments and viewing the drawings.
The accompanying drawings are incorporated in and constitute a part of the specification. The drawings, together with the general description given above and the detailed description of the exemplary embodiments and methods given below, serve to explain the principles of the invention. In such drawings:
Reference will now be made in detail to exemplary embodiments and exemplary methods of the invention as illustrated in the accompanying drawings, in which like reference characters designate like or corresponding parts throughout the drawings. It should be noted that the invention in its broader aspects is not necessarily limited to the specific details, representative devices and methods, and illustrative examples shown and described in connection with the exemplary embodiments and exemplary methods.
Referring now more particularly to the drawings, in a universal master board according to an exemplary embodiment of the invention is generally depicted in
The universal master board 20 has an expansive surface 22 shown in plan in
In the exemplary embodiment depicted in
The graphic design of wood grains in the universal master board 20 of
The universal master board 20 may be made of various materials, including materials commonly used in the building industry for door skins. Examples of suitable materials are medium density fiberboard (“MDF”) and high density fiberboard containing a thermosetting resin and cellulosic fibers/particles such as wood. Generally, fiberboard materials contain from about 88 weight percent to about 98 weight percent cellulosic fiber, and from about 2 to about 10 weight percent thermosetting resin. Other materials such as waxes, fire retardants, and other additives may be included as well. Alternative materials that may be selected include sheet molding compounds (SMC), SMC-fiberglass composites, and metal, in particular steel. The universal master board 20 optionally may include one or more coatings and protective layers on its expansive surface, such as described for example in U.S. Pat. No. 6,335,082. As described in the aforementioned patent, the coating or coatings may contain pigments, release agents, resins, additives, etc.
Many different methods of manufacturing composites are known in the art. The principal processes for the manufacture of fiberboard include: (a) wet felted/wet pressed or “wet” processes; (b) dry felted/dry pressed or “dry” processes; and (c) wet felted/dry pressed or “wet-dry” processes. Synthetic binder resins, such as amino resins, urea-formaldehyde resins, phenol-formaldehyde resins, or modified phenol-formaldehyde resins, are often used as binders in these processes. Other binders include, but are not limited to, starches, asphalt, gums, and multi-functional isocyanates. An example of a multi-functional isocyanate-based composite material is disclosed in U.S. Pat. No. 5,344,484 to Walsh.
Cellulosic fibers such as, for example, wood fibers are prepared by the fiberization of woody chip material in a pressurized refiner, an atmospheric refiner, a mechanical refiner, and/or a thermochemical refiner. Generally, in a wet process, the cellulosic fibers are blended in a vessel with large amounts of water to form a slurry. The slurry preferably has sufficient water content to suspend a majority of the wood fibers, such as a water content of at least 95 percent by weight (wt %). The water is used to distribute a synthetic resin binder, such as a phenol-formaldehyde resin over the wood fibers. This mixture is deposited onto a water-pervious support member, such as a fine screen or a Fourdrinier wire, and pre-compressed, whereby much of the water is removed to leave a wet mat of cellulosic material having, for example, a moisture content of at least about 50 wt % based on the weight of dry cellulosic material. The wet mat is transferred to a press and consolidated under heat and pressure to form the molded composite board.
A wet-dry forming process can also be used to produce composites. A wet-dry process typically begins by blending cellulosic material (e.g., wood fibers) in a vessel with a large amount of water. This slurry is then blended with a resin binder. The blend is then deposited onto a water-pervious support member, where a large percentage (e.g., about 50 wt % or more) of the water is removed, thereby leaving a wet mat of cellulosic material having a water content of about 40 wt % to about 60 wt %, for example. This wet mat is then transferred to a zone where much of the remaining water is removed by evaporation by heat to form a dried mat. The dried mat preferably has a moisture content of about 10 wt % or less. The dried mat can be finished at this point or transferred to a press and consolidated under heat and pressure to form a higher density composite board.
In a dry forming process, filler material, such as cellulosic fibers, is generally conveyed in a gaseous stream or by mechanical means. For example, the fibers supplied from a fiberizing apparatus (e.g., a pressurized refiner) may be coated with a thermosetting synthetic resin, such as a phenol-formaldehyde resin, in a blowline blending procedure, wherein the resin is blended with the fiber with the aid of air turbulence. Thereafter, the resin-coated fibers from the blowline can be randomly formed into a mat by air blowing the fibers onto a support member. Optionally, the fibers, either before or after formation of the mat, can be subjected to pre-press drying, for example in a tube-like dryer. The formed mat, typically having a moisture content of less than about 10 wt %, and preferably about 5 wt % to about 10 wt %, then is pressed under heat and pressure to cure the thermosetting resin and to compress the mat into an integral consolidated board.
