Method of making strained silicon channel semiconductor structure

Information

  • Patent Grant
  • 8476169
  • Patent Number
    8,476,169
  • Date Filed
    Monday, October 17, 2011
    12 years ago
  • Date Issued
    Tuesday, July 2, 2013
    11 years ago
Abstract
A method for fabricating a strained channel semiconductor structure includes providing a substrate, forming at least one gate structure on said substrate, performing an etching process to form two recesses in said substrate at opposites sides of said gate structure, the sidewall of said recess being concaved in the direction to said gate structure and forming an included angle with respect to horizontal plane, and performing a pre-bake process to modify the recess such that said included angle between the sidewall of said recess and the horizontal plane is increased.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to a strained silicon channel semiconductor structure and method of fabricating the same. In particular, the present invention relates to a strained silicon channel semiconductor structure with better carrier mobility and method of making the same.


2. Description of the Prior Art


With the trend of miniaturization of semiconductor device dimensions, the scale of the gate, source and drain of a transistor is decreased in accordance with the decrease in critical dimension (CD). Due to the physical limitations of the materials used, the decrease in scale of the gate, source and drain results in the decrease of carriers that determine the magnitude of the current in the transistor element, and this can therefore adversely affect the performance of the transistor. Increasing carrier mobility in order to boost up a metal oxide semiconductor (MOS) transistor is therefore an important topic in the field of current semiconductor techniques.


To boost the carrier mobility, one conventional attempt has been made by forming a strained silicon channel. The strained silicon channel can increase the mobility of an electron (e) group and a hole (h+) group in the silicon channel without modifying the critical dimension of gate electrode, thereby improving the operation speed of the resulting transistor. This attempt is widely-used in the industry because it may attain better performance for semiconductor devices without complicating the original circuit design or manufacturing process.


In current implementations, one method for forming a strained silicon channel is using selective epitaxial growth (SEG) to grow an epitaxial layer as a stress source in the substrate. The epitaxial layer has the same lattice arrangement but different lattice constant than the silicon substrate. Thus the epitaxial layer may exert a stress on the lattice of the abutted silicon channel region to form a strained silicon channel, thereby attaining the efficacy of increasing carrier mobility.


For example, for the PMOS transistor using holes (h+) as carrier in the channel, a SiGe (silicon-germanium) epitaxial layer may be formed in the source/drain region on the silicon substrate. Due to the lattice constant of SiGe epitaxy being inherently larger than that of Si, the SiGe epitaxial layer will exert a stress on the lattice of abutted silicon channel, thereby forming a compressive strained channel. The band-gap structure of compressive strained channel is advantageous to the transition of holes (h+), thereby increasing the speed of PMOS device.


Similarly, for the NMOS transistor using electrons (e+) as carrier in the channel, a SiC (silicon-carbon) epitaxial layer may be formed in the source/drain region on the silicon substrate. Due to the lattice constant of SiC epitaxy being inherently smaller than that of Si, the SiC epitaxial layer will exert a stress on the lattice of abutted silicon channel, thereby forming a tensile strained channel. The band-gap structure of tensile strained channel is advantageous to the transition of electrons (e+), thereby increasing the speed of NMOS device.


Please refer now to FIG. 1. FIG. 1 is a schematic cross-section view of CMOS transistor structure using the technique of a strained silicon channel in the prior art. As shown in the figure, a conventional CMOS transistor structure 100 includes a PMOS region 102 and a NMOS region 104 spaced-apart by a shallow trench isolation (STI) 105. In addition to the conventional structures such as a gate 105, a source/drain (not shown) and a spacer 108, the PMOS region 102 and NMOS region 104 are also provided with recesses 110 formed on source/drain region in order to provide the space for the filling of stress material (ex. SiGe or SiC) to grow an epitaxial layer 112. The epitaxial layer 112 formed in the recess will exert a stress on a silicon channel region 114 between the source and drain, thereby forming a strained silicon channel and attaining the efficacy of increasing carrier mobility.


The semiconductor industry is still devoted to researching how to improve the carrier mobility and relevant electrical performance in semiconductor devices in order to respond to the even smaller scale of semiconductor devices in the future. Regarding the semiconductor technique based on strained silicon channel, it is still urgent for those skilled in the art to improve the structure thereof for further improving the relevant electrical performance.


