1. Field of the Invention
The invention relates to manufacturing a liquid crystal (LC) alignment film, and more particularly, to utilizing long-throw sputtering or a collimator to manufacture a liquid crystal alignment film.
2. Description of the Prior Art
Liquid Crystal (LC) displays are widely used in various applications. Generally, the image quality of small-sized LC displays is close to the image quality of conventional CRT displays. However, in some large-sized, high-density LC applications, problems including viewing angle, contrast, display uniformity, response time, etc. are still to be overcome. In the manufacture of LCD devices, as known in the art, the alignment of LC molecules sandwiched between transparent electrodes formed on opposed substrate plates is critical. To obtain better contrast, the orientation of the LC molecules must be uniformly controlled.
The alignment types of the LC molecules are generally divided into three categories: (1) homogeneous alignment, (2) homeotropic or vertical alignment, and (3) tilted homeotropic alignment. The latter is the most applicable one in industry. The LC molecules in contact with the alignment layer are arranged at a pre-tilt angle with respect to the alignment surface. As known in the art, the pre-tilt angle is one of the critical parameters of a LCD device and is determined by physical forces such as hydrogen bond, Van der Waals force, and mechanical forces such as grooves formed on an alignment layer and materials chosen for the alignment layer.
The industry-wide method for producing an alignment layer is through the mechanical rubbing of a polyimide surface. This method requires a physical contact between a rubbing cloth and the polyimide surface. The rubbing process realigns the surface of the polyimide, which then acts as an alignment template for the orientation of the liquid crystal molecules in the preferred pre-tilt direction.
This approach has several disadvantages. For example, because the rubbing method is a contact technique, debris can be generated during the rubbing process resulting in a low process yield. Moreover, additional cleaning steps are generally required to remove the debris. In addition, as the roller or brush rubs the surface of the display, electrostatic charges can build up which may discharge through the thin film transistors (TFT) resulting in a lowering of the process yield. Furthermore, the PI organic film cannot easily pass the reliability test that will influence the quality of TFT. Additionally, the rubbing process requires a relatively soft layer in order to modify the surface in a desired orientation. Thus, choice of materials that are suitable for use in the rubbing process is limited.
It is therefore a primary objective of the claimed invention to provide a method of manufacturing a uniform LC alignment film to solve the above-mentioned problem.
According to the claimed invention, the method includes putting a substrate on a substrate carrier in a chamber, utilizing high-density plasma to bombard a target over the substrate to produce sputtering species, and providing a bias voltage in the chamber. Then, nearly vertical directional sputtering species are deposited on the surface of the substrate to form an LC alignment film. The distance between the target and the substrate is more than 20 cm.
Alternatively, according to the claimed invention, the method includes putting a substrate on a substrate carrier in a chamber, utilizing high-density plasma to bombard a target over the substrate to produce sputtering species, and providing a collimator between the target and the substrate. Then the sputtering species is accorded a specific directional deposit on the surface of the substrate to form an LC alignment film.
The claimed invention uses inorganic alignment materials to form a target, and utilizes sputtering to manufacture a LC alignment film. Not only does the claimed invention eliminate the problems of the alignment film passing the reliability test, the trace of rubbing cloth, and the agreement of alignment film, but it also improves the breakthrough and quality of the alignment film to reduce the cost.
These and other objectives of the claimed invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
Please refer to
As shown in
Please refer to
As shown in
As above-mentioned, the pressures in the chambers 30, 50 are about 0.03˜0.1 mtorr, the distance “b” between the target 32 and the substrate 36 is about 25˜90 cm, the distance “c” between the target 52 and the substrate 56 is about 20˜70 cm, and the surface area of the targets 32, 52 is larger than that of the substrates 36,56. In addition, the LC alignment film (formed by the target 32, 52) includes a diamond-like carbon thin film or a silicon oxide thin film, forming an inorganic material layer or a high-pass non-conducting material layer, such as SiO2, SiOx, or any dielectric material.
It is to be noted that the collimator 58 includes a plurality of channels, and the aspect ratio of each channel is 2:1. In addition, each channel is similar to a hexagonal tube so that the collimator 58 is similar to a beehive. Furthermore, the collimator 58 can sieve out large angled sputtering species, and allows small angled sputtering species to pass through the channels to deposit on the surface of the substrate 56 and form the LC alignment film.
To sum up, the present invention utilizes long-throw sputtering or a collimator to manufacture an LC alignment film encompasses at least the following advantages.
(1) The present invention utilizing long-throw sputtering to manufacture an LC alignment film can form nearly vertical sputtering species deposits on a substrate, which can effectively avoid many unwanted pre-tilt angles on the LC alignment film and improve the quality of the LC alignment film.
(2) The present invention utilizing a collimator to manufacture an LC alignment film can form a uniform LC alignment film by changing the location of the collimator to sieve out the sputtering species or allowing the sputtering species to pass through the collimator.
(3) The present invention utilizing long-throw sputtering or a collimator to manufacture an LC alignment film can utilize the tilt angle of the substrate to control the pre-tilt angle of the LC molecules and LC alignment film, which can effectively improve the quality and yield to reduce cost.
(4) The present invention utilizing long-throw sputtering or a collimator to manufacture an LC alignment film adopts inorganic materials to manufacture the LC alignment film to solve the problem of the PI film passing the reliability test.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.