As an alternative to conventional pressing, steam injection pressing is a consolidation step that can be used, for example, under certain circumstances in the dry and wet-dry process production of consolidated cellulosic composites. In steam injection pressing, steam is injected through perforated heating press platens, into, through, and then out of a mat that includes the synthetic resin and the filler material. The steam condenses on surfaces of the filler and heats the mat. The heat transferred by the steam to the mat as well as the heat transferred from the press platens to the mat cause the resin to cure.
The first and second wood grain patterns 24, 26 can be formed in the expansive surface 22 of the universal master board 20 during mat compression, or via post-forming or embossing. The patterns may have a depth of, for example, about 3 mils (0.003 inch) to about 45 mils (0.045 inch). The depth, width, and length of the depressions will vary depending on the substrate material and the wood species being simulated. Depressions may be variably spaced throughout the expansive surface 22 and may be variable sized.
A pressing die corresponding to the expansive surface of the universal master board 20 is provided with a mold die surface having an inverse relationship to the wood grain patterns. Alternatively, an embossing plate may be used. To make the embossing plate or mold die surface, images of natural pieces of wood are captured using conventional photography methods or may be derived using digital imaging techniques. A plurality of wood boards may be photographed, each for a corresponding surface region of the universal master board. The wood patterns may be of the same or different wood species. The image is altered using either conventional photographic arts or using computer imaging. An inverse of the photographic image of the grain pattern is then transferred to the mold die surface or embossing plate, typically using an etching process. Examples of an embossing plate and embossing process are disclosed, for example, in U.S. Pat. Nos. 7,367,166 and 7,338,612. It should be understood that embodiments of the present invention may involve the use and practice of etching plates and etching techniques other than those described in the aforementioned patents. The present invention encompasses the use of techniques and equipment other than embossing and embossing plates.
According to an embodiment of the invention, to form the universal master board 20, a blank or substrate may be embossed by subjecting it to selected amounts of heat and pressure for a pressing time. Equipment and processing conditions for pressing and post-pressing medium density fiberboard and other particle board are known in the art and described throughout the literature, including, for example, in U.S. Pat. Nos. 6,868,644, 6,471,897, and 6,335,082. When embossing a material used to form a universal master board 20 having wood grain patterns, the etched embossing plate or die set is pressed into the blank to provide the appearance and texture of simulated bundles of wood ticks that form the grain pattern on the resulting door skin surface. A wood grain pattern is a cluster or bundle of spaced, embossed lines, or “ticks”, which extend in a pattern simulating the appearance of wood. The resulting ticks simulate the soft, flowing appearance of natural wood grain. The embossed simulated wood grain pattern optionally may also include tonal portions as described in the above-mentioned U.S. Pat. Nos. 7,367,166 and 7,338,612.
While the formation of the simulated wood grain patterns is discussed above with regard to embossment and similar pressing operations, it should be understood that uniform wood grain patterns may be reproducibly formed in the surface of multiple universal master boards 20 using other techniques, such as laser etching.
In
In a manner described above with respect to
The above detailed description of exemplary embodiments and drawing
In
A second hypothetical cutting template 30b is positioned towards a left portion of the expansive surface 22B of the universal master board 20B in
Notably, the first and second hypothetical cutting templates 30a, 30b encompass overlapping areas of the expansive surface 22B, such that the flush door skins 50 and 52 share a common region (i.e., parts of the vertical wood grain pattern 26B1 and the horizontal wood grain pattern 24B2) of the graphic design on the universal master boards 20B. It should be understood that the hypothetical template 30a or 30b may be selectively positioned at other positions on the expansive surface 22B as well to select from multiple other possible choices of assortments of wood grain patterns 24B1, 24B2, 26B1 and/or 26B2. The presentation of these multiple design options within the limited surface area of the universal master board constitutes a judicious use of resources and significant cost and labor savings.
Markings 61, 62, 63, and 64 demarcate the exterior surface of the flush door skin 60 into a plurality of ornamental surface features 65, 66, 67, 68, and 69. The markings 61, 62, 63, and 64 of the embodiment of
The first vertical mark 61 extends along the length of the flush door skin 60 of
A first horizontal mark 63 extends perpendicularly between the vertical marks 61, 62 proximate to the upper edge of the door skin 60. Unlike the vertical marks 61, 62, the first horizontal mark 63 is not at a boundary of horizontal and vertical simulated grain patterns. The first horizontal mark 63 and the horizontal wood grain pattern proximate to the top of the door skin 60 combine to establish an ornamental surface design of a top rail 67. Likewise, a second horizontal mark 64 extending between the vertical marks 61, 62 proximate to the lower edge of the door skin 60 combines with the horizontal wood grain pattern to simulate the appearance of a bottom rail 68. The central area 69 bordered by the simulated stiles 65, 66 and simulated rails 67, 68 has the appearance of an interior panel member.