SUMMARY OF THE INVENTION

To further improve the performance of strained silicon semiconductor structures, the present invention provides an improved strained silicon semiconductor structure and method of fabricating the same. The strained silicon semiconductor structure made by this method has better carrier mobility because the epitaxial layer (as stress source) is closer to the silicon channel region.


One object of the present invention is to provide a strained silicon channel semiconductor structure comprising a substrate having an upper surface, a gate structure formed on said upper surface, at least one recess formed in said substrate at lateral sides of said gate structure, wherein said recess has at least one sidewall, said sidewall has an upper sidewall and a lower sidewall concaved in the direction to said gate structure, and the included angle between said upper sidewall and horizontal plane ranges between 54.5°-90°, and an epitaxial layer filled into said two recesses.


Another object of the present invention is to provide a method of making strained silicon semiconductor structure. Said method comprises the steps of providing a substrate, forming at least one gate structure on said substrate, performing an etching process to form at least one recesses in said substrate at lateral sides of said gate structure, performing a pre-bake process at temperature ranging between 700° C.-1000° C., and performing an epitaxy growth process to form an epitaxial layer as stress source in said two recesses.


These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a further understanding of the embodiments, and are incorporated in and constitute apart of this specification. The drawings illustrate some of the embodiments and, together with the description, serve to explain their principles. In the drawings:



FIG. 1 is a schematic cross-section view of CMOS transistor structure using the technique of a strained silicon channel in the prior art.



FIGS. 2-8 are schematic views illustrating the process flow of making a strained silicon channel semiconductor structure in accordance with the preferred embodiment of the present invention.



FIG. 9 is an enlarged, partial schematic view illustrating the profile of a recess in strained silicon channel semiconductor structure before a pre-bake process in accordance with the present invention.



FIG. 10 is an enlarged, partial schematic view illustrating the profile of the recess in strained silicon channel semiconductor structure after the pre-bake process in accordance with the present invention.





It should be noted that all the figures are diagrammatic. Relative dimensions and proportions of parts of the drawings have been shown exaggerated or reduced in size, for the sake of clarity and convenience in the drawings. The same reference signs are generally used to refer to corresponding or similar features in modified and different embodiments.


DETAILED DESCRIPTION


FIGS. 2-8 are schematic views illustrating the process flow of making a strained silicon channel semiconductor structure in accordance with the preferred embodiment of the present invention. Those figures will be referred in order to describe the steps of making a strained semiconductor structure of the present invention. For the simplicity of description, a horizontal direction H parallel to the surface of substrate 10 and a vertical direction V perpendicular to the surface of substrate 10 are defined in the drawings.


Please refer firstly to FIG. 2, a substrate 10 is provided in the method. Said substrate may be a semiconductor substrate comprising but not limited to a silicon wafer or a SOI (silicon-on-isolator) substrate. A plurality of gate structures 12 is formed on said substrate 10. Each gate structure 12 comprises agate conductive layer 14, a gate dielectric layer 16 formed between the surface of substrate 10 and gate conductive layer 14, and a spacer 18 formed on sidewalls around the gate conductive layer 14. A liner is formed optionally between the spacer 18, gate conductive layer 14 and substrate 10. In present embodiment, the gate dielectric layer 16 may be made of SiO2 or high-k dielectric layer. The spacer 18 may be made of a silicon-oxide layer or a silicon-nitride layer in form of single layer or composite layer. The gate conductive layer 14 may be made of doped poly-Si, salicide or metal, etc. For simplicity, in the description of the present invention, the detailed structural and functional description for above-mentioned well-known components of gate structure 12 will not be made hereinafter.


In other embodiment of present invention, the gate structure 12 may also be integrated into the gate-first process or gate-last process, wherein the gate-last process may be a gate-last process for high-k dielectric pre-layer or for high-k dielectric per-layer. The step for those conventional transistor processes will not be described herein.


As shown in FIG. 2, after the formation of the gate structure 12, a sacrificial material layer 20 is blanket-deposited conformingly on the substrate 10 and the gate structure 12. The portion 20a of the sacrificial material layer 20 deposited right on the surface of the substrate may be relatively thinner, while the portion 20b of the sacrificial material layer 20 deposited right on the surface of the substrate may be relatively thicker. In this way, the sacrificial material layer 20 may be modified to a desired pattern for serving as an etch mask in a later process, for which the details will be described in the embodiment hereafter.


Please refer subsequently to FIG. 3. After the formation of the sacrificial material layer 20, a first dry etching process is performed on the entire substrate 10. This dry etching process may remove all the portion 20a of the sacrificial material layer covering right upon the substrate 10 and reserve a thin layer (referred to hereinafter as a sacrificial spacer 22) covering on the surface of the spacer 18 after the etching of the portion 20b of the sacrificial material layer 20. The reserved sacrificial spacer 22 is used as an etch mask in a later etching process.


Please refer subsequently to FIG. 4. After the formation of the sacrificial spacer 22, a first etching process is performed on the entire substrate 10 with the sacrificial spacer 22 being used as an etch mask. Said first etching process includes a first dry etching process and a first wet etching process, wherein said first dry etching process provides downward etching, while said first wet etching process provides downward etching and lateral etching. Said first dry etching process uses SF6-based etchant or NF3-based etchant which are etch-selective to the material of the substrate 10, thus a recess 24 structure will be etched out in the substrate 10. Furthermore, during the first wet etching process, the etchant will etch the substrate 10 both in the horizontal direction H and the vertical direction V, wherein the etching rate in the horizontal direction H is larger than the etching rate in the vertical direction V, thereby forming a concave surface 24a concaved in the direction to the gate structure in the substrate 10.


Please refer to FIG. 5. A second wet etching process is performed subsequently after the formation of the above-mentioned first dry etch recess 24. Said second wet etching process uses a NH4OH-based etchant or a TMAH-based etchant which is etch-selective to material of the substrate 10 to further etch the sidewall of said first dry etch recess 24 formed in the previous step. Furthermore, because those etchants etch the silicon substrate 10 along the crystallographic plane (110) and (111), the first dry etch recess 24 will be transformed into a diamond-shape recess 26 having distinguishing etching planes (shown as the upper sidewall 26b and lower sidewall 26c shown in the figure). An acute angle (or tip) 26a is formed at the intersection of said upper sidewall 26b and lower sidewall 26c on the sidewall of said diamond-shape recess 26.


Please refer subsequently to FIG. 6. After the formation of above-mentioned recess 26, a pre-bake process is performed on the entire substrate 10. Said pre-bake process will diffuse and rearrange the atoms near the sidewall of the diamond-shape recess 26, thereby rounding the acute angle 26a (i.e. by increasing the angle) at the sidewall of the recess 26. In this way, the shape of the recess 26 is transformed from the original diamond shape into a diamond-like recess 28 with a more rounded sidewall surface 29. In a preferred embodiment of the present invention, the process parameter of pre-bake step is set to the temperature ranging between 700° C.-1000° C. and pressure under 10 torr to few hundred torr in hydrogen-containing ambiance with process time ranging from a few seconds to several minutes. The detailed structure of the above-mentioned diamond-like recess 28 will be further described in the embodiment hereafter.


In the final step, please refer to FIG. 7, a selective epitaxial growth (SEG) process is performed for growing an epitaxial layer 30 in the diamond-like recess 28. The epitaxial layer 30 is used as a stress source to strain the abutted silicon channel. Preferably, the upper surface of the epitaxial layer 30 should be deposited higher than the surface of the substrate 10 in order to enhance the effect of epitaxial strain. In present embodiment, the epitaxial layer 30 may be made of SiGe (for PMOS transistor) or SiC (for NMOS transistor) which will exert a stress on abutting silicon channel region 10a, thereby attaining the efficacy of improving carrier mobility. Please note that the epitaxy process and previous pre-bake process may be performed in the same deposition chamber, in which the epitaxial layer is subsequently grown right after the deposition chamber is heated and the pre-bake process is finished.


In a further embodiment of the present invention, as shown in FIG. 8, an ion implantation process is optionally performed on the epitaxial layer 30 formed in the previous step. Said ion implantation process uses photo resist (not shown) or the gate structure 12 as a mask to implant the N-type dopants (such as P, As or Sb) or P-type dopants (such as B, BF2) respectively combining with other co-implant species, e.g., C, N2, F, Ge, Si into the corresponding epitaxial layer 30 in the NMOS or PMOS region, thereby defining the source/drain area 32a/32b in the epitaxial layer 30 at opposite sides of the gate structure 14. So far, a complete transistor structure is finished. Please note that in other embodiments of the present invention, the step of defining the source/drain may be performed before the etching of the recess or performed concurrently with the selective epitaxial process, depending on the process requirement. In still another embodiment of the present invention, an additional spacer (not shown) may be optionally formed on the gate structure 12 to define the size of source/drain area 32a/32b before the ion implantation process.