Turning to
While the embodiments of
The above detailed description of exemplary embodiments and drawing
While other ornamental features can be provided, the combination of simulated door panels and wood grain is quite popular and has been used in connection with the above description of many of the exemplary embodiments.
A so-called hollow core door 100 according to an embodiment of the invention is shown in
The interior surface (not shown) of the first door skin 102 and the interior surface 104b of the second door skin 104 are secured to opposite sides of a frame 106 using adhesive, fasteners, or other securing methods, devices, methods, etc. The interior surfaces of skins 102, 104 are spaced from one another to define a hollow core that is surrounded by the frame 106. Because the interior surfaces of the door skins 102, 104 are concealed from view, it is not common practice to decorate the interior surfaces, although the interior surfaces may possess a roughened texture to promote bonding to the frame 106. The frame 106 may be made out of wood or other materials, as known in the art. As also known in the art, hollow core door 100 may also include additional support members and/or a core such as foam disposed in the hollow area between the flush door skins 102, 104. For example, the frame 106 may include interior vertical framing members and additional interior horizontal framing members depending upon how and where the panel segments are cut and reassembled.
Articles that may be prepared according to embodiments of the invention include synthetic building components intended to replicate natural wood. Especially contemplated are exterior entry doors and interior passage doors. Other building components that may be subject to the exemplary methods and systems described herein include furniture and cabinet doors, closet and bifold doors, door trim, window frames, furniture elements, cabinetry, picture frames, tables, molded wall paneling, wainscot, siding, decking, wall panels, siding, railings, window trim, architectural trim, flooring, etc. For explanatory purposes, exemplary embodiments below are described in relation to door structures. It should be understood that the methods described herein may be used for marking other building component and articles other than building components.
The foregoing detailed description of the certain exemplary embodiments of the invention has been provided for the purpose of explaining the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use contemplated. This description is not intended to be exhaustive or to limit the invention to the precise embodiments disclosed. Although only a few embodiments have been disclosed in detail above, other embodiments are possible and the inventors intend these to be encompassed within this specification and the scope of the appended claims. The specification describes specific examples to accomplish a more general goal that may be accomplished in another way. Modifications and equivalents will be apparent to practitioners skilled in this art and are encompassed within the spirit and scope of the appended claims and their appropriate equivalents. This disclosure is intended to be exemplary, and the claims are intended to cover any modification or alternative which might be predictable to a person having ordinary skill in the art.
Only those claims which use the words “means for” are to be interpreted under 35 USC 112, sixth paragraph. Moreover, no limitations from the specification are to be read into any claims, unless those limitations are expressly included in the claims.
Number | Name | Date | Kind |
---|---|---|---|
1867575 | Loetscher | Jul 1932 | A |
4550540 | Thorn | Nov 1985 | A |
4853062 | Gartland | Aug 1989 | A |
5344484 | Walsh | Sep 1994 | A |
5979525 | Durney | Nov 1999 | A |
6079183 | Moyes | Jun 2000 | A |
6309503 | Martino | Oct 2001 | B1 |
6312540 | Moyes | Nov 2001 | B1 |
6335082 | Martino | Jan 2002 | B1 |
6389768 | Gagne et al. | May 2002 | B1 |
6471897 | Walsh et al. | Oct 2002 | B1 |
6868644 | Frankefort et al. | Mar 2005 | B2 |
7337543 | Liittschwager et al. | Mar 2008 | B2 |
7338612 | Luetgert et al. | Mar 2008 | B2 |
7367166 | Luetgert et al. | May 2008 | B2 |
7919148 | Chen et al. | Apr 2011 | B2 |
7959817 | Luetgert et al. | Jun 2011 | B2 |
20050194106 | Scales | Sep 2005 | A1 |
20070028559 | Lynch et al. | Feb 2007 | A1 |
20070193173 | Coughlin et al. | Aug 2007 | A1 |
20080041014 | Lynch et al. | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
1 442 858 | Aug 2004 | EP |
Number | Date | Country | |
---|---|---|---|
20100212258 A1 | Aug 2010 | US |