Besides, the sacrificial spacer 22 formed in the previous step may also be stripped by an additional etching process. In other embodiments, this sacrificial spacer may be reserved as a spacer structure.


Please now refer concurrently to FIG. 9 and FIG. 10. FIG. 9 and FIG. 10 are enlarged, partial cross-section views illustrating the recess of strained silicon channel semiconductor structure formed before and after a pre-bake process in accordance with the embodiment of the present invention. As shown in FIG. 9, because the etchant will etch the silicon substrate 10 along a specific crystallographic plane during the formation of the recess, the cross-section shape of the recess 26 will be a perfect diamond-shape. More specifically, the recess 26 is form of at least one sidewall and a bottom surface 27. Said sidewall further includes an upper sidewall 26b and a lower sidewall 26c. Due to the effect of lateral etching in present invention, the sidewall is formed under the spacer 18 of the gate structure 12, wherein the upper sidewall 26b intersects with the surface of substrate 10 right under the spacer 18 (as point A shown in the figure), while the intersection of the lower sidewall 26c and bottom surface 27 (as point B shown in the figure) may or may not located below the spacer 18. The upper sidewall 26b and lower sidewall 26c (i.e. distinguishing etching planes are concaved in the direction to the gate structure 12 and intersect with each other at an intersection (or tip) 26a. As shown in the figure, the upper sidewall 26b of the recess 26 is oriented at a fixed angle θ1=54.5° with respect to the horizontal plane. In the present embodiment, the horizontal distance from the intersection (point A) of the upper sidewall 26b and the surface of the substrate to the gate conductive layer 14 is denoted as d1, while the vertical distance from the tip 26a to the surface of the substrate 10 is denoted as d2. The distances d1 and d2 have an influence on how efficiently the stress induced by the epitaxial layer may be exerted on the silicon channel. Taking the semiconductor device with 32 nm gate CD as an example, the distance d1 and d2 is 130 Å and 200 Å, respectively.


Please refer now to FIG. 10. The recess 26 in the present embodiment is transformed into a diamond-like recess 28 after a high temperature, low pressure pre-bake process. The recess 28 has a more rounded sidewall surface (that is, the angle between the upper sidewall 28b and the lower surface 28c is larger) concaved in the direction to the gate structure 14 and extended below the spacer, thereby the epitaxial layer formed thereafter may be closer to the silicon channel region 10a. In one implementation, after the sample undergoes an 800° C. pre-bake process, the angle θ2 between the upper sidewall 28b and the horizontal plane is changed from 54.5° to 75°, the horizontal distance D1 from the intersection of upper sidewall 28b and the surface of substrate 10 to gate conductive layer 14 is shrunk from 130 Å to 70 Å, and the vertical distance D2 from tip 28a to the surface of substrate 10 is shrunk from 200 Å to 172 Å. The above-mentioned data shows the sidewall of the recess 28 after the pre-bake process is closer to the silicon channel region (i.e. reduced D1 and D2), thereby the epitaxial layer formed thereafter may exert more stress on the channel region and attain a better strain effect.


Please note that the shape of the final recess structure in present invention may vary with different process conditions during the pre-bake step. Generally, the pre-bake process is set at the temperature ranging between 700° C.-1000° C. and at the pressure under 10 torr to several hundreds torr in hydrogen-containing ambiance with process time ranging from a few seconds to several minutes. For the diamond-like recess structure formed thereafter, the resulting angle θ2 between the upper sidewall and the horizontal plane may range from 54.5° to 90°, preferably 75° to 90°. Also, for the scale of 35 nm gate CD circuit architecture, the distance is preferably smaller than 130 Å, while the resulting D2 distance is preferably smaller than 200 Å.


Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims
  • 1. A method of making strained silicon semiconductor structure, comprising the steps of: providing a substrate;forming at least one gate structure on said substrate;performing an etching process to form at least one recess in said substrate at lateral sides of said at least one gate structure, wherein said at least one recess has an upper sidewall and a lower sidewall concaved in the direction to said at least one gate structure, and said upper sidewall and said horizontal sidewall form an included angle;performing a pre-bake process at temperature ranging between 700° C.-1000° C. to increase said included angle; andperforming an epitaxy growth process to form an epitaxial layer as a stress source in said at least one recess.
  • 2. The method of claim 1, wherein the step of performing an etching process comprise performing a first dry etching process, said first dry etching process uses SF6-based etchant or NF3-based etchant.
  • 3. The method of claim 1, further comprising the step of forming source and drain at opposite sides of said at least one gate structure.
  • 4. The method of claim 1, wherein said epitaxial layer is used as a stress source for a strained silicon channel.
  • 5. The method of claim 1, wherein the step of performing an etching process comprises performing a first wet etching process to etch said substrate both in a horizontal direction and a vertical direction and form a first recess.
  • 6. The method of claim 5, further comprises performing a second wet etching process to further etch said first recess and form a diamond-shape second recess after performing said etching process.
  • 7. The method of claim 6, wherein the step of performing a second wet etching process uses NH4OH-based etchant or TMAH-based etchant.
  • 8. The method of claim 6, wherein the step of performing a pre-bake process transforms said diamond-shape second recess into a diamond-like recess.
  • 9. A method of making strained silicon semiconductor structure, comprising the steps of: providing a substrate;forming at least one gate structure on said substrate;performing a first etching process to form at least one recess in said substrate at lateral sides of said at least one gate structure;performing a second etching process to further etch said at least one recess and form a diamond-shape recess after performing said first etching process;performing a pre-bake process at temperature ranging between 700° C.-1000° C. to transforms said diamond-shape recess into a diamond-like recess; andperforming an epitaxy growth process to form an epitaxial layer as a stress source in said diamond-like recess.
  • 10. The method of claim 9, wherein the step of performing a second etching process comprises performing a wet etching process to etch said substrate both in a horizontal direction and a vertical direction and form diamond-shape recess.
  • 11. The method of claim 10, wherein said wet etching process uses NH4OH-based etchant or TMAH-based etchant.
  • 12. The method of claim 9, wherein the step of performing a first etching process comprises performing a dry etching process, said dry etching process uses SF6-based etchant or NF3-based etchant.
  • 13. The method of claim 9, further comprising the step of forming source and drain at opposite sides of said at least one gate structure.
  • 14. The method of claim 9, wherein said epitaxial layer is used as a stress source for a strained silicon channel.
US Referenced Citations (140)
Number Name Date Kind
4891303 Garza Jan 1990 A
5217910 Shimizu Jun 1993 A
5273930 Steele Dec 1993 A
5356830 Yoshikawa Oct 1994 A
5372957 Liang Dec 1994 A
5385630 Philipossian Jan 1995 A
5399506 Tsukamoto Mar 1995 A
5625217 Chau Apr 1997 A
5777364 Crabbe Jul 1998 A
5783478 Chau Jul 1998 A
5783479 Lin Jul 1998 A
5960322 Xiang Sep 1999 A
6030874 Grider Feb 2000 A
6048756 Lee Apr 2000 A
6074954 Lill Jun 2000 A
6100171 Ishida Aug 2000 A
6110787 Chan Aug 2000 A
6165826 Chau Dec 2000 A
6165881 Tao Dec 2000 A
6191052 Wang Feb 2001 B1
6228730 Chen May 2001 B1
6274447 Takasou Aug 2001 B1
6355533 Lee Mar 2002 B2
6365476 Talwar Apr 2002 B1
6368926 Wu Apr 2002 B1
6444591 Schuegraf Sep 2002 B1
6537370 Hernandez Mar 2003 B1
6544822 Kim Apr 2003 B2
6605498 Murthy Aug 2003 B1
6613695 Pomarede Sep 2003 B2
6621131 Murthy Sep 2003 B2
6624068 Thakar Sep 2003 B2
6632718 Grider Oct 2003 B1
6642122 Yu Nov 2003 B1
6664156 Ang Dec 2003 B1
6676764 Joo Jan 2004 B2
6699763 Grider Mar 2004 B2
6703271 Yeo Mar 2004 B2
6777275 Kluth Aug 2004 B1
6806151 Wasshuber Oct 2004 B2
6809402 Hopper Oct 2004 B1
6858506 Chang Feb 2005 B2
6861318 Murthy Mar 2005 B2
6864135 Grudowski Mar 2005 B2
6869867 Miyashita Mar 2005 B2
6887751 Chidambarrao May 2005 B2
6887762 Murthy May 2005 B1
6891192 Chen May 2005 B2
6930007 Bu Aug 2005 B2
6946350 Lindert Sep 2005 B2
6962856 Park Nov 2005 B2
6972461 Chen Dec 2005 B1
6991979 Ajmera Jan 2006 B2
6991991 Cheng Jan 2006 B2
7037773 Wang May 2006 B2
7060576 Lindert Jun 2006 B2
7060579 Chidambaram Jun 2006 B2
7112495 Ko Sep 2006 B2
7118952 Chen Oct 2006 B2
7132338 Samoilov Nov 2006 B2
7169675 Tan Jan 2007 B2
7183596 Wu Feb 2007 B2
7202124 Fitzgerald Apr 2007 B2
7217627 Kim May 2007 B2
7288822 Ting Oct 2007 B1
7303999 Sriraman Dec 2007 B1
7335959 Curello Feb 2008 B2
7410859 Peidous Aug 2008 B1
7462239 Brabant Dec 2008 B2
7491615 Wu Feb 2009 B2
7494856 Zhang Feb 2009 B2
7494858 Bohr Feb 2009 B2
7592231 Cheng Sep 2009 B2
7667227 Shimamune Feb 2010 B2
7691752 Ranade Apr 2010 B2
7838370 Mehta Nov 2010 B2
20020160587 Jagannathan Oct 2002 A1
20020182423 Chu Dec 2002 A1
20030181005 Hachimine Sep 2003 A1
20030203599 Kanzawa Oct 2003 A1
20040045499 Langdo Mar 2004 A1
20040067631 Bu Apr 2004 A1
20040227164 Lee Nov 2004 A1
20050070076 Dion Mar 2005 A1
20050079692 Samoilov Apr 2005 A1
20050082616 Chen Apr 2005 A1
20050139231 Abadie Jun 2005 A1
20050148147 Keating et al. Jul 2005 A1
20050260830 Kwon Nov 2005 A1
20050285193 Lee Dec 2005 A1
20050287752 Nouri Dec 2005 A1
20060051922 Huang Mar 2006 A1
20060057859 Chen Mar 2006 A1
20060076627 Chen Apr 2006 A1
20060088968 Shin Apr 2006 A1
20060115949 Zhang Jun 2006 A1
20060163558 Lee Jul 2006 A1
20060228842 Zhang Oct 2006 A1
20060231826 Kohyama Oct 2006 A1
20060258126 Shiono Nov 2006 A1
20060281288 Kawamura Dec 2006 A1
20060292779 Chen Dec 2006 A1
20060292783 Lee Dec 2006 A1
20070023847 Rhee Feb 2007 A1
20070034906 Wang Feb 2007 A1
20070049014 Chen Mar 2007 A1
20070072353 Wu Mar 2007 A1
20070072376 Chen Mar 2007 A1
20070082451 Samoilov Apr 2007 A1
20070128783 Ting Jun 2007 A1
20070166929 Matsumoto Jul 2007 A1
20070262396 Zhu Nov 2007 A1
20080014688 Thean Jan 2008 A1
20080061366 Liu Mar 2008 A1
20080067545 Rhee Mar 2008 A1
20080076236 Chiang Mar 2008 A1
20080085577 Shih Apr 2008 A1
20080116525 Liu May 2008 A1
20080124874 Park May 2008 A1
20080128746 Wang Jun 2008 A1
20080142839 Fukutome et al. Jun 2008 A1
20080142886 Liao Jun 2008 A1
20080220579 Pal Sep 2008 A1
20080233722 Liao Sep 2008 A1
20080233746 Huang Sep 2008 A1
20080237742 Ranade et al. Oct 2008 A1
20090039389 Tseng Feb 2009 A1
20090045456 Chen Feb 2009 A1
20090095992 Sanuki Apr 2009 A1
20090117715 Fukuda May 2009 A1
20090124056 Chen May 2009 A1
20090166625 Ting Jul 2009 A1
20090184402 Chen Jul 2009 A1
20090186475 Ting Jul 2009 A1
20090246922 Wu Oct 2009 A1
20090278170 Yang Nov 2009 A1
20090302348 Adam Dec 2009 A1
20100001317 Chen Jan 2010 A1
20100078689 Kronholz et al. Apr 2010 A1
20100093147 Liao Apr 2010 A1
Related Publications (1)
Number Date Country
20130092954 A1 Apr 2013 US